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Abstract

If an observation vector in a nonlinear regression model is normally
distributed, then an algorithm for a determination of the exact (1 − α)-
confidence region for the parameter of the mean value of the observation
vector is well known. However its numerical realization is tedious and
therefore it is of some interest to find some condition which enables us to
construct this region in a simpler way.

Key words: Confidence ellipsoid; nonlinear regression model;
linearization region.
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1 Introduction

In a linear statistical model with normally distributed observation vector the
construction of the confidence regions is a simple problem. If the statistical
model is nonlinear, i.e. the mean value of the observation vector is a nonlinear
vector function of the parameters, then the problem can be also solved, however

*Supported by the Council of the Czech Government MSM 6 198 959 214.

101



102 Lubomír KUBÁČEK, Eva TESAŘÍKOVÁ

it is much more complicated. Therefore it is reasonable to find another, much
more simpler procedure, which can be used at least under some conditions.

The aim of the paper is to find such conditions which enables us to use the
procedure from the theory of linear statistical models.

More on the problem of linearization of regression models cf. [3], [4], [5], [6],
[10], [11].

2 Notation and auxiliary statement

Let Y be an n-dimensional random vector (observation vector) which is nor-
mally distributed. Its mean value is equal to f(β), where β ∈ Rk (k-dimensional
real linear space) is an unknown vector parameter and f(·) : Rk → Rn is a vector
function. It is assumed that it can be expressed with sufficiently high accuracy
as

f(u) = f0 + F(u− β0) +
1
2
κ(u− β0), u ∈ Rk,

where

f0 = f(β0), F =
∂f(u)
∂u′

∣∣∣
u=β0

,

κ(δβ) = [κ1(δβ), . . . , κn(δβ)]′, δβ = β − β0

κi(δβ) = δβ′
∂2fi(u)
∂u∂u′

∣∣∣
u=β0

δβ, i = 1, . . . , n.

The covariance matrix of the vector Y is σ2V, where σ2 ∈ (0,∞) is either
known or unknown parameter and the n× n matrix V is given.

The notation
Y ∼ Nn[f(β), σ2V], β ∈ Rk, (1)

will be used in the following text.
The quadratized version of the model (1) is

Y − f0 ∼ Nn

[
Fδβ +

1
2
κ(δβ), σ2V

]
, β ∈ Rk, (2)

and the linearized version is

Y − f0 ∼ Nn

(
Fδβ, σ2V

)
, β ∈ Rk. (3)

Assumption The regularity of the model (3) is assumed in the following text,
i.e. the rank of the matrix F is r(F) = k < n and the matrix V is positive
definite.

Lemma 2.1 The (1−α)-confidence region for the vector β in the model (3) is

E =
{
u : (u− β0 − δ̂β)′F′V−1F(u− β0 − δ̂β) ≤ σ2χ2

k(0; 1− α)
}
, (4)
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if the parameter σ2 is known.
If it is estimated, then

E =
{
u : (u− β0 − δ̂β)′F′V−1F(u− β0 − δ̂β) ≤ σ̂2Fk,n−k(0; 1− α)

}
. (5)

Here

δ̂β = (F′V−1F)−1F′V−1(Y − f0),

σ̂2 = (Y − f0 − Fδ̂β)′V−1(Y − f0 − Fδ̂β)/(n− k),

χ2
k(0; 1 − α) is (1 − α)-quantile of the central chi-squared distribution with k
degrees of freedom and Fk,n−k(0; 1−α) is (1−α)-quantile of the central Fisher–
Snedecor distribution with k and n− k degrees of freedom.

Proof Proof is well known (cf. e.g. [2]) and therefore it is omitted. �

Lemma 2.1 is not valid in the model (2). However if δβ = β∗ − β0 is
sufficiently small, where β∗ is the actual value of the vector parameter β, it can
be expected that the region E from (4) and (5), respectively, covers the actual
value β∗ with a probability larger than 1 − α− ε, where ε > 0 is a sufficiently
small real number.

3 Linearization region

Consider the quadratized model (2) with the given covariance matrix Σ = σ2V
(i.e. σ2 is known).

Definition 3.1 The Bates and Watts [1] parametric curvature K(par) and the
intrinsic curvature K(int) of the model (1) at the point β0 are given as

K(par) = σ sup

⎧
⎨
⎩

√
κ′(δβ)V−1PV −1

F κ(δβ)

δβF′V−1Fδβ
: δβ ∈ Rk

⎫
⎬
⎭ = σK

(par)
0

and

K(int) = σ sup

⎧
⎨
⎩

√
κ′(δβ)V−1MV −1

F κ(δβ)

δβF′V−1Fδβ
: δβ ∈ Rk

⎫
⎬
⎭ = σK

(int)
0 .

Here PV −1

F = F(F′V−1F)−1F′V−1 and MV −1

F = I−PV −1

F .

Let an r-dimensional vector function d : Rk → Rr

d(β) = d(β0) + Dδβ, β ∈ Rk,

where r(Dr,k) = r ≤ k, be under consideration.
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Theorem 3.1 Let α and ε be sufficiently small positive real numbers and let
δmax be solution of the equation

P{χ2
r(δmax) ≤ χ2

r(0; 1− α)} = 1− α− ε.

If

δβ ∈ LE =

{
δβ : δβ′Cδβ ≤ 2

√
δmax

K(par)(β0)

}
, where C =

F′V−1F
σ2

,

then

E∗ =
{
u : (u−Dδ̂β)′(DC−1D′)−1(u−Dδ̂β) ≤

(√
χ2

r(0; 1− α) +
√
δmax

)2
}

covers Dδβ with probability at least (1− α− ε).

Proof Let

δβ′Cδβ ≤ 2
√
δmax

K(par)(β0)
.

Then
∀{u ∈ Rr}|u′D[E(δ̂β)− δβ]| ≤

√
δmax

√
u′DC−1D′u,

what is equivalent, with respect to the Scheffé theorem [9], to

[E(δ̂β)− δβ]′D′(DC−1D′)−1D[E(δ̂β)− δβ] ≤ δmax.

Let
{
δβ : [E(δ̂β)− δβ]′D(DC−1D′)−1D[E(δ̂β)− δβ] ≤ δmax

}
. (6)

Let (DC−1D′)−1 =
∑r

i=1 λifif ′i be the spectral decomposition.
The (1− α)-confidence ellipsoid in the linearized model is

{
u : (u−Dδ̂β)′(DC−1D′)−1(u−Dδ̂β) ≤ χ2

r(0; 1− α)
}

and its semiaxes are ai =
√
χ2

r(0; 1− α)/
√
λi, i = 1, . . . , r. The semiaxes of the

ellipsoid (6) are πi =
√
δmax/

√
λi, i = 1, . . . , r.

The semiaxes of the ellipsoid E∗ are ai + πi, i = 1, . . . , r and it covers all
(1− α)-ellipsoids in the linearized model with centers

Dδ̂β + D[E(δ̂β)− δβ], E(δ̂β)− δβ ∈ E∗.

The random variable

(Dδβ −Dδ̂β)′(DC−1D′)−1(Dδβ −Dδ̂β)
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is chi-squared with r degrees of freedom and with the parameter of noncentrality
equal to

δ =
{
D[E(δ̂β)− δβ]

}′
(DC−1D′)−1D[E(δ̂β)− δβ] < δmax.

If δmax satisfies the equality

P{χ2
r(δmax) ≤ χ2

r(0; 1− α)} = 1− α− ε,

then the ellipsoid E∗ covers the vector Dδβ with probability larger or equal to
1− α− ε. �

Corollary 3.1 Let d(β) = β. If

δβ ∈ LE =

{
δβ : δβ′Cδβ ≤ 2

√
δmax

K(par)(β0)

}
,

then

E∗ =

{
u : (u− δ̂β)′C(u− δ̂β) ≤

(√
χ2

r(0; 1− α) +
√
δmax

)2
}

covers δβ with probability at least (1− α− ε).

Let the function d(β) be of the quadratic form, i.e.

d(β) = d(β0) + Dδβ +
1
2
δ(δβ),

where δ(δβ) = [δ1(δβ), . . . , δr(δβ)]′, δi(δβ) = δβ′Aiδβ, Ai = A′
i, i = 1, . . . , r.

Definition 3.2 The measure of nonlinearity for the confidence ellipsoid is

Cd(·),conf =

= sup

⎧
⎨
⎩

√
(δ −DC−1F′Σ−1κ)′(DC−1D′)−1(δ −DC−1F′Σ−1κ)

δβ′Cδβ
: δβ ∈ Rk

⎫
⎬
⎭ .

Theorem 3.2 Let δmax satisfies the equality

P{χ2
r(δmax) ≤ χ2

r(0; 1− α)} = 1− α− ε,

where α and ε are positive sufficiently small real numbers. Let

δβ ∈ Ld(·),conf =

{
δβ : δβ′Cδβ ≤ 2

√
δmax

Cd(·),conf

}
.
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Then the ellipsoid

Ed(·) =

{
u ∈ Rr : (u−Dδ̂β)′(DC−1D′)−1(u−Dδ̂β)′

≤
(√

χ2
r(0; 1− α) +

√
δmax

)2
}

+ Dδ̂β

covers the vector

Dδβ +
1
2
δ(δβ)

with probability larger or equal at least to (1− α− ε).

Proof The random variable

[d(β)− d(β0)−Dδ̂β]′(DC−1D′)−1[d(β)− d(β0)−Dδ̂β]

is chi-squared distributed with the parameter of noncentrrality

δ =
1
4
(δ −DC−1F′Σ−1κ)′(DC−1D′)−1(δ −DC−1F′Σ−1κ).

From Definition 3.2 we have

4δ ≤ (Cd(·),conf)2(δβ
′Cδβ)2.

If δβ′Cδβ ≤ 2
√
δmax/Cd(·),conf , then δ ≤ δmax and then the vector

E[δ(β0) + Dδ̂β]− [d(β0) + Dδβ +
1
2
δ(δβ)]

is an element of the ellipsoid
{
u : u ∈ Rr,u′(DC−1D′)−1u ≤ δmax

}

with probability at least 1 − α − ε. Now it is obvious how to finish the proof.
�

Corollary 3.2 If the function d(·) is linear, i.e. d(β) = d(β0) + Dδβ, then

δβ′Cδβ ≤ 2
√
δmax

CDβ
⇒ P{d(β) ∈ E} ≥ 1− α− ε,

where

CDβ = sup

⎧
⎨
⎩

√
κ′Σ−1FC−1D′(DC−1D′)−1DC−1F′Σ−1κ

δβ′Cδβ
: δβ ∈ Rk

⎫
⎬
⎭ ,

E =
{
u + d(β0) : (u−Dδ̂β)′(DC−1D′)−1(u−Dδ̂β)

≤
(√

χ2
r(0; 1− α) +

√
δmax

)2}
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and
P{χ2

r(δmax) ≤ χ2
r(0; 1− α)} = 1− α− ε

(cf. Theorem 3.2).

Corollary 3.3 If the function d(·) is scalar, i.e. d(β) = d(β0)+d′δβ+ 1
2δ(δβ),

then

δβ′Cδβ ≤ 2
√
δmax

Cd(β)
⇒ P{d(β) ∈ E} ≥ 1− α− ε,

where

Cd(β) = sup

{√
a ′(d′C−1d)−1 a

δβ′Cδβ
: δβ ∈ Rk

}
,

E =
{
u+ d(β0) : (u − d′δ̂β)2/(d′C−1d) ≤

(√
χ2

1(0; 1− α) +
√
δmax

)2}
,

and
a = [δ(δβ)− d′C−1F′Σ−1κ(δβ)].

Until now the parameter σ2 is assumed to be known. Let

T (δβ) = U
n− k
k

, U =
(δβ − δ̂β)′F′V−1F(δβ − δ̂β)

(Y − f0 − Fδ̂β)′V−1(Y − f0 − Fδ̂β)
.

Then T (δβ∗) has the Fisher–Snedecor distribution Fk,n−k(·) in case of the lin-
earized version (3) of the regression model.

Lemma 3.1 In the the quadratized model (2) we have

(i) (δβ∗ − δ̂β)′F′V−1F(δβ∗ − δ̂β) ∼ σ2χ2
k(δ1),

where δ1 = κ′(δβ)V−1PV −1

F κ(δβ)/(4σ2) and

(ii) (Y − f0 − Fδ̂β)′V−1(Y − f0 − Fδ̂β) ∼ σ2χ2
n−k(δ2),

where δ2 = κ′(δβ)V−1MV −1

F κ(δβ)/(4σ2).

Proof (i) The parameter of noncentrality δ1 is

δ1 = E(δβ∗ − δ̂β)′F′V−1FE(δβ∗ − δ̂β)/σ2.

Since in the quadratized model (2)

E(δβ∗ − δ̂β) = δβ∗ − (F′V−1F)−1F′V−1

[
Fδβ∗ +

1
2
κ(δβ∗)

]

= −1
2
(F′V−1F)−1F′V−1κ(δβ∗),

the statement (i) is valid.
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(ii) Analogously

E(Y − f0 − Fδ̂β) = Fδβ∗ +
1
2
κ(δβ∗)− F(F′V−1F)−1F′V−1

×
[
Fδβ∗ +

1
2
κ(δβ∗)

]
=

1
2
MV −1

F κ(δβ∗)

and therefore also the statement (ii) is valid. �

The probability density of the random variable χ2
f (δ) is [7]

gf,δ(y) =

⎧
⎪⎨
⎪⎩

exp[−(y + δ)/2]
∞∑

r=0

1
r!

(
δ

2

)r
yr+(f/2)−1

2r+f/2Γ(r + f/2)
, y > 0,

0, y ≤ 0.

Thus the density of the random variable U is

g(u; δ1, δ2) =
∫ ∞

0

gk,δ1(uv)gn−k,δ2(v)vdv.

Let the set Cδ∗1 ,δ∗2 be defined as follows.

Cδ∗1 ,δ∗2 =

{
(δ∗1 , δ

∗
2) :

∫ [(n−k)/k]Fk,n−k(0;1−α)

0

g(u; δ∗1 , δ
∗
2)du = 1− α− ε

}
.

Theorem 3.3 The linearization region for the confidence ellipsoid in the case
of the estimated σ2 is

Lδ1,δ2 =

{
δβ : δβ′F′V−1Fδβ < σ

2
√
δ∗1

K
(par)
0

& δβ′F′V−1Fδβ < σ
2
√
δ∗2

K
(int)
0

}

i.e.
δβ ∈ Lδ1,δ2 ⇒ P{δβ ∈ E} ≥ 1− α− ε,

where E is given by (5).

Proof With respect to Definition 3.3 it is valid that

1
4σ2

κ′(δβ)V−1PV −1

F κ(δβ) ≤ 1
4σ4

(δβ′F′V−1Fδβ)2
(
σK

(par)
0

)2

.

Thus the inequality

δβ′F′V−1Fδβ ≤ σ
2
√
δ∗1

K
(par)
0

implies
1

4σ2
κ′(δβ)V−1PV −1

F κ(δβ) = δ1 ≤ δ∗1 .
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Analogously

1
4σ2

κ′(δβ)V−1MV −1

F κ(δβ) ≤ 1
4σ4

(δβ′F′V−1Fδβ)2
(
σK

(int)
0

)2

.

Thus the inequality

δβ′F′V−1Fδβ ≤ σ
2
√
δ∗2

K
(int)
0

implies
1

4σ2
κ′(δβ)V−1MV −1

F κ(δβ) = δ2 ≤ δ∗2 .

�

In order not to prefer one of the parameter noncentrality for the other one,
the condition

δ∗1/δ
∗
2 = (K(par)

0 )2/(K(int)
0 )2

can be used. Thus
2
√
δ∗1

K
(par)
0

=
2
√
δ∗2

K
(int)
0

.

In some cases the Bates and Watts intrinsic curvature is zero and thus the
random variable T = [(n − k)/k]U has the the noncentral Fisher–Snedecor
distribution

Fk,n−k(δ1) = [χ2
k(δ1)/k]/[χ2

n−k(0)/(n− k)],
since δ2 = 0. Let δ1,max be solution of the equation

P{Fk,n−k(δ1,max) ≥ Fk,n−k(0; 1− α)} = α+ ε.

If
C(ell,Dδβ) = σC

(ell,Dδβ)
0 ,

where

C
(ell,Dδβ)
0 =

= sup

⎧
⎨
⎩

√
κ′V−1FC−1

0 D′(DC−1
0 D′)−1DC−1

0 F′V−1κ

δβ′C0δβ
: δβ ∈ Rk

⎫
⎬
⎭ ,

where C0 = F′V−1F, then the following implication is valid.

δβ′C0δβ ≤ σ
2
√
δ1,max

C
(ell,Dδβ)
0

⇒ P
{
(δβ − δ̂β)′D′(DC0D′)−1D(δβ − δ̂β)

≤ kσ̂2Fk,n−k(0; 1− α)
}
≥ 1− α− ε.
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It is to be remarked that in the case D = I, i.e. the confidence ellipsoid for
the parameter δβ must be determined, then the equality C(ell,δβ) = K(par) can
be used.

In the case that σ2 must be estimated, the decision whether linearization of
the model with respect to the confidence ellipsoid can be used, is made with
some uncertainty. Therefore a comparison of the given procedure with the exact
determination, which is in this case known (cf. [8]), is interesting.

Lemma 3.2 Let in the model Y ∼ Nn[f(β),Σ], β ∈ Rk, the matrix Σ be
known.
(i) Then the set

Cβ =
{

β : [f(β)−Y]′
(
PΣ−1

F (β)

)′
Σ−1PΣ−1

F (β)[f(β)−Y] ≤ χ2
k(0; 1− α)

}

is the exact (1− α)-confidence region for the parameter β.
(ii) If the matrix Σ is of the form Σ = σ2V, where V is a given n× n p.d.

matrix and σ2 is unknown parameter, then the exact (1− α)-confidence set for
the parameter β is

Dβ =

{
β : [f(β)−Y]′

(
PV −1

F (β)

)′
V−1PV −1

F (β)[f(β)−Y]

≤ k

n− k [Y − f(β)]′
(
MV −1

F (β)

)′
V−1MV −1

F (β)[Y − f(β)]Fk,n−k(0; 1− α)

}
.

Numerical determination of the exact confidence regions is tedious and time
consuming unlike procedure given by a linearization.

4 Numerical example

Consider the Michaelis–Menten model, i.e.

fi(β1, β2) =
xiβ1

xi + β2
, xi = 1, 2, 3, 4, 6

and Σ = σ2I, σ = 0.1.
If β1 = 4 and β2 = 1, then (cf. [12])

{F}i,· =
(

xi

1 + xi
,− 4xi

(1 + xi)2

)
, i = 1, 2, 3, 4, 5,

Fi =

(
0, − xi

(1+xi)2

− xi

(1+xi)2
, 8xi

(1+xi)3

)
, i = 1, 2, 3, 4, 5,

K
(int)
0 = sup

{√
κ′(δβ)MF κ(δβ)
δβ′F′Fδβ

: δβ ∈ Rk

}
= 0.3326,

K
(par)
0 = sup

{√
κ′(δβ)PF κ(δβ)
δβ′F′Fδβ

: δβ ∈ Rk

}
= 1.3212.
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Let σ(= 0.1) be known and let ε = 0.05, i.e. δmax = 0.6398. Then the
linearization region for the confidence ellipsoid is

LE =

{
δβ : δβ′F′Fδβ ≤ σ

2
√
δmax

K
(par)
0 (β0)

}

and the 0.95-confidence ellipsoid for δβ is

E =
{
u : (u− δ̂β)′F′F(u− β0 − δ̂β) ≤ 0.0599

}

cf. Fig. 1.

Fig. 1: 0.95-confidence ellipse for δβ and the region LE

Let set of measured data y are simulated for σ = 0.1, i.e.

y = (1.90, 2.57, 3.08, 3.13, 3.58)′.

If δ1/δ2 = (K(par)/K(int))2 = 15.779 478 = t, then the set Cδ∗1 ,δ∗2 consists of
a single point which is a solution of the equations

∫ 3
29.552

0

[∫ ∞

0

g2,δ∗1 (uv)g3,δ∗2 (v)vdv
]
du = 0.95− 0.05, δ∗1 = tδ∗2 ,

where

gf,δ(y) =

⎧
⎪⎨
⎪⎩

exp[−(y + δ)/2]
∞∑

r=0

1
r!

(
δ

2

)r
yr+(f/2)−1

2r+f/2Γ(r + f/2)
, y > 0,

0, y ≤ 0.

In this case the linearization region from Theorem 3.3 is given in Fig. 2.
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Fig. 2: The region Lδ1,δ2 and 0.95-confidence ellipse (5)

The set Dβ from Lemma 3.2 is given for 1− α = 0.90 at Fig. 3.

β1

β2

Fig. 3: The set Dβ from Lemma 3.2
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