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Abstract

A diagrammatic scheme characterizing congruence distributivity of
congruence permutable algebras was introduced by the first author in
2001. It is known under the name Triangular Scheme. It is known that
every congruence distributive algebra satisfies this scheme and an alge-
bra satisfying the Triangular Scheme which is not congruence distributive
was found by E. K. Horváth, G. Czédli and the autor in 2003. On the
other hand, it was an open problem if a variety of algebras satisfying the
Triangular Scheme must be congruence distributive. We get a negative
solution by presenting an example.
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Congruence distributive varieties were characterized by B. Jónsson [7] by
means of the Maltsev condition. For the reader’s convenience, we can repeat
this result:

Proposition 1 A variety V is congruence distributive if and only if there exist
ternary terms t0, . . . , tn such that t0(x, y, z) = x, tn(x, y, z) = z and
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(a) for all i = 0, . . . , n it holds ti(x, y, x) = x

(b) for i even, ti(x, x, y) = ti+1(x, x, y)

(c) for i odd, ti(x, y, y) = ti+1(x, y, y).

These terms t0, . . . , tn are referred to be Jónsson terms.
Unfortunately, a similar characterization of congruence distributivity for

a single algebra is missing. It motivated us to introduce the following concept
(see [1], [4]).
Let L be a sublattice of an equivalence lattice (known also as a partition

lattice) on a non-void set A. We say that L satisfies the Triangular Scheme if
for each α, β, γ ∈ L with α ∩ β ⊆ γ and for x, y, z ∈ A such that 〈x, y〉 ∈ γ,
〈x, z〉 ∈ α, 〈z, y〉 ∈ β we have 〈z, y〉 ∈ γ.
This can be visualized as follows
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We say that an algebra A satisfies the Triangular Scheme if the congruence
lattice ConA satisfies this condition. A variety V fulfils the Triangular Scheme
if each A ∈ V has this property.
The following was proved in [1], [4].

Proposition 2 If an algebra is congruence distributive then it satisfies the Tri-
angular Scheme. If an algebra is congruence permutable then it is congruence
distributive if and only if it satisfies the Triangular Scheme.

An example of algebra satisfying the Triangular Scheme but which is not
congruence distributive was found in [5].
Let us note that similar schemes for congruence semidistributivity were in-

volved in [3] and conclusions of the Triangular Scheme for n-permutable algebras
were treated in [2], [3], [5]. For congruence modular algebras and varieties it
was done in [5] where it is explicitely proved that for a variety, the assumption
of congruence permutability of Proposition 2 can be replaced by a weaker one
of congruence modularity. However, there still was an open question if a vari-
ety satisfying the Triangular Scheme is necessarily congruence distributive. To
solve this question, we first characterize the Triangular Scheme for varieties by
a Maltsev condition.

Theorem 1 Let V be a variety of algebras. The following are equivalent:
(1) For each A ∈ V, ConA satisfies the Triangular Scheme;
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(2) there exist ternary terms t0, . . . , tn such that t0(x, y, z) = x, tn(x, y, z) = z
and

(a) for i even, ti(x, y, x) = ti+1(x, y, x), ti(x, x, y) = ti+1(x, x, y),

(b) for i odd, ti(x, y, y) = ti+1(x, y, y).

Proof Suppose V satisfies the Triangular Scheme, FV(x, y, z) is a free algebra of
V with three free generators and α = θ(x, y), β = θ(x, z) and γ = (α∩β)∨θ(y, z).
Then α ∩ β ⊆ γ and, by Triangular Scheme, 〈x, z〉 ∈ γ. Hence, there exists
an integer n ≥ 0 and ternary terms t0, . . . , tn such that

x = t0(α ∩ β)t1θ(y, z)t2(α ∩ β)t3 . . . tn = z.

Applying the standard procedure, we easily derive that t0(x, y, z) = x,
tn(x, y, z) = z and ti(x, y, x) = ti+1(x, y, x) and ti(x, x, y) = ti+1(x, x, y) for
i even, and ti(x, y, y) = ti+1(x, y, y) for i odd.
Prove the converse. Let A = (A,F ) ∈ V , a, b, c ∈ A, α, β, γ ∈ ConA and

α ∩ β ⊆ γ. Suppose 〈c, b〉 ∈ γ, 〈a, b〉 ∈ β and 〈a, c〉 ∈ α. Then

ti(a, b, c)αti(a, b, a) = ti+1(a, b, a)αti+1(a, b, c)

ti(a, b, c)βti(a, a, c) = ti+1(a, a, c)βti+1(a, b, c)

for i even and

ti(a, b, c)γti(a, b, b) = ti+1(a, b, b)γti+1(a, b, c)

for i odd. Altogether, we conclude

a = t0(a, b, c)(α ∩ β)t1(a, b, c)γt2(a, b, c)(α ∩ β) . . . tn(a, b, c) = c

thus
〈a, c〉 ∈ (α ∩ β) ◦ γ ◦ (α ∩ β) ◦ γ ◦ . . . ⊆ γ ◦ γ ◦ . . . ◦ γ = γ.

This together with 〈b, c〉 ∈ γ yields 〈a, b〉 ∈ γ. Hence, A and also V satisfies the
Triangular Scheme. �

Remark 1 When comparing our terms of Theorem 2 with Jónsson terms, the
difference is that we do not ask ti(x, y, x) = ti+1(x, y, x) for i odd. It motivates
us to suppose that this variety need not be necessarily congruence distribu-
tive. However, if n ≤ 3 then t0(x, y, x) = x and t3(x, y, x) = x yield that also
t1(x, y, x) = x and t2(x, y, x) = x. To find an example of a variety which is
not congruence distributive but still satisfying the Triangular Scheme, we must
suppose that n ≥ 4. We are ready to construct such an example:

Example 1 Consider a variety V of type (2, 1, 1) whose operations are denoted
by ∧ and f, g and satisfying the identities

x ∧ x = x, x ∧ y = y ∧ x, x ∧ (y ∧ z) = (x ∧ y) ∧ z
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(i.e. the ∧-reducts of its members are semilattices) and
f(f(x)) = x

x ∧ g(g(x) ∧ g(y)) = x

x ∧ g(g(y)) = x ∧ f(f(x) ∧ f(y)).

Hence it follows also
x ∧ g(g(x)) = x.

We can take n = 6 and establish the following terms:

t0(x, y, z) = x

t1(x, y, z) = x ∧ g(g(y) ∧ g(z))
t2(x, y, z) = x ∧ g(g(y)) ∧ f(f(x) ∧ f(z))

t3(x, y, z) = x ∧ g(g(y)) ∧ f(f(y) ∧ f(z))

t4(x, y, z) = x ∧ y ∧ z
t5(x, y, z) = y ∧ z
t6(x, y, z) = z.

Then for i even we have
i = 0:

t0(x, x, y) = x = x ∧ g(g(x) ∧ g(y)) = t1(x, x, y)

t0(x, y, x) = x = x ∧ g(g(y) ∧ g(x)) = t1(x, y, x)

i = 2:
t2(x, x, y) = x ∧ g(g(x)) ∧ f(f(x) ∧ f(y)) = t3(x, x, y)

t2(x, y, x) = x ∧ g(g(y)) ∧ f(f(x)) = x ∧ g(g(y)) =

= x ∧ g(g(y)) ∧ f(f(y) ∧ f(x)) = t3(x, y, x)

i = 4:
t4(x, x, y) = x ∧ y = t5(x, x, y)

t4(x, y, x) = x ∧ y = t5(x, y, x).

For i odd we have
i = 1:

t1(x, y, y) = x ∧ g(g(y)) = x ∧ g(g(y)) ∧ f(f(x) ∧ f(y)) = t2(x, y, y)

i = 3:

t3(x, y, y) = x ∧ g(g(y)) ∧ f(f(y)) = x ∧ y ∧ g(g(y)) = x ∧ y = t4(x, y, y)

i = 5:
t5(x, y, y) = y ∧ y = y = t6(x, y, y).
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We have shown that our variety V satisfies the Triangular Scheme. Consider
now a four element ∧-semilattice as drawn in Fig. 2 where f and g
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are determined by the table

x f(x) g(x)
0 a 1
a 0 1
b 1 a
1 b a

It is an easy exercise to check that A = ({0, a, b, 1};∧, f, g) ∈ V . Consider
the partitions:

α = {0, a}
β = {0, a}, {b, 1}
γ = {0, b}, {a, 1}.

Then apparently ConA = {ω, α, β, γ, A × A} as shown in Fig. 3 thus A is not
congruence distributive.
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