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Abstract

In linear regression models the estimator of variance components needs
a suitable choice of a starting point for an iterative procedure for a de-
termination of the estimate. The aim of this paper is to find a criterion
for a decision whether a linear regression model enables to determine the
estimate reasonably and whether it is possible to do so when using the
given data.
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1 Notation

Y ∼ Nn(Xβ,Σθ) the n-dimensional random vector Y possesses the nor-
mal distribution with the mean value Xβ and variance-
covariance matrix Σθ

{A}i,j the component of matrix A on its (i,j)-th position
r(A) the rank of the matrix A
Tr(A) the trace of the square matrix A, Tr(A) =

∑
i{A}i,i

A+ the Moore–Penrose generalized matrix inverse (see [4] for
more details)

MA the projection matrix on an orthogonal complement (in
Euclidean sense) of the column space of the matrix A

∂A
∂t

∣∣∣
t=t0

the value of the partial derivative of the matrix A accord-
ing to t for t = t0

7
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2 Introduction

The main aim of this paper is to describe how the variance components esti-
mates in a linear regression model depend on small input prior variance com-
ponents values changes. We need some input prior values of the variance com-
ponents when computing their minimum norm quadratic unbiased estimators
(MINQUE). The question is how to get these prior values and whether the
choice is suitable. We can figure out the variances of the estimates based on the
given prior values and then investigate how these variances change when using
different prior values. Having the estimates variances not too high seems to be
a comprehensible requirement. So the task now is to find a set of admissible
changes of the input variance components values (for the given variance com-
ponents prior values), it means a set of such changes of the input values which
cause ε-multiple increase of the estimates variances at the most.

3 General linear regression model

Let’s consider following regression model (according to [5], page 62):

Y ∼ Nn (Xβ,Σθ) . (1)

Suppose that n × k matrix X is known and of full column rank r(X) = k,
β = (β1, β2, . . . , βk)′ is a vector of unknown fixed effects parameters and the
variance-covariance matrix Σθ satisfies

Σθ =
r∑

i=1

θiVi. (2)

θ1, θ2, . . . , θr in (2) are unknown variance components (the object of our interest)
and V1,V2, . . . ,Vr are known symmetrical matrices. We suppose Σθ is positive
definite. No restrictions such as θi ≥ 0 or Vi positive semidefinite need hold.

4 Variance components insensitivity region

4.1 Variance components estimator

According to [4], page 101 the θ0-MINQUE (it means the minimum norm
quadratic unbiased estimator with prior variance components values θ0) of vari-
ance components θ = (θ1, . . . , θr)′ in model (1) is

θ̂(θ0) = S−1
(MXΣθ0MX)+

⎛
⎜⎝

Y′(MXΣθ0MX)+V1(MXΣθ0MX)+Y
...

Y′(MXΣθ0MX)+Vr(MXΣθ0MX)+Y

⎞
⎟⎠ (3)

and the variance-covariance matrix of the variance components estimates θ̂(θ0)
is

Varθ0

(
θ̂(θ0)

)
= 2S−1

(MXΣθ0MX)+ (4)
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where (see [4], page 171)

(MXΣθ0MX)+ = Σθ0

−1 −Σθ0

−1X(X′Σθ0

−1X)−1X′Σθ0

−1 (5)

and S(MXΣθ0MX)+ is matrix with
{
S(MXΣθ0MX)+

}
i,j

= Tr
[
Vi(MXΣθ0MX)+Vj(MXΣθ0MX)+

]

on its (i, j)-th position.
In practice in the first step the value θ0 in (3) can be chosen arbitrarily.

In the second step the value of θ̂(θ0) is chosen instead of θ0. In this way we
can procede and stop the iterative procedure after a suitable number of the
steps. The problem is to recognize whether the choice of the starting value θ0

is sufficient for deriving a reasonable estimate of θ and whether it is sufficient
for stopping the iterative procedure already after the first step. This problem
can be solved as follows.

It seems to be comprehensible to have the variances of the θi estimators not
too high. Let’s use some given linear combination of the components of vector
θ. Suppose that the coeficients of this linear combination are the components
of vector g. We will investigate the variance of the estimator of g′θ instead of
variances of all the variance components separately.

Remark 4.1 We achieve the equality g′θ = θi when using the i-th unit vector
for g. It means we still have the possiblity to take the variance of the estimator
of each of the variance components under control and moreover we can monitor
the variances of different linear combinations of the variance components.

As we know the θ estimator θ̂ depends on the prior input value θ0, it is
θ̂(θ0). Next we find out the difference between the variance of g′θ̂(θ0) and the
variance of g′θ̂(θ0 + δθ). A set Ng,θ0

can be found such that θ0 + δθ ∈ Ng,θ0
leads to the inequality

√
Varθ0

[
g′θ̂(θ0 + δθ)

]
≤ (1 + ε)

√
Varθ0

[
g′θ̂(θ0)

]
, (6)

where ε > 0 is a sufficiently small real number.
We are looking after a set of δθ—small changes of input variance components

values—holding (6) for a given r-dimensional vector g and given θ0 in what
follows.

In order to find such a set we need to express θ̂(θ0+δθ). We can approximate
it like this

θ̂(θ0 + δθ) ≈ θ̂(θ0) +
r∑

i=1

∂θ̂(θ)
∂θi

∣∣∣∣
θ=θ0

· δθi. (7)

The appropriate linear combination g′θ̂(θ0 + δθ) of variance components esti-
mator fulfils

g′θ̂(θ0 + δθ) ≈ g′θ̂(θ0) +
r∑

i=1

∂g′θ̂(θ)
∂θi

∣∣∣∣
θ=θ0

· δθi. (8)
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Thus we need to know the partial derivative ∂
bθ(θ)

∂θ
.

At first let us find the first derivative of
{
S(MXΣθMX)+

}
i,j

according to θk:

{
∂S(MXΣθMX)+

∂θk

∣∣∣∣
θ=θ0

}

i,j

=
∂

∂θk
Tr
[
Vi(MXΣθMX)+Vj(MXΣθMX)+

]∣∣∣∣
θ=θ0

= Tr

[
Vi(MXΣθ0MX)+MXVkMX(MXΣθ0MX)+Vj(MXΣθ0MX)+

+ Vi(MXΣθ0MX)+Vj(MXΣθ0MX)+MXVkMX(MXΣθ0MX)+
]

= 2 Tr

[
Vi(MXΣθ0MX)+MXVkMX(MXΣθ0MX)+Vj(MXΣθ0MX)+

]
.

If we denote matrix having
Tr (ViAVjB) , (9)

on its (i, j)-th position with CA,B (for arbitrary matrices A, B of n×n dimen-
sion), we can continue as follows

∂S(MXΣθMX)+

∂θk

∣∣∣∣
θ=θ0

= 2C(MXΣθ0MX)+MXVkMX(MXΣθ0MX)+,(MXΣθ0MX)+

= 2C(MXΣθ0MX)+Vk(MXΣθ0MX)+,(MXΣθ0MX)+ .

Let’s introduce following notation

γ =

⎛
⎜⎝

Y′(MXΣθ0MX)+V1(MXΣθ0MX)+Y
...

Y′(MXΣθ0MX)+Vr(MXΣθ0MX)+Y

⎞
⎟⎠ .

Now we can write
∂θ̂(θ)
∂θk

∣∣∣∣
θ=θ0

= −2S−1
(MXΣθ0MX)+

×C(MXΣθ0MX)+Vk(MXΣθ0MX)+,(MXΣθ0MX)+S−1
(MXΣθ0MX)+γ

+ S−1
(MXΣθ0MX)+

×

⎛
⎜⎝

2Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+V1(MXΣθ0MX)+Y
...

2Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+Vr(MXΣθ0MX)+Y

⎞
⎟⎠ . (10)

According to (10) we have

∂g′θ̂(θ)
∂θk

∣∣∣∣∣
θ=θ0

= −2g′S−1
(MXΣθ0MX)+
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×C(MXΣθ0MX)+Vk(MXΣθ0MX)+,(MXΣθ0MX)+S−1
(MXΣθ0MX)+γ

+ 2g′S−1
(MXΣθ0MX)+

×

⎛
⎜⎝

Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+V1(MXΣθ0MX)+Y
...

Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+Vr(MXΣθ0MX)+Y

⎞
⎟⎠ . (11)

If we denote
a′k = g′S−1

(MXΣθ0MX)+

×C(MXΣθ0MX)+Vk(MXΣθ0MX)+,(MXΣθ0MX)+S−1
(MXΣθ0MX)+ ,

b′g = g′S−1
(MXΣθ0MX)+

and

ζk =

⎛
⎜⎝

Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+V1(MXΣθ0MX)+Y
...

Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+Vr(MXΣθ0MX)+Y

⎞
⎟⎠ ,

we can write

∂g′θ̂(θ)
∂θ

∣∣∣∣
θ=θ0

= −2

⎛
⎜⎝

a′1
...
a′r

⎞
⎟⎠γ + 2

⎛
⎜⎝

b′gζ1
...

b′gζr

⎞
⎟⎠ . (12)

Using (8) together with (12) we get

g′θ̂(θ0 + δθ) ≈ g′θ̂(θ0) + (δθ)′

⎡
⎢⎣−2

⎛
⎜⎝

a′1
...
a′r

⎞
⎟⎠γ + 2

⎛
⎜⎝

b′gζ1
...

b′gζr

⎞
⎟⎠

⎤
⎥⎦ . (13)

4.2 Varθ0

[
g′θ̂(θ0 + δθ)

]
derivation

In order to find a set of δθ which is described in (6) we have to derive

Varθ0

[
g′θ̂(θ0 + δθ)

]
.

According to (4)

Varθ0

[
g′θ̂(θ0)

]
= 2g′S−1

(MXΣθ0MX)+g. (14)
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What we need to know further is Varθ0

∂g′
bθ(θ)

∂θ
.

Varθ0

∂g′θ̂(θ)
∂θ

= Varθ0

⎡
⎢⎣−2

⎛
⎜⎝

a′1
...
a′r

⎞
⎟⎠γ + 2

⎛
⎜⎝

bg
′ζ1
...

bg
′ζr

⎞
⎟⎠

⎤
⎥⎦

= 4

⎛
⎜⎝

a′1
...
a′r

⎞
⎟⎠Varθ0

(γ) (a1, . . . ,ar)− 4

⎛
⎜⎝

a′1
...
a′r

⎞
⎟⎠ covθ0

⎡
⎢⎣γ,

⎛
⎜⎝

bg
′ζ1
...

bg
′ζr

⎞
⎟⎠

⎤
⎥⎦

− 4 covθ0

⎡
⎢⎣

⎛
⎜⎝

bg
′ζ1
...

bg
′ζr

⎞
⎟⎠ ,γ

⎤
⎥⎦ (a1, . . . ,ar) + 4 Varθ0

⎛
⎜⎝

bg
′ζ1
...

bg
′ζr

⎞
⎟⎠ . (15)

In view of (4) and of the definition of γ

Varθ0
(γ) = 2S(MXΣθ0MX)+ . (16)

Concerning Varθ0

0
BBBB@

a′1
...
a′r

1
CCCCA

:

⎧
⎪⎨
⎪⎩

Varθ0

⎛
⎜⎝

bg
′ζ1
...

bg
′ζr

⎞
⎟⎠

⎫
⎪⎬
⎪⎭

k,l

= covθ0

(
bg

′ζk,bg
′ζl

)
= bg

′ covθ0

(
ζk, ζl

)
bg

= bg
′ covθ0

⎡
⎢⎣

⎛
⎜⎝

Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+V1(MXΣθ0MX)+Y
...

Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+Vr(MXΣθ0MX)+Y

⎞
⎟⎠ ,

⎛
⎜⎝

Y′(MXΣθ0MX)+Vl(MXΣθ0MX)+V1(MXΣθ0MX)+Y
...

Y′(MXΣθ0MX)+Vl(MXΣθ0MX)+Vr(MXΣθ0MX)+Y

⎞
⎟⎠

⎤
⎥⎦bg

= bg
′Dζk,ζl

bg, (17)
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where
{
Dζk,ζl

}
s,t

= covθ0

[
Y′(MXΣθ0MX)+Vk(MXΣθ0MX)+Vs(MXΣθ0MX)+Y,

Y′(MXΣθ0MX)+Vl(MXΣθ0MX)+Vt(MXΣθ0MX)+Y
]

= 2 Tr
[
(MXΣθ0MX)+Vk(MXΣθ0MX)+Vs(MXΣθ0MX)+Σθ0

× (MXΣθ0MX)+Vl(MXΣθ0MX)+Vt(MXΣθ0MX)+Σθ0

]

= 2 Tr
[
Vs(MXΣθ0MX)+Vl(MXΣθ0MX)+

×Vt(MXΣθ0MX)+Vk(MXΣθ0MX)+
]
.

Next

covθ0

⎡
⎢⎣−2

⎛
⎜⎝

a′1
...
a′r

⎞
⎟⎠γ, 2

⎛
⎜⎝

bg
′ζ1
...

bg
′ζr

⎞
⎟⎠

⎤
⎥⎦ =

= −4

⎛
⎜⎝

a′1
...
a′r

⎞
⎟⎠ covθ0

⎡
⎢⎣γ,

⎛
⎜⎝

bg
′ζ1
...

bg
′ζr

⎞
⎟⎠

⎤
⎥⎦ = −4

⎛
⎜⎝

a′1
...
a′r

⎞
⎟⎠Dγ,ζ , (18)

where {
Dγ,ζ

}
i,j

= covθ0

(
γi,bg

′ζj

)

= covθ0

[
Y′(MXΣθ0MX)+Vi(MXΣθ0MX)+Y,

r∑

u=1

bguY
′(MXΣθ0MX)+Vj

× (MXΣθ0MX)+Vu(MXΣθ0MX)+Y
]

=
r∑

u=1

2 Tr
[
(MXΣθ0MX)+Vi

× (MXΣθ0MX)+Σθ0bgu(MXΣθ0MX)+Vj(MXΣθ0MX)+

×Vu(MXΣθ0MX)+Σθ0

]

= 2 Tr

[
Vi(MXΣθ0MX)+Vj(MXΣθ0MX)+

r∑

u=1

bguVu(MXΣθ0MX)+
]

= 2 Tr
[
Vi(MXΣθ0MX)+Vj(MXΣθ0MX)+Vg(MXΣθ0MX)+

]
.

In the previous text following important fact was used (together with equal-
ity (5)).

Lemma 4.1 (see [4], page 101) Let n× n matrices A, B be symmetrical. Let
Y ∼ Nn(Xβ,Σθ), where AX = BX = 0. Then

cov (Y′AY,Y′BY) = 2 Tr (AΣθBΣθ) .
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Following notation was used as well:

γi . . . i-th component of γ, bgu . . . u-th component of bg, Vg =
r∑

u=1

bguVu.

According to (15), (16), (17) and (18) we have

Wg = Varθ0

∂g′θ̂(θ)
∂θ

= 8

⎛
⎜⎝

a′1
...
a′r

⎞
⎟⎠S(MXΣθ0MX)+ (a1, . . . ,ar)

+ 4bg
′

⎛
⎜⎜⎝

Dζ1,ζ1
. . . Dζ1,ζ

r

...
...

...
Dζ

r
,ζ1

. . . Dζ
r
,ζ

r

⎞
⎟⎟⎠bg − 4

⎛
⎜⎝

a′1
...
a′r

⎞
⎟⎠Dγ,ζ − 4D′

γ,ζ (a1, . . . ,ar)

= 8

⎛
⎜⎝

a′1
...
a′r

⎞
⎟⎠S(MXΣθ0MX)+ (a1, . . . ,ar) + 8S(MXΣθ0MX)+Vg(MXΣθ0MX)+

− 8

⎛
⎜⎝

a′1
...
a′r

⎞
⎟⎠C(MXΣθ0MX)+,(MXΣθ0MX)+Vg(MXΣθ0MX)+

− 8C′
(MXΣθ0MX)+,(MXΣθ0MX)+Vg(MXΣθ0MX)+

(a1, . . . ,ar) . (19)

Notation defined in (9) and denoting of matrix having on its (i, j)-th position
Tr (AViAVj) with SA was used.

4.2.1 Insenstitivity region formulation

If we determine the insensitivity region for the variance components as a set of
all θ0 + δθ with δθ satisfying (6), we get

Ng,θ0
=
{
θ0 + δθ : δθ′Wgδθ ≤ 2εVarθ0

(
g′θ̂

)}

=
{

θ0 + δθ : δθ′Wgδθ ≤ 4εg′S−1

(MXΣθ0MX)+
g
}
. (20)

Remark 4.2 More precise form of Ng,θ0
is (see also [4] and [1])

Ng,θ0
=
{
θ0 + δθ : δθ′Wgδθ ≤ (2ε+ ε2) Var

(
g′θ̂

)}
.

Because ε is choiced to be a small positive number we usually can use 2ε instead
of (2ε+ ε2) as used in (20).
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5 Numerical study

Let the Michaelis–Menten regression function

f(x) =
γ1x

γ2 + x

be considered. We can measure values of this function for x1 = 0.5; x2 = 1.5
with dispersion of σ2

1 = 0.04 and for x3 = 7; x4 = 9 with dispersion of σ2
2 = 0.36.

Let’s suppose the true values of γ1 and γ2 are γ1 = 10 and γ2 = 5. The values
of σ2

1 , σ2
2 , γ1 and γ2 are apriori unknown for us. We have two measurements for

each point x1, x2, x3, x4. Let’s include the measured data into an observation
vector

Y =

⎛
⎜⎝
Y1

...
Y8

⎞
⎟⎠ .

The normal distribution of the random vector Y is assumed. We need to
describe such a nonlinear situation with a linear model. For f(xi) = γ1xi

γ2+xi
,

i = 1, 2, 3, 4 we have

∂f(xi)
∂γ1

=
xi

γ2 + xi
,

∂f(xi)
∂γ2

= − γ1xi

(γ2 + xi)2
.

Since

f(xi, γ1, γ2) ≈ f(xi, γ
0
1 , γ

0
2) +

∂f

∂γ1
(γ1 − γ0

1) +
∂f

∂γ2
(γ2 − γ0

2),

we can write:

Y − fγ0
1 ,γ0

2
∼ N8

[
X
(
δγ1

δγ2

)
,Σθ

]
. (21)

Here

fγ0
1 ,γ0

2
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0
1x1

γ0
2+x1
γ0
1x1

γ0
2+x1
γ0
1x2

γ0
2+x2
γ0
1x2

γ0
2+x2
γ0
1x3

γ0
2+x3
γ0
1x3

γ0
2+x3
γ0
1x4

γ0
2+x4
γ0
1x4

γ0
2+x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
γ0
2+x1

− γ0
1x1

(γ0
2+x1)2

x1
γ0
2+x1

− γ0
1x1

(γ0
2+x1)2

x2
γ0
2+x2

− γ0
1x2

(γ0
2+x2)2

x2
γ0
2+x2

− γ0
1x2

(γ0
2+x2)2

x3
γ0
2+x3

− γ0
1x3

(γ0
2+x3)2

x3
γ0
2+x3

− γ0
1x3

(γ0
2+x3)2

x4
γ0
2+x4

− γ0
1x4

(γ0
2+x4)2

x4
γ0
2+x4

− γ0
1x4

(γ0
2+x4)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(
δγ1

δγ2

)
=
(
γ1 − γ0

1

γ2 − γ0
2

)

and
Σθ = θ1V1 + θ2V2
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with θ1 = σ2
1 , θ2 = σ2

2 ,

V1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We consider a special case of a general linear regression model described
in section 3—a mixed linear model, the variance components have to be non-
negative and matrices V1,V2 are evidently positive semidefinite. We have to
take this fact into account when determining the insensitivity regions.

We will work with following measured data

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.245
0.779
2.264
2.258
6.612
5.909
6.827
6.301

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Components of this observation vector are the result of the data simulation from
the normal distribution with mean equals to the real value of f for appropriate
xi and standard deviation σ1 = 0.2, σ2 = 0.6 respectively.

The next task is to decide whether we are able to get reasonable estimates of
the variance components θ1 and θ2 when having this one observation vector only.
We find some starting values θ01 and θ02 and establish the insensitivity region
according to (20). Next we compute the variance components estimates based
on these starting values and confidence region for the variance components. If
the confidence region is inbedded into the insensitivity region, then the choice
of starting θ01 and θ02 is good enough to determine the estimates based on them.

What we can do is to get a rough estimate θ01,1 of θ1 based on y1 and y2—the
first two components of observation vector:

θ01,1 = (y1 − y12)
2 + (y2 − y12)

2

and θ01,2 based on y3 and y4

θ01,2 = (y3 − y34)
2 + (y4 − y34)

2,

where y12 (y34) denotes arithmetic average of y1 and y2 (y3 and y4 respectively).
Since all the four values y1,. . . , y4 were simulated with dispersion θ1, the starting
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value θ01 can be counted as an arithmetic average of θ01,1 and θ01,2:

θ01 =
θ01,1 + θ01,2

2
= 0.0543.

Similarly

θ02,1 = (y5 − y56)
2 + (y6 − y56)

2, θ02,2 = (y7 − y78)
2 + (y8 − y78)

2

and

θ02 =
θ02,1 + θ02,2

2
= 0.1927.

Next we need some starting values γ0
1 and γ0

2 . Lineweaver–Burke transformation
(see [2] for more details) is frequently used to get the starting values of γ1 and
γ2. However following approach can be useful sometimes. Since

y =
γ1x

γ2 + x
,

γ1x− γ2y = xy. (22)

According to this we can put together four systems of two linear equations:

γ1x1 − γ2y1 = x1y1
γ1x2 − γ2y3 = x2y3

,
γ1x1 − γ2y2 = x1y2
γ1x2 − γ2y4 = x2y4

,

γ1x3 − γ2y5 = x3y5
γ1x4 − γ2y7 = x4y7

,
γ1x3 − γ2y6 = x3y6
γ1x4 − γ2y8 = x4y8

.

When we denote the solutions of these systems with (γ0
1,1, γ

0
2,1), . . . , (γ0

1,4, γ
0
2,4),

we can get the starting values γ0
1 , γ

0
2 as the arithmetic averages again:

γ0
1 =

γ0
1,1 + γ0

1,2 + γ0
1,3 + γ0

1,4

4
and γ0

2 =
γ0
2,1 + γ0

2,2 + γ0
2,3 + γ0

2,4

4
.

The results of this procedure are:

γ0
1 = 16.068, γ0

2 = 8.250.

Now we are ready to determine the variance components insensitivity region for

θ = θ0 =
(
θ01
θ02

)
.

Let’s consider g1 = (1, 0)′ at first. In this case we have g′1θ = θ1.
Using (20), ε = 0.1 and taking into account fact that the negative input

variance components values does not make sense in our case we get:

Ng1,θ0
=
{

θ0 + δθ : θ0 + δθ ≥ 0

∧ δθ′
(

0.000806 −0.000227
−0.000227 0.000064

)
δθ ≤ 0.000393

}
. (23)



18 Hana BOHÁČOVÁ

For ε = 0.1 we get a set of all θ0+δθ which don’t increase the standard deviation
of θ̂(θ) more than by 10 %.

Now the same once more for g2 = (0, 1)′ and ε = 0.1

Ng2,θ0
= {θ0 + δθ : θ0 + δθ ≥ 0

δθ′
(

0.0107 −0.00300
−0.00300 0.000846

)
δθ ≤ 0.00508

}
. (24)

According to (3) we get (for θ = θ0) variance components estimate:

θ̂(θ0) =
(

0.0474
0.165

)
.

(Let’s denote the real values of the variance components with θ∗, we have θ∗ =(
0.04
0.36

)
. The difference (θ∗− θ̂(θ0)) is compatible with the variance of the data.)

Let’s determine another set—a rectangle with center θ̂(θ0) which covers the
real value of θ with probability of (1 − α)—θ confidence region. According to
Chebyshev (see [6]) we have

P

{
|θ̂1(θ0)− θ1| ≤ k

√
Varθ0

[
θ̂1(θ0)

]}
≥ 1− 1

k2

and

P

{
|θ̂2(θ0)− θ2| ≤ k

√
Varθ0

[
θ̂2(θ0)

]}
≥ 1− 1

k2
.

According to Bonferroni (see [3])

P

{
|θ̂1(θ0)− θ1| ≤ k

√
Varθ0

[
θ̂1(θ0)

]
∧ |θ̂2(θ0)− θ2| ≤ k

√
Varθ0

[
θ̂2(θ0)

]}

≥ 1− 2
k2
. (25)

In (25) we get a rectangle with center θ̂(θ0). We determine this rectangle to
include the variance components with probality of (1−α). This means we need

to have (1 − 2
k2 ) = (1 − α), so k =

√
2
α . As mentioned above the variance

components cannot be negative in this case as they are the variances in fact.
We have to involve this into our consideration. The θ confidence region Eθ is a
set of non-negative θ1, θ2 satisfying (25):

Eθ =

{
θ =

(
θ1
θ2

)
: |θ̂1(θ0)− θ1| ≤

√
2
α

Varθ0

[
θ̂1(θ0)

]

∧ |θ̂2(θ0)− θ2| ≤
√

2
α

Varθ0

[
θ̂2(θ0)

]
∧ θ1 ≥ 0 ∧ θ2 ≥ 0

}
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According to (4) the variance-covariance matrix of variance components esti-
mates θ̂ is

Varθ0

(
θ̂
)

= 2S−1

(MXΣθ0MX)+
=
(

0.00197 −0.0000894
−0.0000894 0.0254

)
.

For (1− α) = 0.95 level of confidence we have

Eθ = 〈0; 0.328〉 × 〈0; 1.173〉 (26)

This confidence region Eθ is a subset of both Ng1,θ0
and Ng2,θ0

as shown in
figures 2 and 4 given bellow.

It means the starting values θ01 , θ
0
2 are sufficient not only for deriving a

reasonable estimate of θ based on them—it is enough to stop the iterative
procedure after the first step already.

Since we know the real values of θ1, θ2 we can repeat the same routine with
these real values instead of the starting ones. Denote:

θ∗ =
(
θ∗1
θ∗2

)
=
(

0, 04
0, 36

)
.

The insensitivity region for g1 =
(
1
0

)
and ε = 0.1 is

Ng1,θ∗ = {θ∗ + δθ : θ0 + δθ ≥ 0

δθ′
(

0.000143 −0.0000159
−0.0000159 0.00000177

)
δθ ≤ 0.000214

}
. (27)

For g2 =
(
0
1

)
and ε = 0.1

Ng2,θ∗ = {θ∗ + δθ : θ0 + δθ ≥ 0

δθ′
(

0.0118 −0.00131
−0.00131 0.000145

)
δθ ≤ 0.0175

}
. (28)

θ̂(θ∗) is according to (3):

θ̂(θ∗) =
(

0.0476
0.164

)
.

The θ confidence region with center θ∗ for (1− α) = 0.95 level of confidence is

Eθ = 〈0; 0.254〉 × 〈0; 2.032〉 (29)

In figures number 2 and 4 given bellow we can see the situation for θ = θ∗ is
quite similar to that for θ = θ0. The confidence region is again a subset of both
the insensitivity regions. This is exactly what we could expect and it shows that
model (21) enables to determine reasonable variance components estimates.

The insensitivity regions (23) and (27) relating to g1 =
(
1
0

)
and confidence

regions (26) and (29) are visible in Fig. 1.
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The relative position of the insenstivity regions and confidence regions is not
obvious in Fig. 1. Fig. 2 gives a more detailed view.
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← insensitivity region based on θ
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insensitivity region based on θ* →

θ
1

θ 2

Figure 1: Insensitivity regions Ng1,θ0
and Ng1,θ∗ for ε = 0.1 and appropriate

confidence regions for α = 0.05.
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Figure 2. Relative position of insensitivity regions Ng1,θ0
and Ng1,θ∗ and cor-

responding confidence regions—detail.
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Figure 3. Insensitivity regions Ng2,θ0
and Ng2,θ∗ for ε = 0.1 and appropriate

confidence regions for α = 0.05.
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Figure 4. Relative position of insensitivity regions Ng2,θ0
and Ng2,θ∗ and cor-

responding confidence regions—detail.
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The insensitivity regions (24) and (28) relating to g2 =
(
0
1

)
and confidence

regions (26) and (29) are visible in Fig. 3.
The relative position of the insenstivity regions and confidence regions is

again shown in Fig. 4 in detail.
The conclusion is that we can feel free to use the θ̂(θ0) as a θ estimate

without apprehension of the variance of the estimates being too large because
both the insensitivity regions for θ0 Ng1,θ0

and Ng2,θ0
unambiguously cover

the θ confidence region based on θ̂(θ0).
The comparison of Ng1,θ0

and Ng1,θ∗ is visible in Fig. 1. Fig. 3 contains
similar comparison of Ng2,θ0

and Ng2,θ∗ . When we compare the size of the in-
sensitivity regions Ng1,θ0

and Ng1,θ∗ (Ng2,θ0
and Ng2,θ∗ respectively) we can

see the insensitivity regions based on the real values θ∗ are much larger then
those based on the prior values θ0. This means the variance increase is slower
when we base the estimates on the real values of the variance components com-
pared to the estimates based on the prior values generated from the observation
vector.
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