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Abstract

We prove that an order algebra assigned to a bounded poset with
involution is a discriminator algebra.
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In accordance with [1], by an order algebra we mean an algebra defined on
an ordered set whose operations are derived by means of the order relation and,
conversely, the partial order is determined by these operations.

Let P = (P ;≤, 1) be an ordered set with the greatest element 1. The
following two operations are introduced in [1]:

x→ y =

⎧
⎨
⎩

1 if x ≤ y

y otherwise
and x ◦ y =

⎧
⎨
⎩
y if x ≤ y

1 otherwise.

Let us mention that these operations are not independent:

Observation 1 For any ordered set P = (P ;≤, 1) we have x◦y = (x→ y)→ y.

Moreover, we have x → y ∈ {y, 1} and hence for any interval [y, 1] of P it
holds x→ y ∈ [y, 1]. Thus, having a ∈ [y, 1], we can define a unary operation on
the interval [y, 1] assigning to a the element ay = a→ y. Evidently, yy = 1 and
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1y = y thus this operation interchanges the endpoints of the interval [y, 1] and
hence it is called a section switching mapping. Hence, the operation → deter-
mines not only the the order ≤ but also the family (p)p∈P of section switching
mappings, i.e. the extended structure P = (P ;≤, 1, (p)p∈P ).

We can ask if also conversely the operation ◦ can determine the operation
→. Since also x ◦ y ∈ [y, 1], the operation (x ◦ y)y is defined correctly whenever
y denotes the section switching mapping on the interval [y, 1]. Hence, we can
state

Observation 2 Let P = (P ;≤, 1, (p)p∈P ) be an ordered set with 1 and with
section switching mappings. Then x → y = (x ◦ y)y for the above mention
operations → and ◦.

An ordered set P is bounded if it has a least element 0 and a greatest
element 1. This will be expressed by the notation P = (P ;≤, 0, 1).

By an involution on a set P is meant a mapping of P into itself denoted by
x �→ x′ satisfying x′′ = x. Every bounded poset P = (P ;≤, 0, 1) admits some
involutions. Let us pick up one of them which satisfies 0′ = 1. Hence, x′′ = x
gets immediately 1′ = 0 and thus this involution is a switching mapping. Then
we can enlarge the type of P and we will write P = (P ;≤, 0, 1,′ ) to express the
fact that this involution is considered as a basic operation of P . From now on,
P = (P ;≤, 0, 1,′ ) will be called a poset with involution.

Let P = (P ;≤, 0, 1) be a bounded poset. By a globalization (frequently
called also a Baaz operation named by M. Baaz) is meant a unary operation 
on P defined by

(1) = 1 and (x) = 0 for x �= 1.

Observation 3 In every poset with involution P = (P ;≤, 0, 1,′ ), we can define
a globalization  by means of →, ′ and 0 as follows

(x) = x′ → 0.

Another binary operation defined on an ordered set (P ;≤) is mentioned
in [1]:

x � y =

⎧
⎨
⎩
x if x ≤ y

y otherwise.

Now, let P = (P ;≤, 0, 1,′ ) be a poset with involution. Define the assigned
order algebra A(P ) = (P ;→,�,′ , 0) of type (2, 2, 1, 0) where → and � are the
above mentioned operations and ′ is the involution of P .

As stated by Observations 1 and 3, the globalization  and the operation ◦
(as well as the constant 1) are term operations of A(P ). We can state our main
result:

Theorem 1 Let P = (P ;≤, 0, 1,′ ) be a poset with involution and A(P ) =
(P ;→,�,′ , 0) the assigned algebra. Then A(P ) is a discriminator algebra whose
ternary discriminator is

t(x, y, z)= ((((x→ y)′ ◦ (y→ x)′)′)→ z)� ((((x→ y)′ ◦ (y→ x)′)′→ 0)→ x).
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Proof If cardP = 1, the proof is trivial. Suppose cardP > 1, i.e. 0 �= 1. It is
an easy observation that � satisfies

x � 1 = x = 1 � x. (1)

For the sake of brevity, denote by

e(x, y) = ((x→ y)′ ◦ (y → x)′)′.

Due to the previous Observations 1 and 3, e(x, y) is a term operation of A(P ).
Clearly e(x, x) = (1′ ◦ 1′)′ = (0 ◦ 0)′ = 0′ = 1. Suppose x �= y.
(a) If x < y then x �= 1 and x→ y = 1, y → x = x and hence

e(x, y) = (1′ ◦ x′)′ = (0 ◦ x′) = x′′ = x �= 1.

(b) If y < x then y �= 1, i.e. y′ �= 0 and x→ y = y, y → x = 1 thus

e(x, y) = (y′ ◦ 1′)′ = (y′ ◦ 0)′ = 1′ = 0 �= 1.

(c) If x ‖ y then x→ y = y, y → x = x and

e(x, y) = (y′ ◦ x′)′ =

⎧
⎨
⎩

1′ = 0 for y′ ≤ x′

x′′ = x for y′ � x′.

Since x ‖ y we have x �= 1 thus e(x, y) �= 1 for x �= y in all the cases.
The term t(x, y, z) can be clearly rewritten as follows

t(x, y, z) = ((e(x, y)) → z) � ((e(x, y)→ 0)→ x).

Using of (1), we compute

t(x, x, z) = ((1)→ z) � ((1 → 0)→ x) = (1 → z) � (0 → x) = z � 1 = z

and for x �= y

t(x, y, z) = (0 → z) � ((0 → 0)→ x) = 1 � ((1)→ x) = 1 � x = x.

Hence, t(x, y, z) is a term function of A(P ) which is the ternary discriminator.
�
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