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Abstract. Given Banach spaces X, Y and a compact Hausdorff space K, we use poly-
measures to give necessary conditions for a multilinear operator from C(K, X) into Y to
be completely continuous (resp. unconditionally converging). We deduce necessary and suf-
ficient conditions for X to have the Schur property (resp. to contain no copy of c0), and
for K to be scattered. This extends results concerning linear operators.

Keywords: completely continuous, unconditionally converging, multilinear operators,
C(K, X) spaces
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1. Introduction

It has been known for a long time that every linear operator from the space of
vector valued continuous functions C(K, X) (where X is a Banach space and K is a
compact Hausdorff space) into another Banach space Y admits a representation via a
measure defined on the Borel sets of K and taking values in the space L (X ; Y ∗∗) of
continuous linear operators from X into Y ∗∗ (see for instance [12, §19]). In several
papers (see specially [3], [6], [14] and [23]), certain classes of these operators are
studied in terms of their representing measure. Many results have been obtained in
this direction; we want to mention here that, putting together the results of [3], [14]
and [23], one gets the following result.

Let K be a compact Hausdorff space, X and Y Banach spaces, T : C(K, X) →
Y a linear operator and m : Σ → L (X ; Y ∗∗) its representing measure (Σ is the
σ-algebra of the Borel sets of K). If T is completely continuous (resp. unconditionally
converging) then
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(i) for every A ∈ Σ, m(A) ∈ L (X ; Y ) and it is completely continuous, (resp.
(i′) for every A ∈ Σ, m(A) ∈ L (X ; Y ) and it is unconditionally converging.)
(ii) the semivariation of m, |m|, is continuous at ∅.

Moreover, the following are equivalent
1. X is a Schur space.
2. For every K and Y , T is completely continuous if and only if m satisfies (i) and

(ii).
Also, the following are equivalent

1′. X does not contain isomorphic copies of c0.
2′. For every K and Y , T is unconditionally converging if and only if m satisfies (i′)

and (ii).
Finally, the following are equivalent

1′′. K is scattered.
2′′. For every X and Y , T is completely continuous (resp. unconditionally converg-

ing) if and only if m satisfies (i) and (ii) (resp. (i′) and (ii)).

In a series of papers (see [15], [16] and the references therein), Dobrakov developed
a theory of polymeasures (set functions defined on a product of σ-algebras which are
separately measures) that can be used to extend the classical Riesz representation
theorem to a multilinear setting. With this theory, multilinear operators from a prod-
uct of C(K, X) spaces into Y can be represented as operator valued polymeasures.
Using the representing polymeasures, we show in the present paper that the above
mentioned result concerning completely continuous and unconditionally converging
linear operators can be satisfactorily extended to the multilinear case, together with
some related facts. In a forthcoming paper [6], we use these results to prove that
if X is a Banach space such that every multilinear form defined on it is weakly
sequentially continuous and K is scattered, then C(K, X) also satisfies that every
multilinear form defined on it is weakly sequentially continuous.

We shall first explain our notation and some well known facts which will be freely
used along the paper. In what follows, K, Ki will be compact Hausdorff spaces, X ,
Xi, Y will be Banach spaces, C(K) will be the space of continuous scalar valued
functions on K, and C(K, X) will be the space of continuous X-valued functions
on K, both endowed with the supremum norm. It is well known (see, f.i., [9, Propo-
sition 1.7.1 and Corollary 1.7.1]) that, if (fn) ⊂ C(K, X) is a bounded sequence, then
(fn) converges weakly to f ∈ C(K, X) if and only if, for every t ∈ K, the sequence
(fn(t)) converges weakly to f(t); analogously, the sequence (fn) is weakly Cauchy if
and only if, for every t ∈ K, the sequence (fn(t)) is weakly Cauchy. We denote the
topological dual of X by X∗. L k(X1, . . . , Xk; Y ) will denote the space of continuous
k-linear operators from X1×. . .×Xk into Y . It is well known that L k(X1, . . . , Xk; Y )
is isometricaly isomorphic to L (X1⊗̂ . . . ⊗̂Xk; Y ), where X1⊗̂ . . . ⊗̂Xk denotes the
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projective tensor product of the spaces. We use the notation [i]. . . to mean that the
ith variable is not involved. We denote the support of a function f by supp f .

Let Σ be a σ-algebra. We say that a set function

λ : Σ → X

is a measure if it is finitely additive. We write λ ∈ ca(Σ; X) if λ is countably additive
and we write λ ∈ rca(Σ; X) if λ is regular. If X = � we will omit it. Also, we write
λ ∈ rcabv(Σ; X) if λ is regular and has bounded variation. If

λ : Σ → L (X ; Y )

is a finitely additive set function, we say that λ is an operator valued measure, and
in that case we consider its semivariation |λ| to be defined as in [12, p. 51]. If |λ|
is bounded, we write λ ∈ ba(Σ; L (X ; Y )). If λ is a measure or an operator valued
measure, we denote its variation by v(λ); it is well known, and very easy to check,
that if λ : Σ → X∗ is an operator valued measure, then |λ| = v(λ).

If F is a Banach space and Σ1, . . . , Σk are σ-algebras, following [15], we say that a
set function Γ: Σ1×. . .×Σk → F is a polymeasure if it is separately finitely additive.
If F = L k(X1 . . . , Xk; Y ) then we say that Γ is an operator valued polymeasure. In
this last case, we define its semivariation

|Γ| : Σ1 × . . .× Σk → [0, +∞]

by

|Γ|(A1, . . . , Ak) = sup
{∥∥∥∥

n1∑

j1=1

. . .

nk∑

jk=1

Γ(A1,j1 , . . . , Ak,jk
)(x1,j1 , . . . , xk,jk

)
∥∥∥∥
}

where (Ai,ji)
ni

ji=1 is a Σi-partition of Ai (1 6 i 6 k), xi,ji ∈ Xi and ‖xi,ji‖ 6 1.
It is trivial to check that this definition generalizes the above mentioned semivari-
ation of an operator valued measure. We denote by pm(Σ1, . . . , Σk; X) the set of
polymeasures from Σ1×. . .×Σk into X . We say that Γ ∈ pm(Σ1, . . . , Σk; X) is count-
ably additive (respectively regular) if it is separately countably additive (respectively
separately regular), that is, if for every i ∈ {1, . . . , k} and every (A1,

[i]. . ., Ak) ∈
Σ1 × [i]. . .× Σk, the measure

Γ(A1, . . . , Ai−1, ·, Ai+1, . . . , Ak) : Σi → X

is countably additive (resp. regular). In that case we write Γ ∈ capm(Σ1, . . . , Σk; X)
(resp. Γ ∈ rcapm(Σ1, . . . , Σk; X)).
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If Γ is an operator valued polymeasure defined from Σ1× . . .×Σk into L k(X1, . . . ,

Xk; Y ) then, for every (x1, . . . , xk) ∈ X1 × . . . × Xk we define the polymeasure
Γx1,...,xk

∈ pm(Σ1, . . . , Σk; Y ) by

Γx1,...,xk
(A1, . . . , Ak) = Γ(A1, . . . , Ak)(x1, . . . , xk)

and, for every y∗ ∈ Y ∗, we can also define the operator valued polymeasure Γy∗ ∈
pm(Σ1, . . . , Σk; L k(X1, . . . , Xk; � )) by

Γy∗(A1, . . . , Ak)(x1, . . . , xk) = 〈Γ(A1, . . . , Ak)(x1, . . . , xk), y∗〉.

Given y∗ ∈ Y ∗, if, for every (x1, . . . , xk) ∈ X1×. . .×Xk, the polymeasure Γy∗,x1,...,xk
:

Σ1 × . . .× Σk → � defined by

Γy∗,x1,...,xk
(A1, . . . , Ak) = Γy∗(A1, . . . , Ak)(x1, . . . , xk)

is regular, then we say that Γy∗ is weak-star regular. We shall use analogous notation
for measures. For definitions, notation and basic concepts concerning polymeasures,
see [5], [15].

From now on, Σ, Σi will be the σ-algebras of the Borel sets of K, Ki. S(Σ) will be
the normed space of the scalar Σ-simple functions defined on K endowed with the
supremum norm and S(Σ, X) will be the normed space of the X-valued Σ-simple
functions defined on K endowed also with the supremum norm. B(Σ) and B(Σ, X)
denote the completion of S(Σ) and S(Σ, X) respectively. Given a sequence (An) of
subsets of K and a set A ⊂ K, if, for every t ∈ K, χAn(t) → χA(t), then we say that
(An) converges to A, and we write An → A. If (An) is a non increasing sequence,
then we write the previous relation as An ↘ A.

If si =
ni∑

ji=1

χAi,ji
xi,ji ∈ S(Σi, Xi) then, for every polymeasure Γ ∈ pm(Σ1, . . . , Σk;

L k(X1, . . . , Xk; Y )), the formula

TΓ(s1, . . . , sk) =
n1∑

j1=1

. . .

nk∑

jk=1

Γ(A1,j1 , . . . , Ak,jk
)(x1,j1 , . . . , xk,jk

)

defines a multilinear map TΓ : S(Σ1, X1) × . . . × S(Σk, Xk) → Y such that ‖TΓ‖ =
|Γ|(K1, . . . , Kk) (def= |Γ|).

So, if |Γ| < ∞, i.e., if Γ has finite semivariation, then TΓ can be uniquely extended
(with the same norm) to B(Σ1, X1)× . . .×B(Σk, Xk). We still denote this extension
by TΓ and we write also

TΓ(g1, . . . , gk)
def
=

∫
(g1, . . . , gk) dΓ.
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It is easily seen that the correspondence Γ ↔ TΓ is an isometric isomorphism between
the Banach space bpm(Σ1, . . . , Σk; L k(X1, . . . , Xk; Y )) of all L k(X1, . . . , Xk; Y )-
valued polymeasures of finite semivariation endowed with the semivariation norm,
and L k(B(Σ1, X1), . . . , B(Σk, Xk); Y ) endowed with the usual multilinear operator
norm. For a quite exhaustive presentation of the integral with respect to polymea-
sures, see [16] and the references therein. See also [20], [21] and [13] for integration
with respect to certain particular classes of polymeasures.

If m : Σ → L (X ; Y ) is an operator valued measure of bounded semivariation,
g ∈ B(Σ, X) and A ⊂ K, the following relation

∥∥∥∥
∫

A

g dm

∥∥∥∥
def=

∥∥∥∥
∫

χAg dm

∥∥∥∥ 6 ‖g‖ |m|(A)

is well known and we shall often use it without explicit mention.
In [16, Theorem 5], a representation of the multilinear operators from C(K1, X1)×

C(K2, X2)× . . .×C(Kk, Xk) into Y in terms of Baire operator valued polymeasures
is obtained (although the result is not complete as stated in that paper). Using the
representation of multilinear operators on C(K) spaces described in [5, Theorem 3],
an analogous theorem can be obtained for Borel polymeasures. We presently state
without proof such a theorem for reference purposes. A more detailed exposition on
this subject can be found in [24].

Theorem 1.1. Let T ∈ L k(C(K1, X1), . . . , C(Kk, Xk); Y ). Then T has a unique

extension T ∈ L k(B(Σ1, X1), . . . , B(Σk, Xk); Y ∗∗) with the same norm and sep-
arately weak-star to weak-star continuous, where the weak-star topology that we
consider in each of the B(Σi, Xi) is the one induced by the canonical isometric in-
clusion B(Σ, X) ↪→ C(K, X)∗∗.
If we now define the operator valued polymeasure

Γ: Σ1 × . . .× Σk → L k(X1, . . . , Xk; Y ∗∗)

by

Γ(A1, . . . , Ak)(x1, . . . , xk) = T (x1χA1 , . . . , xkχAk
)

then it satisfies:

(i) Γ has bounded semivariation.
(ii) For every y∗ ∈ Y ∗(⊂ Y ∗∗∗), Γy∗ is weak-star regular.

(iii) If Z is the Banach space of weak-star regular polymeasures of bounded semi-
variation from Σ1 × . . .× Σk into L k(X1, . . . , Xk; � ), then the mapping

Y ∗ → Z, y∗ 7→ Γy∗
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is weak-star to weak-star continuous, where we consider a weak-star topology on
the range span taking into account that from this theorem in the scalar valued

case it follows that

(C(K1, X1)⊗̂ . . . ⊗̂C(Kk, Xk))∗ = Z.

(iv) T (f1, . . . , fk) =
∫
(f1, . . . , fk) dΓ, for every fi ∈ C(Ki, Xi).

(v) |Γ|(K1, . . . , Kk) = ‖T‖.
Conversely, every operator valued polymeasure

Γ: Σ1 × . . .× Σk → L k(X1, . . . , Xk; Y ∗∗)

that satisfies (i), (ii) and (iii) defines via (iv) a k-linear operator

T : C(K1, X1)× . . .× C(Kk, Xk) → Y

for which (v) holds.

Remark 1.2. If T , T and Γ are as in the theorem and (f1,
[i]. . ., fk) ∈ C(K1, X1)×

C(K2, X2)× [i]. . .× C(Kk, Xk) then we can consider the operator

T
f1,[i]...,fk

: C(Ki, Xi) → Y

given by
T

f1,[i]...,fk
(fi) = T (f1, . . . , fk).

If Γ
f1,[i]...,fk

: Σi → L (Xi; Y ∗∗) is its associated measure, it is clear that

Γ
f1,[i]...,fk

(Ai)(xi) = T (f1, . . . , fi−1, xiχAi , fi+1, . . . , fk).

Similarly, for (g1,
[i]. . ., gk) ∈ B(Σ1, X1)× [i]. . .×B(Σk, Xk), if the operator

T
g1,[i]...,gk

: C(Ki, Xi) → Y ∗∗

defined by
T

g1,[i]...,gk
(fi) = T (g1, . . . , gi−1, fi, gi+1, . . . , gk)

takes its values in Y and Γ
g1,[i]...,gk

: Σi → L (Xi; Y ∗∗) is its associated measure then,
easily, for every Ai ∈ Σi and every xi ∈ Xi,

Γ
g1,[i]...,gk

(Ai)(xi) = T (g1, . . . , gi−1, xiχAi , gi+1, . . . , gk).

We shall use these operators and measures, and this notation, throughout the
paper.
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Remark 1.3. For every x = (x1, . . . , xk) ∈ X1 × . . . × Xk, let us consider the
multilinear operator

Tx : C(K1)× . . .× C(Kk) → Y

defined by
Tx(ϕ1, . . . , ϕk) = T (x1ϕ1, . . . , xkϕk).

Then, if Γx : Σ1× . . .×Σk → Y ∗∗ is the representing polymeasure of Tx (in the sense
of [5, Theorem 3]), then it is easy to see that

Γx(A1, . . . , Ak) = Γ(A1, . . . , Ak)(x1, . . . , xk).

Remark 1.4. With the notation of Theorem 1.1, it is easy to check that, as in
the linear case, T is Y -valued if and only if Γ is L k(X1, . . . , Xk; Y )-valued.

A linear operator between Banach spaces is completely continuous if it takes
weakly convergent sequences into norm convergent sequences. This happens if
and only if the operator takes weakly Cauchy sequences into norm convergent
sequences [11, p. 49].

We say that T ∈ L k(E1, . . . , Ek; X) is completely continuous if, given weakly
Cauchy sequences (xn

i )n∈ � ⊂ Ei (1 6 i 6 k), the sequence (T (xn
1 , . . . , xn

k ))n is norm
convergent in X .

A formal series
∑

xn in a Banach space E is weakly unconditionally Cauchy
(w.u.C., for short) if there is C > 0 such that, for any finite subset ∆ of � and

any signs ±, we have
∥∥∥

∑
n∈∆

±xn
∥∥∥ 6 C. For other equivalent definitions, see [10,

Theorem V.6]. The series
∑

xn is unconditionally convergent if every subseries is
norm convergent. Other equivalent definitions may be seen in [11, Theorem 1.9].

A linear operator between Banach spaces is unconditionally converging if it takes
w.u.C. series into unconditionally convergent series.

Following [17], we say that T ∈ L k(E1, . . . , Ek; X) is unconditionally converging
if, given w.u.C. series

∑
n∈ �

xn
i in Ei (1 6 i 6 k), the sequence

(T (sm
1 , . . . , sm

k ))m

is norm convergent in X , where sm
i =

m∑
n=1

xn
i . Since a linear operator fails to be

unconditionally converging if and only if it preserves a copy of c0 [10, Exercise V.8],
it is clear that the definition of unconditionally converging k-linear operators agrees
for k = 1 with that of unconditionally converging linear operators. This seems to be
the “right” definition of unconditionally converging multilinear operators, and it has
already been used for several purposes (see [4], [17], [18], [19]).
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It is a well known fact (and it follows easily from the definitions) that every com-
pletely continuous linear operator is unconditionally converging. The same relation
is easily seen to be true for multilinear operators.

Along the paper, parallel results, with parallel proofs, will be obtained for com-
pletely continuous and unconditionally converging multilinear operators. The reason
for this parallelism can be found essentially in the following two lemmas. The first of
them is well known, and its proof is contained in [1, Theorem 2.3 and Lemma 2.4].
The second one can be found in [4, Theorem 7].

Lemma 1.5. Let T ∈ L k(E1, . . . , Ek; X). Then T is completely continuous if
and only if, for all weak Cauchy sequences (xn

j )n∈ � ⊂ Ej (1 6 j 6 k), at least one
of which converges weakly to zero, we have

lim
n→∞

‖T (xn
1 , . . . , xn

k )‖ = 0.

Lemma 1.6. Let T ∈ L k(E1, . . . , Ek; X). Then T is unconditionally converging

if and only if, for all weakly unconditionally Cauchy series
∞∑

n=1
xn

j ⊂ Ej (1 6 j 6 k),

such that there exists an i ∈ {1, . . . , k} for which the sequence
( m∑

n=1
xn

i

)
m
converges

weakly to zero, we have

lim
m→∞

∥∥∥∥T

( m∑

n=1

xn
1 , . . . ,

m∑

n=1

xn
k

)∥∥∥∥ = 0.

If m ∈ ba(Σ; L (X ; Y )), for every y∗ ∈ Y ∗ we can define the measure my∗ ∈
ba(Σ, X∗) by my∗(A)(x) = 〈m(A)(x), y∗〉. With this notation, we state here for
reference purposes the following well known lemma.

Lemma 1.7. Let (mn) ⊂ ba(Σ; L (X ; Y )) be a sequence of bounded operator
valued measures. Then the following are equivalent:

a) (|mn|)n are equicontinuous at ∅, i.e., if (Ap) ⊂ Σ is a sequence such that Ap ↘ ∅,
then

lim
p→∞

sup
n∈ �

|mn|(Ap) = 0.

(In other words, the measures have equicontinuous semivariation at ∅.)
b) The set {|mn,y∗ | : n ∈ � , y∗ ∈ BY ∗} is equicontinuous at ∅.
c) The set {|mn,y∗ | : n ∈ � , y∗ ∈ BY ∗} is uniformly countably additive.
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d) The semivariations (|mn|) have a uniform control measure, i.e., there exists
λ ∈ ca(Σ; [0, +∞)) such that

lim
λ(A)→0

sup
n∈ �

|mn|(A) = 0.

2. The results

If T ∈ L (C(K, X); Y ) and m is its associated measure, the fact that |m| is
continuous at ∅ is a “technical” condition needed for T to be either completely
continuous or unconditionally converging ([23, Section 2 and 3]). In the multilinear
setting, the following seem to be the necessary technical conditions which replace
that one.

Lema 2.1. Let T ∈ L k(C(K1, X1), . . . , C(Kk, Xk); Y ) and let T be its ex-
tension defined in Theorem 1.1. If T is completely continuous and (fn

1 )n ⊂
C(K1, X1), . . . , (fn

k )n ⊂ C(Kk, Xk) are weak Cauchy sequences then, for each
i ∈ {1, . . . , k}, the measures

{
Γn = Γ

fn
1 ,[i]...,fn

k

: n ∈ �
}
⊂ ba(Σi; L (Xi; Y ))

defined by
Γn(Ai)(xi) = T (fn

1 , . . . , fn
i−1, xiχAi , f

n
i+1, . . . , f

n
k )

have equicontinuous semivariation at ∅.
If T is unconditionally converging and

∑
n

fn
1 ⊂ C(K1, X1), . . . ,

∑
n

fn
k ⊂ C(Kk, Xk)

are w.u.C. series, then, for each i ∈ {1, . . . , k}, the measures
{
Γn = Γ

sn
1 ,[i]...,sn

k

: n ∈ �
}
⊂ ba(Σi; L (Xi; Y ))

defined by

Γn(Ai)(xi) = T (sn
1 , . . . , sn

i−1, xiχAi , s
n
i+1, . . . , s

n
k ), where sn

j =
n∑

m=1

fm
j ,

have equicontinuous semivariation at ∅.
���������

. We give the proof for unconditionally converging multilinear operators.
The other case is a little easier. First, let us observe that, if T is uncondition-
ally converging then, for every x = (x1, . . . , xk) ∈ X1 × . . . × Xk, the mapping
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Tx ∈ L k(C(K1), . . . , C(Kk); Y ) defined by Tx(ϕ1, . . . , ϕk) = T (x1ϕ1, . . . , xkϕk) is
unconditionally converging. Now, using [19, Corollary 5.4] and Remark 1.3 we obtain
that the representing polymeasure Γ of T is L k(X1, . . . , Xk; Y )-valued. Let us sup-
pose without loss of generality that i = k. If the result is not true, Lemma 1.7 tells
us that the family {|Γn,y∗ | : n ∈ � , y∗ ∈ BY ∗} is not uniformly countably additive.
Therefore, there exist ε > 0, an increasing sequence of indexes (n(l))l with n(1) = 0,
a sequence (y∗l )l ⊂ BY ∗ and a sequence (Al

k)l ⊂ Σk of disjoint open sets such that,
for every l > 1,

|Γn(l),y∗l
|(Al

k) > ε.

Clearly, for every n ∈ � , the operator Tn : C(Kk, Xk) → Y defined by

Tn(f) = T (sn
1 , . . . , sn

k−1, f)

is unconditionally converging and Γn is its representing measure. It is well known
that, in that case, for every y∗ ∈ Y ∗, the scalar valued measure |Γn,y∗ | is regular.

So, for every l ∈ � there exists f l
k ∈ C(Kk, Xk) with ‖f l

k‖ 6 1 and supp f l
k ⊂ Al

k

such that ∣∣∣
〈
T (sn(l)

1 , . . . , s
n(l)
k−1, f

l
k), y∗l

〉∣∣∣ =
∣∣∣∣
∫

f l
i dΓn(l),y∗l

∣∣∣∣ > ε

and therefore ∥∥T (sn(l)
1 , . . . , s

n(l)
k−1, f

l
k)

∥∥ > ε.

For each i ∈ {1, . . . , k − 1} and l ∈ � let

yl
i =

n(l+1)∑

m=n(l)+1

fm
i

and

y1
k = f1

k , yl
k = f l

k − f l−1
k if l > 2.

Then, for every i ∈ {1, . . . , k}, ∑
l

yl
i is clearly a w.u.C. series and, moreover,

m∑
l=1

yl
k =

fm
k converges weakly to zero as m →∞, by the characterization of weak convergence

in C(K, X) mentioned in the introduction. Moreover, for every m ∈ � ,

∥∥∥∥T

( m∑

l=1

yl
1, . . . ,

m∑

l=1

yl
k

)∥∥∥∥ =
∥∥T

(
s

n(m)
1 , . . . , s

n(m)
k−1 , fm

k

)∥∥ > ε

which is in contradiction to Lemma 1.6 and the fact that T is unconditionally con-
verging. �
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Although these conditions may seem artificial, we want to point out that when
one looks at [19, Lemmas 3.2 and 4.1] then they begin to look somehow “natural”.
For example, the condition concerning completely continuous multilinear operators
is related to the fact that if T is completely continuous then the operators T

fn
1 ,[i]...,fn

k

,
whose associated measures are the Γ

fn
1 ,[i]...,fn

k

of the lemma, are “uniformly completely

continuous” (see [19], Lemma 3.2] for details).
With analogous reasonings, the following refinement of Lemma 2.1 can be easily

proved. �

Lemma 2.2. Let T ∈ L k(C(K1, X1), . . . , C(Kk, Xk); Y ), let T be its extension
mentioned in Theorem 1.1 and, for every i = 1, . . . , k, let T i be the restriction of T
to B(Σ1, X1)× . . .×B(Σi, Xi)× C(Ki+1, Xi+1)× . . .× C(Kk, Xk). Let (gn

j )n∈ � ⊂
B(Σj , Xj) (1 6 j 6 i−1) and (gn

j )n∈ � ⊂ C(Kj , Xj) (i+1 6 j 6 k) be weakly Cauchy
sequences (respectively, let

∑
n

gn
j ⊂ B(Σj , Xj) (1 6 j 6 i−1) and

∑
n

gn
j ⊂ C(Kj , Xj)

(i + 1 6 j 6 k) be w.u.C. series). If T i is completely continuous (respectively
unconditionally converging) then the measures

{
Γn = Γ

gn
1 ,[i]...,gn

k

: n ∈ �
}
⊂ ba(Σi; L (Xi; Y ))

(respectively

{
Γn = Γ

sn
1 ,[i]...,sn

k

: n ∈ �
}
⊂ ba(Σi; L (Xi; Y )), where sn

j =
n∑

m=1

gm
j )

have equicontinuous semivariation at ∅.
���������

. All the reasonings are analogous to those in the proof of Lemma 2.1.
Let us just mention that if T i is either completely continuous or unconditionally
converging, then so is T and therefore T is Y -valued, and the measures Γn in the
lemma are L (Xi; Y )-valued. �

We present now a result which extends [3, Theorem 3].

Proposition 2.3. Let T ∈ L k(C(K1, X1), . . . , C(Kk, Xk); Y ). Then T is com-
pletely continuous (respectively unconditionally converging) if and only if its exten-
sion T is completely continuous (respectively unconditionally converging).

���������
. We prove the result only for completely continuous mappings, since the

other case is treated similarly. One direction is clear. For the converse let us first
note that, as mentioned in the proof of Lemma 2.1, if T is completely continuous
then T is Y -valued. We proceed now in k steps. Let us first see that T 1, defined as in
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Lemma 2.2, is completely continuous: otherwise, there exist ε > 0 and weakly Cauchy
sequences (gn

1 ) ⊂ B(Σ1, X1), (fn
2 ) ⊂ C(K2, X2), . . . , (fn

k ) ⊂ C(Kk, Xk) contained in
the respective unit balls, one of which weakly converges to zero, and such that

‖T 1(gn
1 , fn

2 , . . . , fn
k )‖ > ε.

For every n ∈ � , let Tn ∈ L (C(K1, X1); Y ) be defined by

Tn(f1) = T (f1, f
n
2 , . . . , fn

k )

and let Γn be its associated measure. Lemma 2.1 tells us that these measures have
equicontinuous semivariation at ∅ and therefore, by Lemma 1.7, there exists λ ∈
ca(Σ; [0, +∞)) and δ > 0 such that, if λ(A) < δ, then

sup
n∈ �

|Γn|(A) <
ε

4
.

According to Luzin’s Theorem, there exists K ′
1 ⊂ K1 with λ(K1 \K ′

1) < δ and such
that, for every n ∈ � ,

gn
1 |K′

1
:= hn

1 ∈ C(K ′
1, X1).

Let H = [(hn
1 )n∈ � ] ⊂ C(K ′

1, X1). Theorem 1 in [3] allows us to state the existence
of an isometric extension operator S : H → C(K1, X1); let us call S(hn

1 ) = fn
1 .

Since (gn
1 ) is a weakly Cauchy sequence, so are (fn

1 ) and (hn
1 ). Moreover, if (gn

1 )
was the sequence weakly converging to zero, then (fn

1 ) also converges weakly to
zero. Therefore, the sequences (fn

1 ) ⊂ C(K1, X1), (fn
2 ) ⊂ C(K2, X2), . . . , (fn

k ) ⊂
C(Kk, Xk) are all weakly Cauchy and at least one of them converges weakly to 0.
Hence, since T is completely continuous, there exists an n0 ∈ � such that, for every
n > n0,

‖T (fn
1 , fn

2 , . . . , fn
k )‖ <

ε

2
.

But, on the other hand, for every n ∈ � ,

‖T (fn
1 , fn

2 , . . . , fn
k )‖ >

∥∥∥∥
∫

K′
1

fn
1 dΓn

∥∥∥∥−
∥∥∥∥
∫

K1\K′
1

fn
1 dΓn

∥∥∥∥

>
∥∥∥∥
∫

K′
1

gn
1 dΓn

∥∥∥∥− sup
n∈ �

|Γn|(K1 \K ′
1)

>
∥∥∥∥
∫

K1

gn
1 dΓn

∥∥∥∥−
∥∥∥∥
∫

K1\K′
1

gn
1 dΓn

∥∥∥∥− sup
n∈ �

|Γn|(K1 \K ′
1)

= ‖T (gn
1 , fn

2 , . . . , fn
k )‖ − 2 sup

n∈ �
|Γn|(K1 \K ′

1) > ε

2
,

a contradiction which proves that T 1 is completely continuous.
Now, the proof that T 2 is completely continuous is analogous, using Lemma 2.2

instead of Lemma 2.1. Continuing this reasoning finishes the proof. �
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The following proposition extends to the multilinear setting well known results
about linear operators (see [14, Theorem 3] and [23, p. 107]).

Proposition 2.4. Let T ∈ L k(C(K1, X1), . . . , C(Kk, Xk); Y ) and let Γ be its
representing polymeasure.
If T is completely continuous then the following conditions hold:

(i) For every (A1, . . . , Ak) ∈ Σ1×. . .×Σk, the multilinear operator Γ(A1, . . . , Ak) ∈
L k(X1, . . . , Xk; Y ) is completely continuous.

(ii) For every i ∈ {1, . . . , k} and for every weakly Cauchy sequences (fn
1 )n ⊂

C(K1, X1), [i]. . ., (fn
k )n ⊂ C(Kk, Xk), the measures {Γn : n ∈ � } ⊂ ba(Σi;

L (Xi; Y )) defined by

Γn(Ai)(xi) = T (fn
1 , . . . , fn

i−1, xiχAi , f
n
i+1, . . . , f

n
k )

have equicontinuous semivariation at ∅.
If T is unconditionally converging then thefollowing conditions hold:

(i′) For every (A1, . . . , Ak) ∈ Σ1×. . .×Σk, the multilinear operator Γ(A1, . . . , Ak) ∈
L k(X1, . . . , Xk; Y ) is unconditionally converging.

(ii′) For every i ∈ {1, . . . , k} and for every w.u.C. series ∑
n

fn
1 ⊂ C(K1, X1), [i]. . .,

∑
n

fn
k ⊂ C(Kk, Xk), the measures {Γn : n ∈ � } ⊂ ba(Σi; L (Xi; Y )) defined by

Γn(Ai)(xi) = T

( n∑

m=1

fm
1 , . . . ,

n∑

m=1

fm
i−1, xiχAi ,

n∑

m=1

fm
i+1, . . . ,

n∑

m=1

fm
k

)

have equicontinuous semivariation at ∅.
���������

. To prove (i), let (A1, . . . , Ak) ∈ Σ1 × . . . × Σk be nonempty sets, and
let (xn

1 ) ⊂ X1, . . . , (xn
k ) ⊂ Xk be weakly Cauchy sequences. For every i ∈ {1, . . . , k}

the mapping

ϕi : Xi → B(Σi, Xi),

xi 7→ xiχAi

is clearly an isometric embedding, and therefore the sequences (xn
1 χA1) ⊂ B(Σ1, X1),

(xn
2 χA2) ⊂ (Σ2, X2), . . . , (xn

kχAk
) ⊂ B(Σk, Xk) are also weakly Cauchy. Since Propo-

sition 2.3 states that T is completely continuous, we get that the sequence

Γ(A1, . . . , Ak)(xn
1 , . . . xn

k ) = T (ϕ1(xn
1 ), . . . , ϕk(xn

k ))

is norm converging, and hence Γ(A1, . . . , Ak) is completely continuous. The proof
of (i′) is analogous.

Conditions (ii) and (ii′) are just Lemma 2.1. �
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If T : C(K, X) → Y is an operator and m is its representing measure, then m is
L (X ; Y )-valued if and only if, for every x ∈ X , the measure mx defined by mx(A) =
m(A)x is countably additive. It is well known that if |m| is continuous at ∅ (i.e., for
every sequence (An) ⊂ Σ such that An ↘ ∅, lim

n→∞
|m|(An) = 0) then m is L (X ; Y )-

valued. In the multilinear case we have

Proposition 2.5. If T ∈ L k(C(K1, X1), . . . , C(Kk, Xk); Y ) is a multilinear op-
erator such that its representing polymeasure Γ satisfies either condition (ii) or con-
dition (ii′) in Proposition 2.4, then Γ is L k(X1, . . . , Xk; Y )-valued.

���������
. Let us first suppose that Γ satisfies condition (ii). Clearly, we just

need to prove that for every x = (x1, . . . , xk) ∈ X1 × . . . × Xk, the polymeasure
Γx is Y -valued (see Remarks 1.3 and 1.4). But according to [25, Theorem 5], this
is equivalent to seeing that Tx is completely continuous. By [25, Lemma 2], Tx is
completely continuous if and only if, for every weakly Cauchy sequences (ϕn

1 ) ⊂
C(K1), [i]. . ., (ϕn

k ) ⊂ C(Kk), the measures
{
Γ

x,ϕn
1 ,[i]...,ϕn

k

: n ∈ �
}
⊂ ca(Σi; Y )

are uniformly countably additive, where each

Γ
x,ϕn

1 ,[i]...,ϕn
k

: Σi → Y

is given by

Γ
x ϕn

1 ,[i]...,ϕn
k

(Ai) = T (x1ϕ
n
1 , . . . , xi−1ϕ

n
i−1, xiχAi , xi+1ϕ

n
i+1, . . . , xkϕn

k ).

(Note that each of these measures is countably additive and Y -valued, as fol-
lows from the paragraph preceding this proposition). So, let us suppose with-
out loss of generality that i = k and let us choose weakly Cauchy sequences
(ϕn

1 ) ⊂ C(K1), . . . , (ϕn
k−1) ⊂ C(Kk−1). If the measures

{
Γx,ϕn

1 ,...,ϕn
k−1

: n ∈ � }
⊂ ca(Σk; Y )

are not uniformly countably additive then, considering subsequences if neccesary,
there exist an ε > 0 and a sequence (An

k ) ⊂ Σk, An
k ↘ ∅, such that, for every n ∈ � ,

∥∥Γx,ϕn
1 ,...,ϕn

k−1
(An

k )
∥∥ > ε.

But from here it follows that

∣∣Γx1ϕn
1 ,...,xk−1ϕk−1

∣∣(An
k ) > ε,

a contradiction to the fact that Γ satisfies condition (ii).
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In case Γ satisfies condition (ii′) above, again we just need to prove that for every
x = (x1, . . . , xk) ∈ X1 × . . . × Xk, Γx is Y -valued. But using [25, Theorem 5]
and [19, Corollary 5.4], we just need to show that Tx is unconditionally converging.
Using [19, Lemma 4.1], a result similar to [25, Lemma 2] can be proved stating
that Tx is unconditionally converging if and only if, for all w.u.C. series

∑
n

ϕn
1 ⊂

C(K1), [i]. . .,
∑

ϕn
k ⊂ C(Kk), the measures

{
Γ

x,sn
1 ,[i]...,sn

k

: n ∈ �
}
⊂ ca(Σi; Y )

are uniformly countably additive, where sn
j =

n∑
m=1

ϕm
j (for the same reasons as

mentioned above each of these measures is countably additive and Y -valued). See [8]
for a full statement and proof of this result. So, let us choose w.u.C. series

∑
n

ϕn
1 ⊂

C(K1), . . .,
∑
n

ϕn
k−1 ⊂ C(Kk−1). If the measures

{
Γx,sn

1 ,...,sn
k−1

: n ∈ � }
⊂ ca(Σk; Y )

are not uniformly countably additive, then there exist ε > 0, a sequence (An
k ) ⊂ Σk,

An
k ↘ ∅ and an increasing sequence of integers (m(n))n ⊂ � such that, for every

n ∈ � ,

(1)
∥∥Γ

x,s
m(n)
1 ,...,s

m(n)
k−1

(An
k )

∥∥ > ε.

If, for every i ∈ {1, . . . , k− 1} and n ∈ � , we consider fn
i = xiϕ

n
i , it is clear that the

series
∑
n

fn
i ⊂ C(Ki, Xi) is w.u.C. If we call σn

i =
n∑

m=1
fm

i , then (1) implies that

∣∣Γ
s

m(n)
1 ,...,s

m(n)
k−1

∣∣(An
k ) > ε,

a contradiction to the fact that Γ satisfies condition (ii′). �

We are now ready for two of our main results. It is known ([23, Theorem 3.1]) that
X is a Schur space if and only if, for every K and Y , an operator T ∈ L (C(K, X); Y )
is completely continuous if and only if its representing measure satisfies the linear ver-
sion of conditions (i) and (ii) in Proposition 2.4. It is also known ([23, Theorem 2.1])
that X does not contain an isomorphic copy of c0 if and only if, for every K and
Y , an operator T ∈ L (C(K, X); Y ) is unconditionally converging if and only if its
representing measure satisfies the linear version of conditions (i′) and (ii′). In the
next two theorems we extend those results to multilinear operators.
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Theorem 2.6. Let X1, . . . , Xk be Banach spaces. Then the following assertions
are equivalent:

(1) For every i ∈ {1, . . . , k}, Xi is a Schur space.
(2) For all compact spaces K1, . . . , Kk and every Banach space Y , a multilinear op-

erator T ∈ L k(C(K1, X1), . . . , C(Kk, Xk); Y ) is completely continuous if and
only if its representing polymeasure Γ satisfies conditions (i) and (ii) of Propo-
sition 2.4.

���������
. Let us first show that (1) implies (2): Using Proposition 2.4, it is clear

that we only have to prove that if a multilinear operator T ∈ L k(C(K1, X1), . . . ,
C(Kk, Xk); Y ) satisfies (i) and (ii) then it is completely continuous. Let us then
choose one such T and let (fn

1 ) ⊂ C(K1, X1), . . . , (fn
k ) ⊂ C(Kk, Xk) be weakly

Cauchy sequences in the respective unit balls such that one of them converges weakly
to zero. We shall assume without loss of generality that (fn

1 ) converges weakly to
zero. Hence, for every t ∈ K1, fn

1 (t) converges weakly to zero and, since X1 is Schur,
we obtain that, for every t ∈ K1,

‖fn
1 (t)‖ → 0.

For every n ∈ � , let Γn = Γfn
2 ,...,fn

k
∈ ba(Σ1; L (X1; Y )) and choose ε > 0.

According to Lemma 1.7, there exist λ ∈ ca(Σ1, [0, +∞)) and δ > 0 such that, if
λ(A) < δ, then

sup
n∈ �

|Γn|(A) <
ε

2
.

By Egoroff’s theorem, there exists K ′
1 ⊂ K1 with λ(K1 \K ′

1) < δ such that

lim
n→∞

sup
t∈K′

1

‖fn
1 (t)‖ = 0.

Therefore, there exists n0 ∈ � such that, for every n > n0,

sup
t∈K′

1

‖fn
1 (t)‖ <

ε

2|Γ| .

Then, for every n > n0,

‖T (fn
1 , . . . , fn

k )‖ =
∥∥∥∥
∫

K1

fn
1 dΓn

∥∥∥∥ 6
∥∥∥∥
∫

K′
1

fn
1 dΓn

∥∥∥∥ +
∥∥∥∥
∫

K1\K′
1

fn
1 dΓn

∥∥∥∥ < ε.

Hence T is completely continuous.
The proof that (2) implies (1) is based on the proofs of [2, Teorema III.5.6] and

[23, Theorem 3.1]: Let us suppose that X1 is not a Schur space (the other cases
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are similar). Then, there exist δ > 0 and a sequence weakly converging to zero
(xn) ⊂ X1 such that ‖xn‖ > δ for every n ∈ � . Then, there exists another sequence
(x∗n) ⊂ BX∗

1
such that for every n ∈ � , |〈x∗n, xn〉| > δ. Let K1 = [0, 1] and take non

empty compact Hausdorff spaces K2, . . . , Kk. Let λ be the Lebesgue measure on
[0, 1]. Let (rn)n ⊂ C(K1) be a bounded sequence which forms an orthonormal system
with respect to the inner product induced by L2(λ) (for example rn =

√
2 sin 2πnt).

Clearly, (rn) converges weakly to zero in L2(λ) and therefore it also converges weakly
to zero in L1(λ). For each j ∈ {2, . . . , k}, let αj ∈ C(Kj , Xj)∗ be norm one. Now
we can define

T : C(K1, X1)× . . .× C(Kk, Xk) → c0

(f1 , . . . , fk) 7→
(( k∏

j=2

αj(fj)
) ∫

K1

〈f1(t), x∗n〉rn(t) dλ(t)
)

n

.

It is not difficult to see that T is well defined and that its associated polymeasure Γ
satisfies conditions (i) and (ii). Yet T is not completely continuous. To see this,
for every i ∈ {2, . . . , k}, choose fi ∈ C(Ki, Xi) with αi(fi) = 1, and let us consider
the constant sequence fn

i = fi for every n ∈ � . Let us also consider the sequence
(rnxn) ⊂ C(K1, X1). Clearly (rnxn) converges weakly to zero and, if (en)n denotes
the usual basis of c0,

‖T (rnxn, fn
2 , . . . , fn

k )‖ = ‖〈xn, x∗n〉en‖ > δ,

which implies that T is not completely continuous. �

Theorem 2.7. Let X1, . . . , Xk be Banach spaces. Then the following assertions
are equivalent:
(1) For every i ∈ {1, . . . , k}, Xi does not contain isomorphic copies of c0 (we ab-
breviate this by Xi 6⊃ c0).

(2) For all compact spaces K1, . . . , Kk and for every Banach space Y , a multilinear
operator T ∈ L k(C(K1, X1), . . . , C(Kk, Xk); Y ) is unconditionally converging
if and only if its representing polymeasure Γ satisfies conditions (i′) and (ii′) of
Proposition 2.4.

���������
. The proof that (1) implies (2) is very similar to that of Theorem 2.6,

but instead of using that Xi is a Schur space, we use that Xi 6⊃ c0 to obtain, via the
Bessaga-Pe lczyński Theorem, that, if

∑
n

fn
i ⊂ C(Ki, Xi) is a w.u.C. series such that

sm
i =

m∑
n=1

fn
i converges weakly to zero as m →∞, then, for every t ∈ Ki,

lim
m→∞

‖sm
i (t)‖ = 0.
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Let us now show that (2) implies (1) (the proof is again very similar to that of
Theorem 2.6): Let us suppose that there exists an injective isomorphism θ : c0 → X1.
Let xn = θ(en) and, for each n ∈ � , choose x∗n ∈ BX∗

1
with 〈xn, x∗n〉 = ‖xn‖. Let

K1, . . . , Kk, λ, α2, . . . , αk and (rn) be as in the proof of Theorem 2.6, and let us
consider the multilinear operator

T : C(K1, X1)× . . .× C(Kk, Xk) → c0

(f1 , . . . , fk) 7→
(( k∏

j=2

αj(fj)
) ∫

K1

〈f1(t), x∗n〉rn(t) dλ(t)
)

n

.

Again, it is easy to see that T is well defined and that its representing polymea-
sure Γ satisfies conditions (i′) and (ii′) of Proposition 2.4, so we just have to see
that T is not unconditionally converging: let us consider the w.u.C. series

∑
n

xnrn.

For every i ∈ {2, . . . , k}, choose fi ∈ C(Ki, Xi) with αi(fi) = 1, and consider the
w.u.C. series

∑
n

gn
i where g1

i = fi and gn
i = 0 if n > 1. Then

T

( m∑

n=1

xn
1 rn,

m∑

n=1

gn
2 , . . . ,

m∑

n=1

gn
k

)
= T

( m∑

n=1

xn
1 rn, f2, . . . , fk

)
=

m∑

n=1

‖xn
1‖en

which is clearly not a Cauchy sequence, and hence T is not unconditionally converg-
ing. �

3. Scattered compact spaces

Let us recall that a compact space is scattered (or dispersed) if it does not con-
tain any non void perfect set. In [3, Theorem 9′] the authors prove that K is a
scattered compact Hausdorff space if and only if, for every X and Y , a necessary
and sufficient condition for an operator T ∈ L (C(K, X); Y ) to be completely con-
tinuous is that its representing measure satisfies the linear version of conditions (i)
and (ii) in Proposition 2.4. In [3, Theorem 9] they also prove that K is scattered if
and only if, for every X and Y , a necessary and sufficient condition for an operator
T ∈ L (C(K, X); Y ) to be unconditionally converging is that its representing mea-
sure satisfies the linear version of conditions (i′) and (ii′) in Proposition 2.4 (that is
the equivalence between (1′′) and (2′′) in the result stated at the beginning of the
introduction).

In this section we prove that these results can also be extended to multilinear
operators. We first need the following technical result.
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Proposition 3.1. Let T ∈ L k(C(K1, X1), . . . , C(Kk, Xk); Y ), let Γ be its asso-
ciated polymeasure and let T be its extension defined in Theorem 1.1.

(a) If Γ satisfies condition (ii) of Proposition 2.4 and (gn
1 ) ⊂ B(Σ1, X1), . . . , (gn

k ) ⊂
B(Σk, Xk) are bounded sequences such that, for every i ∈ {1, . . . , k} and t ∈ Ki,
the sequence (gn

i (t))n ⊂ Xi is weakly Cauchy, then, for each j ∈ {1, . . . , k}, the
measures {

Γn = Γ
gn
1 ,[j]...,gn

k

: n ∈ �
}
⊂ ba(Σj ; L (Xj ; Y ))

have equicontinuous semivariation at ∅.
(b) If Γ satisfies condition (ii′) of Proposition 2.4 and

(∑
n

gn
1 , . . . ,

∑
n

gn
k

)
⊂ B(Σ1,

X1)× . . .×B(Σk, Xk) are series such that, for every i ∈ {1, . . . , k} and t ∈ Ki,
the series

∑
n

gn
i (t) ⊂ Xi is w.u.C., then, for each j ∈ {1, . . . , k}, the measures

{
Γn = Γ n�

m=1
gm
1 ,[j]...,

n�
m=1

gm
k

: n ∈ �
}
⊂ ba(Σj ; L (Xj ; Y ))

have equicontinuous semivariation at ∅.
���������

. We give the proof for polymeasures satisfying condition (ii), the other
case being similar. Note that, by Proposition 2.5, Γ is L k(X1, . . . , Xk; Y )-valued;
hence T takes values in Y and therefore the measures Γn are indeed L (Xj ; Y )-valued.
Without loss of generality, we assume that j = k. Consider (gn

1 )n, . . . , (gn
k )n as in

the hypothesis and suppose that (fn
2 ) ⊂ C(K2, X2), . . . , (fn

k−1) ⊂ C(Kk−1, Xk−1) are
weakly Cauchy sequences. We can assume that these functions are in the respective
unit balls. First we show that the measures

{
Γn = Γgn

1 ,fn
2 ,...,fn

k−1
: n ∈ �

}
⊂ ba(Σk; L (Xk; Y ))

have equicontinuous semivariation at ∅. Otherwise, reasoning as in the proof of
Lemma 2.1 passing to subsequences if neccesary, we can suppose the existence of
an ε > 0 and a sequence (fn

k )n ⊂ C(Kk, Xk) of functions of norm one and disjoint
supports, such that

∥∥∥∥
∫

fn
k dΓn

∥∥∥∥ > ε or equivalently, ‖T (gn
1 , fn

2 , . . . fn
k )‖ > ε.

We consider now the measures (Γfn
2 ,...,fn

k
) ⊂ ba(Σ1; L (X1; Y )). By the hypothesis,

they have equicontinuous semivariation at ∅. As in the proof of Proposition 2.3, using
Luzin’s theorem we can assume the existence of a weakly Cauchy sequence (fn

1 )n in
the unit ball of C(K1, X1) and a compact set K ′

1 ⊂ K1 such that, for all n ∈ � ,
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gn
1 |K′

1
= fn

1 |K′
1

and sup
n

∣∣Γfn
2 ,...,fn

k

∣∣(K1 \K ′
1) < ε

4 . By the hypothesis, Γfn
1 ,...,fn

k−1
are

equicontinuous at ∅, and since the functions (fn
k ) have disjoint supports, there exists

n0 ∈ � such that, for all n > n0,

‖T (fn
1 , . . . , fn

k )‖ <
ε

2
.

But

‖T (fn
1 , . . . , fn

k )‖ =
∥∥∥∥
∫

K1

fn
1 dΓfn

2 ,...,fn
k

∥∥∥∥ >
∥∥∥∥
∫

K1

gn
1 dΓfn

2 ,...,fn
k

∥∥∥∥

−
∥∥∥∥
∫

K1\K′
1

gn
1 dΓfn

2 ,...,fn
k

∥∥∥∥−
∥∥∥∥
∫

K1\K′
1

fn
1 dΓfn

2 ,...,fn
k

∥∥∥∥ > ε

2
.

This contradiction proves that the measures (Γgn
1 ,fn

2 ,...,fn
k−1

) have equicontinuous
semivariation at ∅. Actually, a change in the order of the variables proves that,
whenever (fn

2 )n ⊂ C(K2, X2), . . . , (fn
k )n ⊂ C(Kk, Xk) are weakly Cauchy sequences,

the measures
(
Γ

gn
1 ,fn

2 ,[i]...,fn
k

)
⊂ ba(Σi; L (Xi; Y )) have equicontinuous semivariation

at ∅.
Let us now see that the measures Γgn

1 ,gn
2 ,fn

3 ,...,fn
k−1

have equicontinuous semivaria-
tion at ∅. If not, we can choose as before a sequence (fn

k ) ⊂ C(Kk, Xk) of functions
of norm one and disjoint supports such that, for each n ∈ � ,

‖T (gn
1 , gn

2 , fn
3 , . . . , fn

k )‖ > ε > 0.

The previous paragraph proves that the measures (Γgn
1 ,fn

3 ,...,fn
k
) have equicontinuous

semivariation at ∅ and, reasoning as before, we get again a contradiction.
Continuing these reasonings we finish the proof. �

Now we are ready to state our last two main results. The following one extends [3,
Theorem 9′] to the multilinear setting.

Theorem 3.2. Let K1, . . . , Kk be compact Hausdorff spaces. Then the following
are equivalent:
(1) For every i ∈ {1, . . . , k}, Ki is scattered.
(2) For all Banach spacesX1, . . . , Xk, Y , a multilinear operator T ∈ L k(C(K1, X1),

C(K2, X2), . . . , C(Kk, Xk); Y ) is completely continuous if and only if its associ-
ated polymeasure Γ satisfies conditions (i) and (ii) of Proposition 2.4.

���������
. To see that (1) implies (2), let us suppose that K1, . . . , Kk are scattered

compact spaces and T ∈ L k(C(K1, X1), . . . , C(Kk, Xk); Y ). We just have to prove
that if Γ satisfies (i) and (ii) then T is completely continuous.
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Let (fn
1 ) ⊂ C(K1, X1), . . . , (fn

k ) ⊂ C(Kk, Xk) be weakly Cauchy sequences con-
tained in the respective unit balls and such that at least one of them converges weakly
to zero. Using Lemma 1.5 we just have to check that

lim
n→∞

‖T (fn
1 , . . . , fn

k )‖ = 0.

We suppose without losing generality that (fn
1 ) converges weakly to zero.

Let us fix an ε > 0. The measures Γfn
2 ,...,fn

k
have equicontinuous semivariation

at ∅, so, by Lemma 1.7 there exists λ ∈ ca(Σ1; [0, +∞)) such that

lim
λ(A)→0

sup
n∈ �

∣∣Γfn
2 ,...,fn

k

∣∣(A) = 0.

Since K is scattered, λ is purely atomic ([22]), so it has countable support, i.e., there
exists a countable K ′

1 = {tn1 : n ∈ � } ⊂ K1 such that, for any A ⊂ K1 \ K ′
1,

λ(A) = 0 (and hence, sup
n∈ �

∣∣Γfn
2 ,...,fn

k

∣∣(A) = 0). Since
∞⋂

r=1
{tn1 : n > r} = ∅, there exists

B1 = {tn1 : n 6 r1} ⊂ K1 such that

sup
n∈ �

∣∣Γfn
2 ,...,fn

k

∣∣(K \B1) < ε.

So,

‖T (fn
1 , . . . , fn

k )‖ =
∥∥∥∥
∫

K1

fn
1 dΓfn

2 ,...,fn
k

∥∥∥∥

6
∥∥∥∥
∫

K1\B1

fn
1 dΓfn

2 ,...,fn
k

∥∥∥∥ +
∥∥∥∥
∫

B1

fn
1 dΓfn

2 ,...,fn
k

∥∥∥∥

6 ε +
∥∥∥∥
∫

K1

fn
1 χB1 dΓfn

2 ,...,fn
k

∥∥∥∥

= ε +
∥∥∥∥
∫

K2

fn
2 dΓfn

1 χB1 ,fn
3 ,...,fn

k

∥∥∥∥.

Proposition 3.1 tells us that the measures Γfn
1 χB1 ,fn

3 ,...,fn
k

have equicontinuous semi-
variation at ∅ and, therefore, reasoning as before, we can assure the existence of a
set B2 = {tn2 : n 6 r2} ⊂ K2 such that

sup
n∈ �

∣∣Γfn
1 χB1 ,fn

3 ,...,fn
k

∣∣(K \B2) < ε.
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Then,

‖T (fn
1 , . . . , fn

k )‖ 6 ε +
∥∥∥∥
∫

K2

fn
2 dΓfn

1 χB1 ,fn
3 ,...,fn

k

∥∥∥∥

6 ε +
∥∥∥∥
∫

K2\B2

fn
2 dΓfn

1 χB1 ,fn
3 ,...,fn

k

∥∥∥∥ +
∥∥∥∥
∫

B2

fn
2 dΓfn

1 χB1 ,fn
3 ,...,fn

k

∥∥∥∥

6 ε + ε +
∥∥∥∥
∫

K2

fn
2 χB2 dΓfn

1 χB1 ,fn
3 ,...,fn

k

∥∥∥∥

= 2ε +
∥∥∥∥
∫

K3

fn
3 dΓfn

1 χB1 ,fn
2 χB2 ,fn

4 ,...,fn
k

∥∥∥∥.

Continuing this way we get that there exist sets Bi = {tni : n 6 ri} ⊂ Ki,
(1 6 i 6 k) such that

‖T (fn
1 , . . . , fn

k )‖ 6 kε +
∥∥∥∥
∫

(fn
1 χB1 , f

n
2 χB2 , . . . , f

n
k χBk

) dΓ
∥∥∥∥

= kε +
r1∑

m1=1

. . .

rk∑

mk=1

Γ({tm1
1 }, . . . , {tmk

k })(fn
1 (tm1

1 ), . . . , fn
k (tmk

k )).

Now let us observe that, for every (m1, . . . , mk), the sequences (fn
1 (tm1

1 ))n ⊂
X1, . . . , (fn

k (tmk

k ))n ⊂ Xk are weakly Cauchy, (fn
1 (tm1

1 ))n converges weakly to zero
and, according to condition (i), Γ({tm1

1 }, . . . , {tmk

k }) is completely continuous. There-
fore it is clear that we can find n0 ∈ � such that for every n > n0,

‖T (fn
1 , . . . , fn

k )‖ 6 (k + 1)ε

which proves that T is completely continuous.
Let us now prove that (2) implies (1): Suppose that K1 is not scattered, and

choose X1 a Banach space without the Schur property. Then, let λ ∈ rca(Σ1),
(Ai,n

1 )i,n ⊂ Σ1, (xn)n ⊂ X1, (x∗n)n ⊂ X∗
1 and (rn)n ⊂ L2(λ) be as λ, (An

i )i,n, (xn)n,
(x∗n)n and (rn)n in [3, Theorem 11] and let (α2, . . . , αk) ∈ X∗

2 × . . . ×X∗
k be norm

one forms. We define now T ∈ L k(C(K1, X1), . . . , C(Kk, Xk); c0) by

T (f1, . . . , fk) =
(( k∏

i=2

αi(fi)
) ∫

K1

〈f1(t), x∗n〉rn(t) dλ(t)
)

n

.

It is easily seen that T is well defined and that, if Γ is the representing polymeasure
of T , for all Borel sets (A1, . . . , Ak) ∈ Σ1 × . . .× Σk

Γ(A1, . . . , Ak)(x1, . . . , xk) =
(( k∏

i=2

〈xiχAi , αi〉
)
〈x1, x

∗
n〉

∫

A1

rn(t) dλ(t)
)

n

.
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Now, it is easy to prove that Γ satisfies conditions (i) and (ii). Yet T is not completely
continuous. To see this, for every i ∈ {2, . . . , k} let xi ∈ Xi be such that αi(xi) = 1
and let us consider the constant sequence xn

i = xi for each n ∈ � and the sequence
fn
1 ⊂ C(K1, X1) as the sequence (fn) at the end of the proof of [3, Theorem 11].

Then applying Lemma 1.5 and reasoning as in the end of the proof of [3, Theorem 11]
we obtain what we wanted. �

Our next theorem, which generalizes [3, Theorem 9], can now be proved by the
reader.

Theorem 3.3. Let K1, . . . , Kk be compact Hausdorff spaces. Then the following

are equivalent:
(1) For every i ∈ {1, . . . , k}, Ki is scattered.

(2) For all Banach spacesX1, . . . , Xk, Y , a multilinear operator T ∈ L k(C(K1, X1),
C(K2, X2), . . . , C(Kk, Xk); Y ) is unconditionally converging if and only if its
associated polymeasure Γ satisfies conditions (i′) and (ii′) of Proposition 2.4.

Acknowledgement. The author wishes to thank Fernando Bombal for his con-
tinuous help and advice while writing this paper and Joaquín Gutiérrez for many
valuable comments.
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