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Abstract

The paper deals with the impulsive boundary value problem

d

dt
[φ(y′(t))] = f(t, y(t), y′(t)), y(0) = y(T ), y′(0) = y′(T ),

y(ti+) = Ji(y(ti)), y′(ti+) = Mi(y
′(ti)), i = 1, . . . m.

The method of lower and upper solutions is directly applied to obtain the
results for this problems whose right-hand sides either fulfil conditions of
the sign type or satisfy one-sided growth conditions.

Key words: φ-Laplacian, impulses, lower and upper functions, pe-
riodic boundary value problem.

2000 Mathematics Subject Classification: 34B37, 34C25

0 Introduction

In this paper we study the existence of solutions to the following problem

d

dt
[φ(y′(t))] = f(t, y(t), y′(t)), (0.1)

y(0) = y(T ), y′(0) = y′(T ), (0.2)

y(ti+) = Ji(y(ti)), y′(ti+) = Mi(y′(ti)), i = 1, . . . m, (0.3)
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132 Vladimír POLÁŠEK

where f ∈ Car([0, T ] × R2), φ is an increasing homeomorfismus, φ(R) = R.
Ji ∈ C(R), Mi ∈ C(R) and

y′(ti) = y′(ti−) = lim
t→ti−

y′(t), y′(0) = y′(0+) = lim
t→0+

y′(t).

Let

σ1(ti) < x < σ2(ti) ⇒ Ji(σ1(ti)) < Ji(x) < Ji(σ2(ti)), i = 1, . . . ,m (0.4)

hold. We will assume one of the following properties of Mi, either

Mi is increasing on R, Mi(R) = R i = 1, . . . ,m, (0.5)

or only
y ≤ σ′1(ti) ⇒ Mi(y) ≤ Mi(σ′1(ti)),

y ≥ σ′2(ti) ⇒ Mi(y) ≥ Mi(σ′2(ti)), i = 1, . . . ,m,
(0.6)

In the mathematical literature we can find a lot of papers studying the
equation (0.1) with various types of linear or nonlinear boundary conditions.
Particularly, the existence results for such problems have been proved e.g. in
[1–4].
On the other hand there are papers giving the existence theorems for impul-

sive problems to the second order differential equations x′′ = f(t, x, x′). Some
of them are based on the method of lower and upper functions ([5–14]). The
aim of this paper is to join problems with φ-Laplacian and problems with im-
pulses and to extend the method of lower and upper functions for the problem
(0.1)–(0.3). Here, the method of lower and upper solutions is directly applied
to obtain the results for problems (0.1)–(0.3) whose right-hand sides either fulfil
conditions of the sign type or satisfy one-sided growth conditions.
The sections are organized as follows. In Section 1, we begin by definitions of

solution and lower and upper functions of the problem (0.1)–(0.3). We state two
existence theorems for the problem (0.1)–(0.3) with right-hand sides satisfying
conditions of the sign type and one-sided growth conditions and show some
applications of these theorems on the concrete problems. In Section 2, we state
and prove the existence result for problems with bounded right-hand sides. This
problem is reduced to a fixed point problem and using the Schauder fixed point
theorem, we show its solvability. In Section 3, we use the previous result to
prove the existence theorems which are stated in Section 1.

1 Formulation of the solution and main results

For a real valued function u defined a.e. on [0, T ], we put

‖u‖∞ = sup ess
t∈[0,T ]

|u(t)|.

Let m ∈ N and 0 = t0 < t1 < . . . < tm < tm+1 = T be a division of the interval
J = [0, T ]. We denote Δ = {t1, t2, . . . , tm} and define C1

Δ(J), resp. CΔ(J), as
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the set of functions u : J → R,

u(t) =

⎧
⎪⎪⎨
⎪⎪⎩

u[0](t), t ∈ [0, t1],
u[1](t), t ∈ (t1, t2],
. . . . . .
u[m](t), t ∈ (tm, T ],

where u[i] ∈ C1[ti, ti+1], resp. u[i] ∈ C[ti, ti+1], for i = 0, 1, . . . ,m. Moreover,
ACΔ(J) stands for the set of functions u ∈ CΔ(J) being absolutely continuous
on each subinterval (ti, ti+1), i = 0, 1, . . . ,m. For u ∈ C1

Δ(J) we write

‖u‖C1
Δ(J) = ‖u‖∞ + ‖u′‖∞.

Definition 1 A solution of the problem (0.1)–(0.3) is a function y ∈ C1
Δ(J)

such that φ(y′) ∈ ACΔ(J), y fulfils equation (0.1) for a.e. t ∈ J , further satisfies
the periodic conditions (0.2) and the impulsive conditions (0.3).

Definition 2 Functions σ1 ∈ C1
Δ(J), σ2 ∈ C1

Δ(J) are respectively called lower
and upper functions of the problem (0.1)–(0.3), if φ(σ′1), φ(σ′2) ∈ ACΔ(J) and

(φ(σ′1(t)))
′ ≥ f(t, σ1(t), σ′1(t)), (φ(σ′2(t)))

′ ≤ f(t, σ2(t), σ′2(t)) for a.e. t ∈ J,

σ1(0) = σ1(T ), σ2(0) = σ2(T ),
σ′1(0) ≥ σ′1(T ), σ′2(0) ≤ σ′2(T ),

σ1(ti+) = Ji(σ1(ti)), σ2(ti+) = Ji(σ2(ti)), i = 1, . . . , m,

σ′1(ti+) ≥ Mi(σ′1(ti)), σ′2(ti+) ≤ Mi(σ′2(ti)), i = 1, . . . , m.

Remark 1.1 If Mi(0) = 0 for i = 1, . . . ,m and r1 ∈ R is such that Ji(r1) = r1

for i = 1, . . . ,m and
f(t, r1, 0) ≤ 0 for a.e. t ∈ J,

then σ1(t) ≡ r1 on J is a lower function of the problem (0.1)–(0.3). Similarly,
if r2 ∈ R is such that Ji(r2) = r2 for i = 1, . . . ,m and

f(t, r2, 0) ≥ 0 for a.e.t ∈ J,

then σ2(t) ≡ r2 on J is an upper function of the problem (0.1)–(0.3).

The main results of this paper are contained in the following two theorems.
In Theorem 1.1 we suppose that the right-hand side f of equation (0.1) fulfils
conditions of the sign type.

Theorem 1.1 Let lower and upper functions of the problem (0.1)–(0.3) exist
and satisfy (0.4), (0.6) and σ1 ≤ σ2 on J . Let there exist functions ϕ1, ϕ2 ∈
CΔ(J) such that φ(ϕ1), φ(ϕ2) ∈ ACΔ(J) and

ϕ1(0) ≥ ϕ1(T ), ϕ2(0) ≤ ϕ2(T ),

ϕ1(t) ≤ σ′i(t) ≤ ϕ2(t), on J, i = 1, 2,

ϕ1(tj+) ≥ Mj(ϕ1(tj)), ϕ2(tj+) ≤ Mj(ϕ2(tj)), j = 1, . . . ,m.

(1.7)
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Furthermore, let ϕ1, ϕ2 satisfy inequalities

f(t, x, ϕ1(t)) ≤ (φ(ϕ1(t)))′, f(t, x, ϕ2(t)) ≥ (φ(ϕ2(t)))′ (1.8)

for a.e. t ∈ J and for all x ∈ [σ1(t), σ2(t)].
Then the problem (0.1)–(0.3) has a solution u ∈ C1

Δ(J) such that

σ1 ≤ u ≤ σ2, ϕ1 ≤ u′ ≤ ϕ2 on J. (1.9)

Remark 1.2 If s1 ≤ σ′j(t) on J , j = 1, 2, is such that Mi(s1) = s1 for i =
1, . . . ,m and

f(t, x, s1) ≤ 0 for a.e. t ∈ J, for all x ∈ [σ1(t), σ2(t)],

then ϕ1(t) ≡ s1 on J fulfils conditions of Theorem 1.1. If s2 ≥ σ′j(t) on J ,
j = 1, 2, is such that Mi(s2) = s2 for i = 1, . . . ,m and

f(t, x, s2) ≥ 0 for a.e. t ∈ J, for all x ∈ [σ1(t), σ2(t)],

then ϕ2(t) ≡ s2 on J fulfils conditions of Theorem 1.1.

Example 1.1
d
dt [φ(x′)] = tp + xq + (x′)r +

√
T√
t
(x′)k, x(0) = x(T ), x′(0) = x′(T ),

x(ti+) = ai(x(ti))2 + (1− ai(A + B))x(ti) + ABai = Ji(x(ti)),
i = 1, . . . ,m,

x′(ti+) = bi(x′(ti))3 − bi(D + C)(x′(ti))2 + (1 + biCD)x′(ti) = Mi(x′(ti)),
i = 1, . . . ,m,

(1.10)
k > 0 and q > 0 are odd, p > 0, r > 0, A < 0, B > 0, C < 0, D > 0. If
ai ∈ [− 1

B−A , 1
B−A ], i = 1, . . . ,m, then Ji satisfy condition (0.4) for i = 1, . . . , m.

If bi ∈ [0, 4
(D−C)2 ], i = 1, . . . , m, thenMi satisfy condition (0.6) for i = 1, . . . , m.

Ji(A) = A, Ji(B) = B,Mi(C) = C,Mi(D) = D, i = 1, . . . , m.
If Aq + T p ≤ 0 then σ1(t) ≡ A is a lower function of the problem (1.10).

Function σ2(t) ≡ B is an upper function of the problem (1.10). Further, if
Bq +T p ≤ −Ck−Cr and |A|q ≤ Dk +Dr, then functions ϕ1(t) ≡ C, ϕ2(t) ≡ D
satisfy the conditions of Theorem 1.1, so there exists a solutions of the problem
(1.10) fulfiling inequalities (1.9).

Example 1.2
(
(x′)3

)′ = 1√
t
(x′k − sgnx′) + xp + tq, k > 0, p > 0 are odd, q ≥ 0,

x(0) = x(3), x′(0) = x′(3),
x(1+) = x(1) + 1, x′(1+) = x′(1)− 2,
x(2+) = x(2)− 2, x′(2+) = x′(2) + 2.

(1.11)
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If we select functions σ1 and σ2 in the following way

σ1 =

⎧
⎪⎨
⎪⎩

t + 1− 4 · 3 q
p , t ∈ [0, 1],

−t + 4− 4 · 3 q
p , t ∈ (1, 2],

t− 2− 4 · 3 q
p , t ∈ (2, 3],

σ2 =

⎧
⎪⎨
⎪⎩

t− 2 + 6 · 3 q
p , t ∈ [0, 1],

−t + 1 + 6 · 3 q
p , t ∈ (1, 2],

t− 5 + 6 · 3 q
p , t ∈ (2, 3],

then σ1, σ2 are respectively lower and upper functions of the problem (1.11). If
we select functions ϕ1 and ϕ2 in this way

ϕ1 =

⎧
⎪⎨
⎪⎩

−6
p+1

k · 3 q
pk , t ∈ [0, 1],

−6
p+1

k · 3 q
pk − 2, t ∈ (1, 2],

−6
p+1

k · 3 q
pk , t ∈ (2, 3],

ϕ2 =

⎧
⎪⎨
⎪⎩

4
p+1

k · 3 q
pk + 2, t ∈ [0, 1],

4
p+1

k · 3 q
pk , t ∈ (1, 2],

4
p+1

k · 3 q
pk + 2, t ∈ (2, 3],

then these functions satisfy the conditions of Theorem 1.1, so there exists a
solutions of the problem (1.11) fulfiling inequalities (1.9).

In Theorem 1.2 we impose one-sided conditions of the growth type on f .

Theorem 1.2 Let σ1, σ2 be respectively lower and upper functions of the prob-
lem (0.1)–(0.3) and satisfy (0.4), (0.5) and σ1 ≤ σ2 on J . Assume that k ∈ L(J)
is nonnegative a.e. on [0, T ], ω ∈ C([0,∞)) is positive on [0,∞) and

∫ φ(−1)

−∞

ds

ω(|φ−1(s)|) = ∞,

∫ ∞

φ(1)

ds

ω(|φ−1(s)|) = ∞

and

f(t, x, y) ≤ ω(|y|)(k(t) + |y|) for a.e. t ∈ J and every (x, y) ∈ [σ1(t), σ2(t)]×R.
(1.12)

Then the problem (0.1)–(0.3) has a solution u such that σ1 ≤ u ≤ σ2 on J .

Example 1.3(
|x′|k−1x′

)′ = 1√
t
(x′k − 1) + xm + x′k+1, k > 0 even, m > 0 odd,

x(0) = x(3), x′(0) = x′(3),

x(1+) = x(1) + 1, x′(1+) = x′(1)− 2,

x(2+) = x(2)− 2, x′(2+) = x′(2) + 2.

(1.13)
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Define functions σi : J → R, i = 1, 2

σ1(t) =

⎧
⎨
⎩

t− 3 if t ∈ [0, 1],
−t if t ∈ [1, 2],
t− 6 if t ∈ [2, 3],

σ2(t) =

⎧
⎨
⎩

t + 1 if t ∈ [0, 1],
−t + 4 if t ∈ [1, 2],
t− 2 if t ∈ [2, 3].

Then we have

f(t, σ1, σ
′
1) =

1√
t

(
σ′21 − 1

)
+ σ3

1 + σ′31

=

⎧
⎪⎨
⎪⎩

1√
t
(1− 1) + (t− 3)m + 1 < 0 if t ∈ [0, 1]

1√
t
(1− 1) + (−t)m − 1 < 0 if t ∈ (1, 2]

1√
t
(1− 1) + (t− 6)m + 1 < 0 if t ∈ (2, 3]

⎫
⎪⎬
⎪⎭

=
(
φ(σ′1)

)′
,

f(t, σ2, σ
′
2) =

1√
t

(
σ′22 − 1

)
+ σ3

2 + σ′31

=

⎧
⎪⎨
⎪⎩

1√
t
(1− 1) + (t + 1)m + 1 > 0 if t ∈ [0, 1]

1√
t
(1− 1) + (−t + 4)m − 1 > 0 if t ∈ (1, 2]

1√
t
(1− 1) + (t− 2)m + 1 > 0 if t ∈ (2, 3]

⎫
⎪⎬
⎪⎭

=
(
φ(σ′2)

)′
.

Functions σ1, σ2 are respectively lower and upper functions of the problem
(1.13). The right-hand side of the equation does not fulfil conditions of the
sign type, because f(t, x, ϕ1) is not bounded on [0, 1]. Nevertheless, one-sided
conditions of the growth type are valid.

φ−1(x) = |x| 1k sgnx, ω(s) = 1 + sk,

∫ ∞

1

ds

ω(|φ−1(s)|) = ∞,

∫ −1

−∞

ds

ω(|φ−1(s)|) = ∞,

f(t, x, y) =
1√
t

(
yk − 1

)
+ xm + yk+1 ≤ 1√

t
(|y|k + 1) + (σm

2 (t) + |y|)(|y|k + 1)

≤ (1 + |y|k)(
1√
t

+ σm
2 (t) + |y|) = ω(|y|)(k(t) + |y|).

By means of Theorem 1.2, there exists a solution of the problem (1.13).

2 Existence result for bounded right-hand sides
of equations

At the beginning of this section we introduce an auxiliary problem and find a
priori estimates for its solution. The main result of this section is contained
in Theorem 2.1. In the proof of this theorem we show that a solution of the
auxiliary problem (2.6)–(2.9) exists and is also a solution of the problem (0.1)–
(0.3).
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Assume that there is h ∈ L(J) such that |f(t, x, y)| ≤ h(t) for a.e. t ∈ J , for
all (x, y) ∈ [σ1(t), σ2(t)]×R. Define function ϕ : J ×R → R

ϕ(t, x) =

⎧
⎨
⎩

σ2(t) if x > σ2(t),
x if σ1(t) ≤ x ≤ σ2(t),
σ1(t) if x < σ1(t),

(2.1)

and further functions ωi : J × [0, 1] → R, i = 1, 2,

ω1(t, ε) = sup{|f(t, σ1, σ
′
1)− f(t, σ1, y)| : |y − σ′1| ≤ ε}, (2.2)

ω2(t, ε) = sup{|f(t, σ2, σ
′
2)− f(t, σ2, y)| : |y − σ′2| ≤ ε}.

We see that ωi ∈ Car(J × [0, 1]) are nonnegative, nondecreasing in the second
variable and ωi(t, 0) = 0 for a.e. t ∈ J , i = 1, 2.
Now, define F : J ×R2 → R such that

F (t, x, y) =

⎧
⎪⎨
⎪⎩

f(t, σ2, y) + ω2(t, x−σ2
x−σ2+1 ) + x−σ2

x−σ2+1 for x > σ2(t),

f(t, x, y) for σ1(t) ≤ x ≤ σ2(t),

f(t, σ1, y)− ω1(t, σ1−x
σ1−x+1 )− σ1−x

σ1−x+1 for x < σ1(t).
(2.3)

This function is bounded by a Lebesgue integrable function H

|F (t, x, y)| ≤ H(t) for a.e. t ∈ J , for all (x, y) ∈ R2. (2.4)

Define a function β : R → R

β(y) =
{

y if |y| ≤ K,
K · sign y if |y| > K

and

K = max
{∣∣φ−1

(
−max{

∣∣φ(−r

δ
)
∣∣,

∣∣φ(
r

δ
)
∣∣} − ‖H‖L(J)

)∣∣, (2.5)
∣∣φ−1

(
max{

∣∣φ(−r

δ
)
∣∣,

∣∣φ(
r

δ
)
∣∣}+ ‖H‖L(J)

)∣∣} + ‖σ′1‖∞ + ‖σ′2‖∞,

where
r = ‖σ1‖∞ + ‖σ2‖∞, δ = min

j∈{0,...,m}
(tj+1 − tj).

We consider the following modified problem

d

dt
[φ(x′(t))] = F (t, x(t), x′(t)), (2.6)

x(0) = ϕ(0, x(0) + x′(0)− x′(T )), (2.7)

x(T ) = ϕ(0, x(0) + x′(0)− x′(T )),

x(ti+) = x(ti)− ϕ(ti, x(ti)) + Ji(ϕ(ti, x(ti))) = J̃i(x(ti)), i = 1, . . . m, (2.8)

φ(x′(ti+))− φ(x′(ti)) = φ
(
Mi(β(x′(ti)))

)
− φ

(
β(x′(ti))

)
, i = 1, . . . m. (2.9)
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For this problem the following three lemmas rule

Lemma 2.1 Let u be a solution of (2.6)–(2.9) and (0.4), (0.6) hold. Let σ1, σ2

be respectively lower and upper functions of (0.1)–(0.3) and σ1 ≤ σ2 on J . Then
u satisfies

σ1(t) ≤ u(t) ≤ σ2(t) for all t ∈ J. (2.10)

Proof We show that v(t) = σ1(t) − u(t) ≤ 0 for all t ∈ J . By (2.7), we have
v(0) = v(T ) < 0.
1. Assume, on the contrary, that there is α ∈ (0, T )\Δ such that

max{(σ1 − u)(t) : t ∈ J} = v(α) > 0.

Then (σ1 − u)′(α) = 0. This guarantees the existence of δ > 0 such that

(σ1−u)(t) > 0, |v′(t)| < σ1 − u

σ1 − u + 1
< 1 ∀t ∈ (α, α+ δ) ⊂ (0, T )\Δ. (2.11)

Using (2.3), (2.11) and the properties of σ1, we get

[φ(σ′1(t))]
′ − [φ(u′(t))]′

≥ f(t, σ1(t), σ′1(t))−f(t, σ1(t), u′(t))+ω1

(
t,

σ1(t)− u(t)
σ1(t)− u(t) + 1

)
+

σ1(t)− u(t)
σ1(t)− u(t) + 1

> −|f(t, σ1(t), σ′1(t))−f(t, σ1(t), u′(t))|+ω1(t, |σ′1(t)−u′(t)|)+|σ′1(t)−u′(t)| > 0

for a.e. t ∈ (α, α + δ).
Hence, φ(σ′1(t)) − φ(u′(t)) > φ(σ′1(α)) − φ(u′(α)) = 0 for all t ∈ (α, α + δ).

Since φ is increasing, we get u′(t) < σ′1(t) for all t ∈ (α, α+ δ). This contradicts
that v has a maximum at α. We have showed that v does not have a positive
maximum at any point of (0, T )\Δ.
2. If v(t) > 0 for some t ∈ J , there is a tj ∈ Δ such that

max{v(t) : t ∈ [0, T ]} = v(tj) > 0. (2.12)

By (2.8) and the Definition 2 we get

v(tj+) = σ1(tj+)− u(tj+) = Jj(σ1(tj))− u(tj) + σ1(tj)− Jj(σ1(tj)) = v(tj).

Then
v′(tj+) ≤ 0. (2.13)

Futhermore, taking into account (2.12), we have v′(tj) ≥ 0, and by Definition 2,
the relations

φ(σ′1(tj+)) ≥ φ
(
Mj(σ′1(tj))

)
≥ φ

(
Mj(β(u′(tj)))

)

= φ(u′(tj+))− φ(u′(tj)) + φ(β(u′(tj))) ≥ φ(u′(tj+))
⇒ φ(σ′1(tj+))− φ(u′(tj+)) ≥ 0

follow. It means, since a function φ is increasing,

v′(tj+) ≥ 0. (2.14)
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Now, by (2.13), (2.14) we get v′(tj+) = 0.
Thus, in view of the first part of the proof, there is δ > 0 such that

v(t) > 0, |v′(t)| < σ1 − u

σ1 − u + 1
< 1 on (tj , tj + δ) ⊂ (0, T )\Δ

and we deduce that v′(t) > 0 for all t ∈ (tj , tj + δ), which contradicts (2.12).
So, we have proved σ1(t) ≤ u(t) for all t ∈ J .
If we put v(t) = u(t)−σ2(t), we can prove u(t) ≤ σ2(t) on J by an analogous

argument. �

Lemma 2.2 Let u be a solution of (2.6)–(2.9) with a condition (0.6). Then u
satisfies the periodic boundary conditions (0.2).

Proof The first, we prove

σ1(0) ≤ u(0) + u′(0)− u′(T ) ≤ σ2(0). (2.15)

Suppose, on the contrary, that

u(0) + u′(0)− u′(T ) > σ2(0). (2.16)

By the definition of the function ϕ it follows that ϕ(0, u(0) + u′(0) − u′(T )) =
σ2(0). Then, by condition (2.7), we get σ2(0) = u(0). The inequality (2.16)
implies that

u′(0) > u′(T ). (2.17)

The equality σ2(0) = u(0) = u(T ) = σ2(T ) and (2.10)) yield σ′2(0) ≥ u′(0) and
σ′2(T ) ≤ u′(T ). This together with Definition 2, this head to

u′(0) ≤ σ′2(0) ≤ σ′2(T ) ≤ u′(T ),

contrary to (2.17). We can similary derive the inequality σ1(0) ≤ u(0)+u′(0)−
u′(T ).
So, if (2.15) is valid, then

u(0) = ϕ(0, u(0) + u′(0)− u′(T )) = u(0) + u′(0)− u′(T ) ⇒ u′(0) = u′(T ).

It means that a solution of (2.6)–(2.9) fulfils periodic boundary conditions. �

Lemma 2.3 Let u be a solution of (2.6)–(2.9) with a condition (0.6). Then u
satisfies the impulsive conditions (0.3).

Proof By means of Lemma 2.1 the equality ϕ(ti, u(ti)) = u(ti) holds. Then
the condition (2.8) implies u(ti+) = Ji(u(ti)) for all i ∈ {1, . . . , m}. We will
prove the impulsive condition for u′.
We show that

φ(Mj(u′(tj))) = φ
(
Mj(β(u′(tj)))

)
, φ(u′(tj)) = φ

(
β(u′(tj))

)
∀tj ∈ Δ.
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By the Mean Value Theorem there exists ξj ∈ (tj , tj+1), j = 0, . . . , m, such that

|u′(ξj)| =
|u(tj+1)− u(tj)|

tj+1 − tj
≤ r

δ
.

Then the equality

u′(tj) = φ−1
(
φ(u′(ξj)) +

∫ tj

ξj

[φ(u′(s))]′ds
)
.

holds for all j ∈ {1, . . . , m}. With respect to (2.4), (2.5) and (2.6) we have

|u′(tj)| ≤ K, j = 1, . . . ,m.

By (2.9), it means that u fulfils

φ(u′(ti+))− φ(u′(ti)) = φ(Mi(u′(ti)))− φ(u′(ti)) ∀i ∈ {1, . . . , m},

therefore u′(ti+) = Mi(u′(ti)) for all i ∈ {1, . . . , m}, which concludes the proof.
�

Now, we will prove the main result of this section concerning the existence
of a solution for problem (0.1)–(0.3) with a bounded right-hand side.

Theorem 2.1 Let σ1, σ2 be respectively lower and upper functions of the prob-
lem (0.1)–(0.3) and σ1 ≤ σ2 on J .
Assume that (0.4) and (0.6) hold. Further assume that there is h ∈ L(J)

such that |f(t, x, y)| ≤ h(t) for a.e. t ∈ J , for all (x, y) ∈ [σ1(t), σ2(t)] × R.
Then the problem (0.1)–(0.3) has a solution u fulfilling

σ1 ≤ u ≤ σ2 on J. (2.10)

Proof By means of the three previous lemmas it is sufficient to prove the
existence of a solution of the auxiliary problem (2.6)–(2.9). Denote

Ψu(t) =
m∑

i=1

χ(ti,T ](t)
[
φ
(
Mi(β(u′(ti)))

)
− φ

(
β(u′(ti))

)]
for t ∈ J, (2.18)

where χ(tj ,T ](t) means the characteristic function of the interval (tj , T ]. For
fixed v ∈ C1

Δ(J) define gv : R → R such that

gv(x) =
∫ T

0

φ−1
(
x +

∫ r

0

Fv(s)ds + Ψu(r)
)
dr ∀x ∈ R,

where Fv(s) ≡ F (s, v(s), v′(s)) for a.e. s ∈ J . Since φ−1 is continuous and
increasing, gv is continuous and increasing, too. We know that there isH ∈ L(J)
such that |Fv(s)| ≤ H(s) for a.e. s ∈ J and for all v ∈ C1

Δ(J) and then

|
∫ t

0

Fv(s)| ≤ ‖H‖L(J) for all t ∈ J and every v ∈ C1
Δ(J). (2.19)
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By (2.18), there exists � > 0 such that
∣∣Ψu(t)

∣∣ ≤ � ∀t ∈ J, u ∈ C1
Δ(J). (2.20)

Since φ is increasing, for each x ∈ R and for all v ∈ C1
Δ(J)

Tφ−1(x− ‖H‖L(J) − �) ≤ gv(x) ≤ Tφ−1(x + ‖H‖L(J) + �).

holds. By this inequalities and by the fact that φ−1(R) = R, we have gv(R) = R
for each v ∈ C1

Δ(J). Therefore, for all v ∈ C1
Δ(J) there exists a unique Av

satisfying

gv(Av) =
∫ T

0

φ−1
(
Av +

∫ r

0

Fv(s)ds + Ψv(r)
)
dr = −

m∑

i=1

(
J̃i(u(ti))− u(ti)

)
. (2.21)

We show that there exists N > 0 such that |Av| ≤ N for every v ∈ C1
Δ(J).

The Mean Value Theorem for integrals implies that there is η ∈ (0, T ) such that

∫ T

0

φ−1
(
Av +

∫ r

0

Fv(s)ds + Ψv(r)
)
dr

= Tφ−1
(
Av +

∫ η

0

Fv(s)ds + Ψv(η)
)

= −
m∑

i=1

(
J̃i(u(ti))− u(ti)

)
= C.

Then Av = φ
(

C
T

)
−

∫ η

0
Fv(s)ds−Ψv(η) and

|Av| =
∣∣∣φ

(C

T

)
−

∫ η

0

Fv(s)ds−Ψv(η)
∣∣∣ ≤

∣∣∣φ
(C

T

)∣∣∣ +
∫ η

0

|Fv(s)|ds +
∣∣Ψv(η)

∣∣

≤
∣∣∣φ

(C

T

)∣∣∣ +
∫ T

0

H(s)ds + � =
∣∣∣φ

(C

T

)∣∣∣ + ‖H‖L(J) + �.

It means that

|Av| ≤
∣∣∣φ

(C

T

)∣∣∣ + ‖H‖L(J) + � = N for all v ∈ C1
Δ(J). (2.22)

Now define the following operator T : C1
Δ(J) → C1

Δ(J) by the formula

(T u)(t) =
m∑

i=1

χ(ti,T ](t)
(
J̃i(u(ti))− u(ti)

)
+ ϕ(0, u(0) + u′(0)− u′(T ))

+
∫ t

0

φ−1
(
Au +

∫ r

0

Fu(s)ds + Ψu(r)
)
dr. (2.23)

Then for all t ∈ J and all u ∈ C1
Δ(J)

(T u)′(t) = φ−1
(
Au +

∫ t

0

Fu(s)ds + Ψu(t)
)

(2.24)
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holds. If u ∈ C1
Δ(J) is a fixed point of T , then from equation (2.24), we obtain

φ(u′(t)) = Au +
∫ t

0

Fu(s)ds + Ψu(t) for all t ∈ J and for every u ∈ C1
Δ(J).

(2.25)
F ∈ Car(J × R2) means that Fu ∈ L(J), so we have φ(u′) ∈ ACΔ(J). Dif-
ferentiating in equation (2.25), we obtain that u satisfies equation (2.6). Using
(2.21) we see that u satisfies conditions (2.7). From equation (2.25) we get for
all j ∈ {1, . . . ,m} equalities

φ(u′(tj)) = Au +
∫ tj

0

Fu(s)ds +
j−1∑

i=1

χ(ti,T ](t)
[
φ
(
Mi(β(u′(ti)))

)
− φ

(
β(u′(ti))

)]
,

φ(u′(tj+)) = Au +
∫ tj

0

Fu(s)ds +
j∑

i=1

χ(ti,T ](t)
[
φ
(
Mi(β(u′(ti)))

)
−φ

(
β(u′(ti))

)]
.

From the difference of the left-hand and right-hand sides of these equalities we
see that for all tj ∈ Δ condition (2.9) follows. Moreover, from equation (2.23)
we deduce

u(tj+) = J̃j(u(tj)) for every j ∈ {1, . . . , m}.
Thus, if u is a fixed point of the operator T then u is a solution of (2.6)–(2.9).
Now, we will prove that the operator T has a fixed point u ∈ C1

Δ(J). We
start showing that the operator T is continuous in C1

Δ(J). For {un} ⊂ C1
Δ(J),

we prove
un → u in C1

Δ(J) =⇒ T un → T u in C1
Δ(J).

Let An correnspond to un by equation (2.21), and similarly let A correnspond
to u. We prove that An → A. By the construction of An and A and by the
Mean Value Theorem there exists ξn ∈ (0, T ) such that

lim
n→∞

jZ T

0

φ−1`
An+

Z r

0

Fun(s)ds+Ψun(r)
´
dr−

Z T

0

φ−1`
A+

Z r

0

Fu(s)ds+Ψu(r)
´
dr

ff

= T lim
n→∞

j
φ−1`

An+

Z ξn

0

Fun(s)ds+Ψun(ξn)
´
−φ−1`

A+

Z ξn

0

Fu(s)ds+Ψu(ξn)
´ff

= 0.

(2.26)

Since φ is uniformly continuous in J , we have

lim
n→∞

{
An +

∫ ξn

0

Fun
(s)ds + Ψun

(ξn)−A−
∫ ξn

0

Fu(s)ds−Ψu(ξn)
}

= 0.

By the continuity of φ and β in u it follows that ‖Ψun
− Ψu‖∞ → 0. Since

un → u in C1
Δ(J) and F ∈ Car(J × R2), it holds that Fun

→ Fu a.e on J . By
the Lebesgue theorem and from (2.19) we have

lim
n→∞

∫ ξn

0

[
Fun

(s)− Fu(s)
]
ds = 0.
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We conclude that limn→∞An = A. Furthermore

An +
∫ t

0

Fun
(s)ds + Ψun

(t) → A +
∫ t

0

Fu(s)ds + Ψu(t) for all t ∈ J.

Now, since

∣∣∣An +
∫ t

0

Fun
(s)ds + Ψun

(t)−A−
∫ t

0

Fu(s)ds−Ψu(t)
∣∣∣

≤ |An −A|+ ‖Fun
− Fu‖L(J) + ‖Ψun

−Ψu‖∞,

for all t ∈ J , the convergence is uniform. By the uniform continuity φ−1 on
compact intervals, (T un)′ → (T u)′ uniformly on J .
Since ϕ is continuous

ϕ(0, un(0) + u′n(0)− u′n(T )) → ϕ(0, u(0) + u′(0)− u′(T ))

in R. Since J̃i are continuous for all i ∈ Δ
m∑

i=1

χ(ti,T ](·)
(
J̃i(un(ti))− un(ti)

)
→

m∑

i=1

χ(ti,T ](·)
(
J̃i(u(ti))− u(ti)

)

uniformly on J . Thus T un → T u uniformly on J .
Now, we are going to prove a compactness of the operator T . Let M be

an arbitrary set in C1
Δ(J) and {xn} ⊂ T (M) be an arbitrary sequence. We

prove that we can choose a subsequence convergent in C1
Δ(J) to the function

x ∈ T (M). Choose sequence {xn} ⊂ T (M). Then

xn(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x
[0]
n (t), t ∈ [0, t1],

x
[1]
n (t), t ∈ (t1, t2],
. . . . . . . . . . . .

x
[m]
n (t), t ∈ (tm, T ],

where {x[i]
n } ⊂ C1[ti, ti+1], i = 0, . . . ,m. Consider {x[0]

n } ⊂ C1[0, t1]. We will
show that this sequence is bounded and {(x[0]

n )′} is equicontinuous on [0, t1].
Let un ∈ M be such that xn = T un. Then by (2.19), (2.20) and (2.22)

‖x[0]
n ‖C1[0,t1] ≤

m∑

i=1

|J̃i(u(ti))− u(ti)|+ ‖σ1‖∞ + ‖σ2‖∞

+
∫ t

0

∣∣∣φ−1
(
Aun

+
∫ r

0

Fun
(s)ds+Ψun

(r)
)∣∣∣dr+

∣∣∣φ−1
(
Aun

+
∫ t

0

Fun
(s)ds+Ψun

(t)
)∣∣∣

≤
m∑

i=1

|J̃i(u(ti))− u(ti)|+ ‖σ1‖∞ + ‖σ2‖∞

+ (T + 1)max{|φ−1(−N − ‖H‖L(J) − �)|, |φ−1(N + ‖H‖L(J)) + �)|}.

It means that {x[0]
n } is bounded.
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On the basis of the absolute continuity of the Lebesgue integral the condition

∀ε1 > 0 ∃δ1 > 0 ∀τ1, τ2 ∈ [0, t1] ∀xn ∈ T (M) : |τ1 − τ2| < δ1

⇒
∣∣∣Aun

+
∫ τ1

0

Fun
(s)ds + Ψun

(t1)−
(
Aun

+
∫ τ2

0

Fun
(s)ds + Ψun

(t1)
)∣∣∣

=
∣∣∣
∫ τ2

τ1

Fun
(s) ds

∣∣∣ <
∣∣∣
∫ τ2

τ1

H(s) ds
∣∣∣ < ε1 (2.27)

holds. By the uniform continuity of φ−1 we have

∀ε > 0 ∃ε2 > 0 ∀τ1, τ2 ∈ [0, t1] ∀xn ∈ T (M) :
∣∣∣Aun

+
∫ τ1

0

Fun
(s) ds + Ψun

(t1)−
(
Aun

+
∫ τ2

0

Fun
(s) ds + Ψun

(t1)
)∣∣∣ < ε2

=⇒
∣∣∣φ−1

(
Aun

+
∫ τ1

0

Fun
(s) ds + Ψun

(t1)
)

−φ−1
(
Aun

+
∫ τ2

0

Fun
(s) ds + Ψun

(t1)
)∣∣∣ < ε.

If we choose δ2 corrensponding to ε2 by (2.27), then

∀ε > 0 ∃δ2 ∀τ1, τ2 ∈ [0, t1] ∀xn ∈ T (M) : |τ1 − τ2| < δ2

=⇒
∣∣(x[0]

n )′(τ1)− (x[0]
n )′(τ2)

∣∣ =
∣∣∣φ−1

(
Aun

+
∫ τ1

0

Fun
(s) ds + Ψun

(t1)
)

−φ−1
(
Aun

+
∫ τ2

0

Fun
(s) ds + Ψun

(t1)
)∣∣∣ < ε.

It means that {(x[0]
n )′} is equicontinuous. We can do similar considerations for

the other sequences {x[i]
n } ⊂ C1[ti, ti+1], i = 1, . . . ,m. Now, we select {x[0]

n } ⊂
{x[0]

kn
} convergent in C1[0, t1], and corrensponding subsequences {x[i]

kn
} ⊂ {x[i]

n },
i = 1, . . . ,m. Having {x[1]

kn
} we can select convergent subsequence. Without

loss of generality we denote it {x[1]
kn
} again, and choose corrensponding {x[i]

kn
},

i = 0, 2, . . . ,m. Continuing inductively we choose convergent {x[m]
ln
} ⊂ {x[m]

n }
and corrensponding sequences {x[i]

ln
}, i = 0, . . . ,m− 1. If we take

xln(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x
[0]
ln

(t), t ∈ [0, t1],
x

[1]
ln

(t), t ∈ (t1, t2],
. . . . . . . . . . . .

x
[m]
ln

(t), t ∈ (tm, T ],

we obtain the subsequence {xln(t)} ⊂ {xn(t)} ⊂ T (M), such that {xln(t)}
converges in C1

Δ(J). It means that the operator T is compact.
For all u ∈ C1

Δ(J) the following estimate holds

‖T u‖C1
Δ(J) ≤

m∑

i=1

|J̃i(u(ti))− u(ti)|+ ‖σ1‖∞ + ‖σ2‖∞

+ (T + 1)max{|φ−1(−N − ‖H‖L(J) − �)|, |φ−1(N + ‖H‖L(J)) + �)|} = Q.
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Define Ω = {u ∈ C1
Δ(J) : ‖u‖C1

Δ(J) ≤ Q}. Then Ω is a nonempty closed
bounded and convex set. The operator T sends the set Ω into Ω, T is compact.
By the Schauder fixed point theorem, operator T has a fixed point u. This fixed
point is a solution of the problem (0.1)–(0.3). �

3 Proofs of main results

In this section we prove the existence results which are contained in Theorem
1.1 and Theorem 1.2.

Proof of Theorem 1.1 Define function ψ(t, y) : J ×R → R

ψ(t, y) =

⎧
⎪⎨
⎪⎩

ϕ2(t) if y > ϕ2(t),

y if ϕ1(t) ≤ y ≤ ϕ2(t),

ϕ1(t) if y < ϕ1(t).

(3.1)

Further define function g : J ×R2 → R by the formula

g(t, u, v) = f(t, u, ψ(t, v)) +
v − ψ(t, v)

|v − ψ(t, v)|+ 1
. (3.2)

Then there exists h0 ∈ L(J)

|g(t, x, y)| ≤ h0(t) for a.e. t ∈ J, for all (x, y) ∈ [σ1(t), σ2(t)]×R.

Functions σ1 and σ2 are respectively lower and upper functions of the auxiliary
problem

d

dt
[φ(x′(t))] = g(t, x(t), x′(t)), (3.3)

x(0) = x(T ), ψ(0, x′(0)) = x′(T ), (3.4)

x(ti+) = Ji(x(ti)), i ∈ {1, . . . , m}, (3.5)

x′(ti+) = x′(ti)− ψ(ti, x′(ti)) + Mi(ψ(ti, x′(ti))) = M̃i(x′(ti)), i ∈ {1, . . . , m},
(3.6)

function M̃i satisfies condition (0.6) for all i ∈ Δ. Consider function ϕ defined
by (2.1), further formulas (2.2) - (2.5) defined for function g. By means of the
proof of Theorem 2.1 there exists a solution u of the following problem

d

dt
[φ(x′(t))] = F (t, x(t), x′(t)),

x(0) = ϕ(0, x(0) + ψ(0, x′(0))− x′(T )),

x(T ) = ϕ(0, x(0) + ψ(0, x′(0))− x′(T )),

x(ti+) = x(ti)− ϕ(ti, x(ti)) + Ji(ϕ(ti, x(ti))) = J̃i(x(ti)), i = 1, . . . m,

φ(x′(ti+))− φ(x′(ti)) = φ
(
M̃i(β(x′(ti)))

)
− φ

(
β(x′(ti))

)
, i = 1, . . . m.

with a property σ1 ≤ u ≤ σ2 on J .
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In additions, function u is also solution of the problem (3.3)–(3.6). We will
show that the following inequalities hold

ϕ1 ≤ u′ ≤ ϕ2 on J. (3.7)

Since φ is increasing, it is enough to prove the inequality φ(ϕ1) ≤ φ(u′) ≤ φ(ϕ2)
on J .
1. Put z = φ(u′) − φ(ϕ2) on J . Assume, that there is α ∈ (0, T )\Δ such

that z has a positive local maximum at α, i.e. z(α) > 0. Since u is a solution of
the problem (3.3) - (3.6), there is δ > 0 such that z(t) > 0 on (α, α + δ) and

z′(t) = [φ(u′(t))]′ − [φ(ϕ2(t))]′ = g(t, u(t), u′(t))− [φ(ϕ2(t))]′

≥ f(t, u(t), ϕ2(t)) +
u′ − ϕ2(t)

u′ − ϕ2(t) + 1
− f(t, u(t), ϕ2(t)) > 0

holds for a.e. t ∈ (α, α + δ) with respect to (1.8). Thus, for a.e. t ∈ (α, α + δ)
we have z′(t) > 0. By integration of this inequality we get

0 <

∫ t

α

z′(s)ds =
∫ t

α

([φ(u′(s))]′ − [φ(ϕ2(s))]′) ds

= φ(u′(t))− φ(ϕ2(t))− (φ(u′(α))− φ(ϕ2(α))) = z(t)− z(α).

It means that z(t) > z(α) for all t ∈ (α, α + δ). It contradicts the assumption
of the local maximum of z in α.
2. Assume that there is tj ∈ Δ such that z(tj) > 0. Then u′(tj) > ϕ2(tj).

Since

(u′ − ϕ2)(tj+) ≥ u′(tj)− ϕ2(tj) + Mj(ϕ2(tj))−Mj(ϕ2(tj)) > 0,

the inequality z(tj+) > 0 holds. Then there exists δ > 0 such that

z(t) > 0 on (tj , tj + δ), z′(t) > 0 for a.e. t ∈ (tj , tj + δ). (3.8)

By the first part of the proof we have

z′(t) ≥ 0 on (tj , tj+1). (3.9)

Now, by (3.8) and (3.9) we obtain

max
t∈(tj ,tj+1]

z(t) = z(tj+1) > 0.

Continuing inductively we get z(T ) = φ(u′(T ))− φ(ϕ2(T )) > 0. It means that
u′(T ) > ϕ2(T ) ≥ ϕ2(0). It is contradiction because from (1.7) and (3.4) we
get u′(T ) ≤ ϕ2(0) ≤ ϕ2(T ). It means that the inequality u′ ≤ ϕ2 holds on J .
By an analogous argument we can prove inequality ϕ1 ≤ u′ using function
z(t) = φ(ϕ1(t)) − φ(u′(t)). So, u fulfils (3.7), consequently, u is a solution of
(0.1)–(0.3) satisfying (1.9). �

Before proving Theorem 1.2, we prove the following lemma where we derive
a priori estimates for derivatives of solutions.
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Lemma 3.1 Let σ1, σ2 be respectively lower and upper functions of the problem
(0.1)–(0.3) and σ1 ≤ σ2 on J . Assume that (0.5) holds. Further assume that
k ∈ L(J) is nonnegative a.e. on [0, T ], ω ∈ C([0,∞)) is positive on [0,∞) and

∫ φ(−1)

−∞

ds

ω(|φ−1(s)|) = ∞,

∫ ∞

φ(1)

ds

ω(|φ−1(s)|) = ∞. (3.10)

Then there exists μ∗ > 0 such that for each function u ∈ C1
Δ(J) fulfiling (0.2),

the conditions for derivative in (0.3) and inequalities

σ1 ≤ u ≤ σ2 on J, (3.11)

[φ(u′(t))]′ ≤ ω(|u′(t)|)(k(t) + |u′(t)|) for a.e. t ∈ J, (3.12)

the following estimate holds |u′(t)| < μ∗ for all t ∈ J .

Proof Put r = ‖σ1‖∞ + ‖σ2‖∞. By the Mean Value Theorem there is ξi ∈
(ti, ti+1) such that

|u′(ξi)| ≤
2r

δ
+ 1 = r1, i = 0, 1, . . . ,m, (3.13)

where
δ = min

i=0,1,...,m
(ti+1 − ti).

The assumption (3.10) implies the existence of an increasing sequence {μj}2m+4
j=1 ∈

(r1,∞) such that

r1 < Mj(μj) < μj+1, −μm+4+j < M−1
m+1−j(−μm+3+j) < −r1

for j = 1, . . . , m and satisfying
∫ φ(μ1)

φ(r1)

ds

ω(|φ−1(s)|) > r + ‖k‖L(J),

∫ φ(μm+2)

φ(μm+1)

ds

ω(|φ−1(s)|) > r + ‖k‖L(J),

∫ φ(−r1)

φ(−μm+3)

ds

ω(|φ−1(s)|) > r + ‖k‖L(J),

∫ φ(−μm+3)

φ(−μm+4)

ds

ω(|φ−1(s)|) > r + ‖k‖L(J),

∫ φ(μj+1)

φ(Mj(μj))

ds

ω(|φ−1(s)|) > r + ‖k‖L(J),

∫ φ(M−1
m+1−j(−μm+3+j))

φ(−μm+4+j)

ds

ω(|φ−1(s)|) > r + ‖k‖L(J)
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for j = 1, . . . ,m. We estimate u′ from above. Assume that there is β1 ∈ (ξ0, t1]
such that

max{u′(t) : t ∈ [ξ0, t1]} = u′(β1) = c1 > r1.

Then we can find α1 ∈ (ξ0, β1) such that u′(α1) = r1, u′(t) > r1 for all t ∈
(α1, β1]. Integrating the inequality

[φ(u′(t))]′

ω(|u′(t)|) ≤ (k(t) + |u′(t)|),

which holds for a.e. t ∈ (α1, β1), we obtain

∫ β1

α1

[φ(u′(t))]′dt

ω(u′(t))
≤

∫ β1

α1

(
k(t) + u′(t)

)
dt.

Using substitution s = φ(u′(t)) we get that

∫ β1

α1

[φ(u′(t))]′dt

ω(u′(t))
=

∫ φ(c1)

φ(r1)

ds

ω(φ−1(s))
.

Moreover,

∫ β1

α1

(
k(t) + u′(t)

)
dt =

∫ β1

α1

k(t)dt + u(β1)− u(α1) ≤ ‖k‖L(J) + |σ2(β1)− σ1(α1)|

≤ ‖k‖L(J) + (‖σ2‖C(J) + ‖σ1‖C(J)) = r + ‖k‖L(J).

So we have ∫ φ(c1)

φ(r1)

ds

ω(φ−1(s))
≤ r + ‖k‖L(J),

which implies that φ(c1) < φ(μ1). Since function φ is increasing, it means that
c1 < μ1. Thus u′(t) < μ1 for all t ∈ [ξ0, t1].
Next assume that there exists β2 ∈ (t1, t2] such that

sup{u′(t) : t ∈ (t1, t2]} = u′(β2) = c2 > M1(μ1).

Then we can find such α2 ∈ (t1, β2) that u′(α2) = M1(μ1), u′(t) > M1(μ1) for
all t ∈ (α2, β2]. Integrating inequality

[φ(u′(t))]′

ω(|u′(t)|) ≤ k(t) + |u′(t)|,

which holds for a.e. t ∈ (α2, β2), we get

∫ β2

α2

[φ(u′(t))]′dt

ω(u′(t))
=

∫ φ(c2)

φ(M1(μ1))

ds

ω(φ−1(s))
≤ r + ‖k‖L(J),

so it must be c2 < μ2. We have proved that u′(t) < μ2 for all t ∈ [t1, t2]. Contin-
uing inductively over all intervals (tj , tj+1), we obtain the estimate u′(t) < μm+1
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for all t ∈ [tm, T ], from this u′(0) < μm+1 follows. Using the previous procedure
we deduce that u′(t) < μm+2 for all t ∈ [0, ξ0].
Similarly we estimate u′ from below. Assume that there exists βm+3 ∈ [0, ξ0)

such that

min{u′(t) : t ∈ [0, ξ0]} = u′(βm+3) = −cm+3 < −r1.

Then we prove that −cm+3 > −μm+3, tj. u′(t) > −μm+3 on [0, ξ0], u′(T ) >
−μm+3. From the assumption

inf{u′(t) : t ∈ (tm, T ]} = u′(βm+4) = −cm+4 < −μm+3

we get −cm+4 > −μm+4, i.e. −μm+4 < u′(t) for all t ∈ [tm, T ]. Assume that
there exists βm+5 ∈ [tm−1, tm) such that

inf{u′(t) : t ∈ (tm−1, tm]} = u′(βm+5) = −cm+5 < M−1
m (−μm+4).

Then we get −cm+5 > −μm+5, i.e. −μm+5 < u′(t) for all t ∈ [tm−1, tm]. We can
again prove inductively that −u′(t) > −μ2m+4 for every t ∈ [ξ0, t1]. If we put
μ∗ = μ2m+4, then μ∗ > μj for all j ∈ {1, . . . , 2m + 3} and therefore |u′(t)| ≤ μ∗
for all t ∈ J . �

Proof of Theorem 1.2 Define functions

χ(s, r∗) =

⎧
⎪⎨
⎪⎩

1 if 0 ≤ s ≤ r∗,

2− s
r∗ if r∗ < s < 2r∗,

0 if s ≥ 2r∗

and
g(t, x, y) = χ(|x|+ |y|, r∗) · f(t, x, y),

for t ∈ J , x, y ∈ R, where r∗ = ‖σ1‖∞ + ‖σ2‖∞ + max{μ∗, ‖σ′1‖∞, ‖σ′2‖∞} for
μ∗ given by Lemma 3.1. For (x, y) ∈ [σ1(t), σ2(t)] × R, the function g(t, x, y)
is bounded on J by a Lebesgue integrable function. In addition, σ1, σ2 are
respectively lower and upper functions of the problem

d

dt
[φ(x′(t))] = g(t, x(t), x′(t)), (0.2), (0.3). (3.14)

According to Theorem 2.1 there exists a solution u of the problem (3.14) fulfiling
σ1 ≤ u ≤ σ2 on J . Moreover,

g(t, x, y) =
= χ(|x|+ |y|, r∗) · f(t, x, y) ≤ χ(|x|+ |y|, r∗) · ω(|y|)(k + |y|) ≤ ω(|y|)(k + |y|)
for a.e. t ∈ J , for all x ∈ [σ1, σ2], every y ∈ R. It means that function g satisfies
condition (1.12) which implies that

[φ(u′(t))]′ = g(t, u(t), u′(t)) ≤ ω(|u′(t)|)(k(t) + |u′(t)|) for a.e t ∈ J .

Then, according to Lemma 3.1, |u′(t)| ≤ μ∗ holds for all t ∈ J . So ‖u‖∞ +
‖u′‖∞ < r∗ and g(t, u, u′) = f(t, u, u′) for a.e. t ∈ J . It means that a solution u
of the problem (3.14) is a solution of the problem (0.1)–(0.3), too. It concludes
the proof of Theorem 1.2. �
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