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Abstract

In this paper, we examine the properties of hypersurfaces of weakly
and pseudo concircular symmetric manifolds and we give an example for
these manifolds.

Key words: Weakly symmetric manifold, pseudo symmetric man-
ifold, weakly and pseudo symmetric concircular manifold, totally
umbilical, totally geodesic, mean curvature, scalar curvature.

2000 Mathematics Subject Classification: 53B20, 53B15

1 Introduction

Firstly, Tamassy and Binh introduced weakly symmetric manifolds, [1].
A non-flat Riemannian manifold (M, g), (n > 2) whose the curvature tensor
satisfies the following relation is called weakly symmetric

ViRniji = AiRnijk + BrRuiji + DiRnijk + EjRnak + FiRniji (1.1)

where A, B, D, E, F are non-zero 1-forms and V denotes the covariant differ-
entiation with respect to the metric tensor of the manifold. These 1-forms are
called the associated 1-forms of the manifold and an n-dimensional manifold of
this kind is denoted by (WS),. It may be mentioned in this connection that
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although the definition of a (W.S),, is similar to that of a generalized pseudo-
symmetric space studied by Chaki and Mondal, [2], the defining condition of
a (WS),, is weaker than that of a generalized pseudo-symmetric manifold. De
and Bandyopadhyay, [3], proved that 1-forms of (W.S),, can not be all different.
Then the equation (1.1) reduces to the form

ViRhiji = AiRniji + BrRiijr + BiRnijk + DRk + DiRhiji (1.2)

Let us consider a subspace V,,, immersed in a Riemannian manifold V,, whose
parametric representation is u* = w*(u',u?,...,u™) where (u*) and (u’)
(4,4,k,...=1,2,...,m) denote the coordinate systems of V,, and V;,, respec-
tively. A conformal transformation g;; = p%g;; of the fundamental tensor of V;,,

being a concircular one with the function p satisfying the equations

1 0
pi; = Vjpi — pip; + §9aﬁpapﬁ9ij =99ij,  pi=55np (1.3)
this transformation is called concircular transformation where ¢ is a function
of u’.
The present paper deals with non-concircular flat Riemannian manifold
(M,,, g) whose concircular curvature tensor Z; ;) satisfies the condition (n > 2)

ViZhijk = A1 Znigk + BrZiijr + DiZnik + Ej Znak + Fr Znig

where

Zhijk = Rhijk — ﬁ(ghkgij — 9higik)

n—1

Rpiji is the curvature tensor and R is the scalar curvature. Such a manifold will
be called a weakly concircular symmetric manifold and denoted by (W Z5S),,, [4].
It was shown that, in [5], Zihjk is invariant under a concircular transformation.
Desa and Amur studied the concircular recurrent Riemannian manifold, [6].
The authors proved that the defining condition of a (WZ5S5),, can always be

expressed in the following form, [4]
ViZhijk = AiZhijk + BrnZiijik + BiZnijk + Dj Znik + DiZniji (1.4)

where A, B, D 1-forms (non-zero simultaneously).
From the first Bianchi identity, we get

Rpijr + Rujrs + Rukij = 0 (1.5)
The second Bianchi identity for a Riemannian manifold is
Vs Rhuijk + VjiRhiks + Vi Rpisj =0 (1.6)

Let (M,g) be an (n + 1)-dimensional Riemannian manifold covered by a
system of coordinate neighborhoods {U,y“}. Let (M,g) be a hypersurface of
(M, g) defined via a system of parametric equation y¢ = y“(z*), where Greek
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indices take the values 1,2, ...,n+1 and Latin indices take the values 1,2,...,n
a locally coordinate system. Then, we have

9i = sy} (1.7)

Let n® be a local unit normal to (M,g). Thus, we obtain gagnayiﬁ =0,
Japn®n® =1 and it is easily seen that there are the following conditions between
the contrary metric tensors of the hypersurface (M, g) and (M, g)

_oyr

i = g (,j=1,2,....,n; a=0=1,2,...,n+1)

(1.8)

A point of a hypersurface, at which the principal directions of the curvature

are indeterminate, is called an umbilical point. In order that the lines of cur-

vature may be indeterminate at every point of the hypersurface, it is necessary
and sufficient that Q,;; = wg,;, where w is an invariant. According to [7],

9" = g7yy] +non” yf

M = Q9" = nw (1.9)

where the scalar M is called the mean curvature of such a hypersurface, so that
the conditions for indeterminate lines of curvature are expressible as

M
Qij = —~9ij (1.10)

If all the geodesics of a hypersurface (M, g) are also geodesics of (M, g), the
former is called a totally geodesic hypersurface of the latter. Such hypersurfaces
are generalizations of planes in ordinary space. A necessary and sufficient condi-
tion that (M, g) be a totally geodesic hypersurface is that the normal curvature
should vanish for all directions in (M, g), and at every point. This requires

Qi; =0 (1.11)
Consequently,
M=0 (1.12)
and (1.10) is satisfied.
The structure equations of Gauss and Mainardi-Codazzi, [8]
Riju = Raﬂ’yé)BZ‘fJH + Qijm
and
ViSij — ViQuk + Rgyoon” By, =0

where Qijkl = Qleik — Qz’lek~
From (1.9), the above equations reduce to the following forms

M2
Rijr = RaﬂwBZi?H o) (9159ik — 91i9jk) (1.13)



132 Fiisun OZEN ZENGIN, Sezgin ALTAY DEMIRBAG

and )
Ra,yagnaB?jig = E(giijM — g,;ijM) (1.14)
respectively, where R;j;; and R0 are the curvature tensors (M, g) and (M, g),
870
and B{))” = B®B!B] Bf, B = y¢.
From the Gauss equation, we get

R =R+ 2Rapnn’ — Qijug" g’ (1.15)

The concircular curvature tensors of (M, g) and (M, g) can be written in the
form

R
Zhijk: = Rhijk + mGhijk (]_]_6)
and
Z =R + _r G (1.17)
aBy0 = Ltapyl n(n+1) aByo :

where Ghijk = gn;git — gnkGi; and Gagye = GavGs0 — Ga0gay- Omn account of
(1.7), (1.13), (1.16) and (1.17), we get

1( R R
n—1 n+1

Baﬁ'y@

2
Zhijk = Zapyo B + FGhijk + )Ghijk (1.18)

n

2 Totally umbilical hypersurface of a weakly concircular
symmetric manifold

Now, we consider an (n+ 1)-dimensional weakly concircular symmetric Rieman-
nian manifold and we denote this manifold by (WZS),4+1. For a (WZ5S)p41,
we have

veZabcd = AeZabcd + BaZebcd + BbZaecd + DcZabed + DdZabce (21)
Using (1.17), we obtain

A bed D bed
ZabcdnaBi]gk = RabcdnaBi]gk (22)

We assume that the scalar curvature of (W Z.5S),, is not constant and (W Z5S),,
is a totally umbilical hypersurface. In this case, we find that
sthijk: - AsZabch?L?;g + BhZebch:%:]g + BiZaechZ:jc‘g
_ _ 1
+ DjZabedegsg + DkZabceB}C:?;se + ﬁGhijkst2
1 R R
GV (_ _
+n high \n—1 n+1
+ gstcdangZ?nc + gkstcbaBj(‘:i‘)}?nd) (23)

M _ _
) + Z (thRabchfﬁfna + gi‘stachzgjnb
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By the aid of the Gauss equation, (2.3) can be written as

VeZnijik = As (th’jk - Jg_;Ghijk - %(nlj T~ %)Ghijk)
+Bh(Z“j’“ B AZ—;GSW“ B %(nl—% 1 nf 1)G3ij’“)
+Bi<Zh”"“ - Avf—;G”'Sj"’ B %(nlj 1 ni 1>G”'Sj"’)
+Dj (Zh,z'sk - Z\f_thisk - %(% - nf 1)Ghz’sk>
+ Dy, (Zm'js - ]T\f_;Ghijs - %(% - %)Ghi]’s)

M
+ F[(ghsgik — Gisgnk)ViM + (gisgnj — 9ij9hs) VM
+(95s9ik — 9ij9sk )V M + (9rsgnj — 9jsgnk) Vi ] (2.4)

Now, we suppose that (M, g) is (WZS),.
By the aid of (1.4) and (2.4), we have

n—1 n+1

M? 1/ R R
— GhijiVs (?—Fﬁ(n—l _n+1)>

M
- E(Ghiskva + GinsjVieM + Ggijx VM + Grjsn ViM) = 0 (2.5)

n? n

M? 1/ R R
{ + ( ):|(AsGhijk+Bthijk+BiGhsjk:+Dthisk+DkGhijs)

Multiplying (2.5) by ¢"*¢%/, we can obtain

M? 1,/ R R
<n2 ﬁ(n— 1 n—|—1)> (2B, +2Ds +nds)
(n+2) 9 R R
_ QM — s| —— — = 2.
n2 v V‘(n—l n+1) 0 (2.6)

Similarly, multiplying (2.5) by g**¢"*, it is easily obtained that

M? 1/, R R
i - B, + A, —1)D,
(n2 n(n—l n+1>>( st A+ (n—1)D;)
(n+2) 5 1 R R
_ 9M — =V — = 2.
2n2 V. nv‘<n—1 n+1> 0 (2.7)
Let us suppose that
92
R=(1- ) (2.8)
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where the scalar curvature R is not constant.
From (2.6) and (2.7), we get

As=2D, or M =0 (2.9)
We assume that A, = 2D,. Transvecting (1.4) with g’* and g%, we get
g’“Vsth = (Ay — Br. + Dk)GthSlc (2.10)

where Gpr = Rur — %ghk (n > 2) is the Einstein tensor.
Similarly, transvecting (1.4) with ¢"* and g%/, we have

(Bi + D)Ghsg®™ =0 (2.11)
Hence, using the equations (2.9); and (2.10), it can be obtained that
(Ak + 2B1)Gheg®™ =0 (212)

Now, multiplying the equation (1.4) by ¢" and ¢g” and using the result
VsR; = %VhR, we obtain R = const. In the beginning, we suppose that
R # const. Thus, As # 2D;. From (2.9), we have M = 0, i.e., the hypersurface
is totally geodesic. Thus, we can state the following theorem:

Theorem 2.1 In the totally umbilical hypersurface (W ZS), of (WZS)n 1, if
the expression R = (1 — WL_H)R , (R # const.) is satisfied then the hypersurface
1s totally geodesic.

Theorem 2.2 If the totally umbilical hypersurface (WZS), of a (WZS)ni1

satisfies the condition % - %_;1 = ¢ (c < 0, const.) then either the mean

curvature or the scalar curvature of this hypersurface is constant.

Proof We assume that the totally umbilical hypersurface (W Z.5S),, of (W ZS),11
satisfies the condition B
R n R
n+l n-1
From (2.5) and (2.13), we obtain

=c (2.13)

M? c
(? + ﬁ)(AsGhijk: + BiGsiji + BiGhsjk + DjGhisk + DiGhijs)
1 M
— ﬁGhijkstz — E(Ghiskva
+ Ginsi VieM + Gsijks VM + Grjs, ViM) =0 (2.14)

Multiplying (2.14) by ¢"*¢%, we find that

M? ¢ (n+2) 2
(57 + =) @B, +2D, +nd,) - 2V M =0 (2.15)
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Similarly, multiplying (2.14) by g**¢"*, we can easily obtain that
<%Q2+E)(BS+AS+(TL—1)DS)— Moo (216)
n n 2n?
Using (2.15) and (2.16), we get
M? = —cn or As =2D, (2.17)
On the other hand, from (1.4), we have
ViZhijk = A1 Zwijk + BrZiijk + BiZnijk + DjZnak + DiZniji (2.18)

Permutating j, k and [ by cyclic in (2.18), adding the three equations and
using the expression (1.5) and the first Bianchi Identity, we obtain
(A; = 2Dy) Zniji + (Aj — 2Dj) Zpiws + (A — 2Dk) Znarj

1
RG] (Ghije ViR + Gt ViR + Gri; Vi R) (2.19)

Transvecting (2.19) with ¢/ ¢"*, we can obtain

(n—2)

2(Ap — 2Dy)g" Gy = ViR (2.20)

If Ay = 2Dy, from (2.20), then we say that the scalar curvature of this
hypersurface is constant. If Ay # 2Dy, from (2.17), the mean curvature of this
hypersurface must be constant. If ¢ = 0 then it is clear that this hypersurface
is totally geodesic. Thus, the proof is completed. m|

Theorem 2.3 If a totally geodesic hypersurface of a (WZS),41 satisfies the
condition R = (1 — %_H)R then this hypersurface is (W ZS)y,.

Proof From (1.4) and (2.4), the proof is easily seen that.
3 Totally umbilical hypersurface of a pseudo concircular
symmetric manifold

We consider a non-concircular flat Riemannian manifold (M, g) whose concir-
cular curvature tensor Zy;;;, satisfies the condition

ViZhijr = 2XZnijk + A Ziiji + NiZnije + N Zhitk + M Zhijt (3.1)

where ); is a non-zero covariant vector. Such a manifold will be called a pseudo-
concircular symmetric manifold and denoted by (PZS),,. Permutating j, k, [ by
cyclic in (3.1), we obtain the following equations

Vi Zhikt = 27 Znint + M Zjint + N Znjri + Mo Znijt + N Znikg (3.2)
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and
ViZhit; = 2\ Znitj + M Zrit; + NiZhki; + NiZhikg + Aj Znitk (3-3)

Adding the equations (3.1), (3.2) and (3.3) and by using the first and the second
Bianchi identities, it is obtained that

Ghrijk VIR + Grint ViR + Gryj ViR =0 (3.4)

Transvecting (3.4) with ¢"*¢%, we get (1 —n)(2 —n)V;R = 0.
Since n > 2, we find that the scalar curvature of the hypersurface is constant.
Now, we can state the following theorem:

Theorem 3.1 The scalar curvature of a pseudo concircular symmetric mani-
fold is constant.

Theorem 3.2 Let us suppose that a hypersurface (PZS), of a pseudo con-
circular symmetric manifold (PZS),+1 be totally umbilical. Then the scalar
curvature of (PZS),+1 is constant.

Proof Taking the relation ‘25 = By = D, = A in (2.3), (2.4) and (2.5) and
using the equation (3.1), we get

n—1 n+1

M? 1/ R R
( ( )) (2AsGhijk + XiGhsjk + AjGhisk + AGhijs + AnGsiji)

n? n

1 5 1 R R
- ﬁGhijkst - ﬁGhijkvs(m e 1)

M
- E(Ghiskva + Ginsj VieM + Ggijx VM + Grjsn ViM) = 0 (3.5)

Multiplying (3.5) by ¢"*¢% and g**¢"*, respectively, we obtain

M?* 1/, R R (n+2) )
(? ﬁ(n—l_n+1))2)\s(2+n)_ n2 VM
R R
V() (3.6)
and
M? 1/, R R (n+2) )
(W+E<n—1_n+1>)AS(Z+”)_ oz VM
1 R R
) o
From (3.6) and (3.7), we obtain
S LN (3.8)

n—|—1+n—1
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where c is a positive constant. By using Theorem 3.1, we can say that

R = const. (3.9)

O

Theorem 3.3 If a totally geodesic hypersurface of (PZS)n 1 satisfies the con-
dition R = (1 — %H)R then the hypersurface is (PZS),,.

Proof Let us suppose that a hypersurface of (PZS),11 be totally geodesic.
From the expressions (1.12) and (2.4) and the condition % = By, = D, = A,
the proof is clear. o

4 An example of a (WZS),

In this section, we want to construct a (W ZS),, spaces. On the coordinate space
R™ (with coordinates x', 22 ..., 2"), we define a Riemannian space V" and
calculate the components of the curvature tensor and its covariant derivative.

Let each Latin index run over 1,2, ..., n and each Greek index over 2,3, ...,
n — 1. We define a Riemannian metric on R" (n > 3) by the formula

ds? = ¢(dah)? + kagdz®da® + 2datda™ 4.1
B

where [kqs] is a symmetric and non-singular matrix consisting of constants
and ¢ is a function of (z!,22,...,2""1) and independent of 2". In the metric

considered, the only non-vanishing components of the curvature tensor, [9]

1
Riap1 = §¢.aﬂ (4.2)
where “.” denotes the partial differentiation with respect to the coordinates and
k5 are the elements of the matrix inverse to [k*7].

We consider V,, and
¢ = fla")(Vapz®z® cos g(z') + wapr®z? sin g(x1) + kapr®zh(z))

where f, g, h are functions of z! only and the matrices [wag], [Vas] and [kags]
are the form

Weg = —1 fora=p and wap =0 for a # (4.3)
Vaﬂ =1 fora= ﬂ and Vag =0 for 75 ﬁ (4~4)
and 1 i 5
or o =
kap = . 4.
g { 0 otherwise } (4.5)

From (4.2), the only non-vanishing components of the concircular curvature
tensor Zy;;i; are

Dt { f(cosg —sing + h) fora=p } (4.6)

0 for a #
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Here, we consider
Ai=B;=D;=0 fori#1and A; + B1 + D1 = c¢1, ¢1 # 0 and const. (4.7)
Thus, from (1.4), V,, will be (W Z5S),, if and only if the following relations

ViZiaat = A1Z1001 + B1Z1aat + BaZ11a1 + DaZia11 + D1Z1aa1 (4.8)
VaZital = AaZiior + BiZaia1 + BiZ1aa1 + DaZiiar + DiZ11aa  (4.9)
VaZiai1 = AaZia11 + B1Zao11 + BaZia11 + D1Z1aa1 + D1 Z1a1a (4.10)

Thus, using (4.8), (4.9) and (4.10), we find

f'(x')(cosg —sing + h) + f(z')(—g' sing — g’ cosg + h')
= (Ay 4+ By + D1)f(z")(cos g — sing + h). (4.11)

By the aid of (4.11), we get
f(cosg —sing+ h) = cze(A1+Bl+D1)zl, co > 0. (4.12)

So, the n-dimensional weakly concircular recurrent Riemannian manifold has
the metric of the form

ds* = ¢(dx*)? + kapdz®dz® + 2dz* da™,
n—1
¢ = 0265111 Z (xk)Q.

k=2
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