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Sequences between d-sequences

and sequences of linear type

Hamid Kulosman

Abstract. The notion of a d-sequence in Commutative Algebra was introduced by Craig
Huneke, while the notion of a sequence of linear type was introduced by Douglas Costa.
Both types of sequences generate ideals of linear type. In this paper we study another

type of sequences, that we call c-sequences. They also generate ideals of linear type. We
show that c-sequences are in between d-sequences and sequences of linear type and that
the initial subsequences of c-sequences are c-sequences. Finally we prove a statement
which is useful for computational aspects of the theory of c-sequences.
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1. Introduction

Let R be a Noetherian commutative ring, 〈a〉 = 〈a1, . . . , an〉 a sequence of ele-
ments of R, I = (a1, . . . , an) the ideal generated by the ai’s and Ii = (a1, . . . , ai),
i = 0, 1, . . . , n, the ideal generated by the first i elements of the sequence.
Let S(I) =

⊕
i≥0 Si(I) be the symmetric algebra of the ideal I, R[It] =⊕

i≥0 Iiti its Rees algebra and α : S(I)→ R[It] the canonical map, which maps

ai ∈ S1(I) to ait. The ideal I is said to be of of linear type if α is an isomorphism.
There are also the canonical maps ρ : R[T1, . . . , Tn] → R[It], mapping Ti to ait,
and σ : R[T1, . . . , Tn] → S(I), mapping Ti to ai ∈ S1(I). Let Q∞ = ker(ρ) and
Q = ker(σ). Then Q ⊂ Q∞ and A := ker(α) can be identified with Q∞/Q.

Let us observe a simple property of ideals of linear type, used later.

Lemma 1.1 ([1, Theorem 4(i)]). If I = (a1, . . . , an) is an ideal of linear type,
then

In−1I
k−1 : ak

n = In−1 : an

for every k ≥ 1.

Now we list various types of sequences related to the notion of ideals of linear
type.

We say that 〈a〉 is a relative regular or d-sequence ([6]) if

[Ii−1 : ai] : aj = Ii−1 : aj
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for every i, j ∈ {1, 2, . . . , n} with j ≥ i. Equivalently

[Ii−1 : ai] ∩ I = Ii−1

for every i ∈ {1, 2, . . . , n}.

We say that 〈a〉 is a weakly relative regular sequence ([2]) if

[Ii−1I : ai] ∩ I = Ii−1

for every i ∈ {1, 2, . . . , n}.

We say that 〈a〉 is a proper sequence ([3]) if

ai · Hj(a1, . . . , ai−1) = 0,

for i = 1, . . . , n, j ≥ 1, where Hj(a1, . . . , ai−1) denotes the j-th homology module
of the Koszul complex on a1, . . . , ai−1. (Actually it is enough to have this property
for j = 1, it is then true for all j ≥ 1 by [7].)

We say that 〈a〉 is a sequence of linear type ([1]) if each of the ideals Ii =
(a1, . . . , ai), i = 1, . . . , n, is of linear type.

It is well-known that the ideals generated by d-sequences are of linear type ([4],
[8]), in fact that the d-sequences are sequences of linear type. Every d-sequence is
weakly relative regular and every weakly relative regular sequence is proper ([3]).

2. c-sequences and their initial subsequences

It was proved in [1] that d-sequences satisfy the following property:

[Ii−1I
k : ai] ∩ Ik = Ii−1I

k−1

for every i ∈ {1, . . . , n} and every k ≥ 1. It was also proved ([1, Theorem 3])
that, if a sequence satisfies this property, it generates an ideal of linear type. We
call the sequences that satisfy this property c-sequences .

Definition 2.1. We say that 〈a〉 is a c-sequence if

[Ii−1I
k : ai] ∩ Ik = Ii−1I

k−1

for every i ∈ {1, . . . , n} and every k ≥ 1.

Now we show that the notion of a c-sequence is strictly weaker than the notion
of a d-sequence, i.e., that there are sequences which are c-sequences but not d-
sequences.
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Example 2.2. Let R = k[X, Y, Z, U ]/(XU − Y 2Z) = k[x, y, z, u], where k is a
field. Consider the sequence 〈x, y〉 and the ideal I = (x, y). This sequence is not
a d-sequence since z ∈ (x) : y2 and z /∈ (x) : y, although I is an ideal of linear
type, which was shown in [8, Example 3.16].
Let us show that 〈x, y〉 is a c-sequence. We should show two relations:

[0 : x] ∩ Ik = 0, k ≥ 1

[xIk : y] ∩ Ik = xIk−1, k ≥ 1,

the first of which is trivial since R is an integral domain. For the second one,
note that [xIk : y] ∩ Ik=[xIk : y] ∩ (xIk−1 + (y)k) = [xIk : y] ∩ (y)k + xIk−1. So

it is enough to prove that [xIk : y] ∩ (y)k ⊂ xIk−1. Let α = ayk, a ∈ R, be an

element of [xIk : y] ∩ (y)k. Then ayk+1 ∈ xIk, i.e., a ∈ xIk : yk+1 = (x) : y by

Lemma 1.1. Hence ay ∈ (x) and so α = ayk = ay · yk−1 ∈ xIk−1.

If 〈a〉 is a d-sequence, it is obvious that then for each i = 1, . . . , n, 〈a1, . . . , ai〉
is also a d-sequence. The analogous property for c-sequences is far from being
obvious. We establish it in the following main theorem of the paper.

Theorem 2.3. If 〈a1, . . . , an〉 is a c-sequence, then for each i = 1, . . . , n,
〈a1, . . . , ai〉 is a c-sequence.

Proof: It is enough to prove that 〈a1, . . . , an−1〉 is a c-sequence, but it is about
the same to prove it for 〈a1, . . . , aj〉 for any j ∈ {1, . . . , n}. Fix j ∈ {1, 2, . . . , n}.
Then 〈a1, . . . , aj〉 is a c-sequence if and only if

(1) [Ii−1I
k
j : ai] ∩ Ik

j = Ii−1I
k−1
j ,

for i = 1, . . . , j, k ≥ 1.

Claim 1. If i = j, the equality (1) holds. In other words,

(2) [Ij−1I
k
j : aj ] ∩ Ik

j = Ij−1I
k−1
j ,

for k ≥ 1.

Note that, if we divide both sides of the equality

[Ij−1I
k : aj ] ∩ Ik = Ij−1I

k−1

by ak
j , we get

Ij−1I
k : ak+1

j = Ij−1I
k−1 : ak

j ,

and hence, by induction on k,

(3) Ij−1I
k−1 : ak

j = Ij−1 : aj , k ≥ 1.
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It then follows

(4) Ij−1I
k−1
j : ak

j = Ij−1 : aj , k ≥ 1.

Now

(5)

[Ij−1I
k
j : aj ] ∩ Ik

j

= [Ij−1I
k
j : aj ] ∩ [Ij−1I

k−1
j + (aj)

k]

= Ij−1I
k−1
j + [Ij−1I

k
j : aj ] ∩ (aj)

k.

If rak
j ∈ Ij−1I

k
j : aj , then by (4), r ∈ Ij−1I

k
j : ak+1

j = Ij−1 : aj , hence raj ∈

Ij−1 and so rak
j = raja

k−1
j ∈ Ij−1(aj)

k−1 ⊂ Ij−1I
k−1
j . This together with (5)

gives (2). Claim 1 is proved.

Claim 2. In order to prove (1), it is enough to prove that

(6) Ii−1I
k−1 ∩ (ai, . . . , aj)

k ⊂ Ii−1(ai, . . . , aj)
k−1

for i = 1, . . . , j, k ≥ 1.

Indeed, since 〈a〉 is a c-sequence we would then have

([Ii−1I
k : ai] ∩ Ik) ∩ (ai, . . . , aj)

k ⊂ Ii−1(ai, . . . , aj)
k−1,

hence

(7) [Ii−1I
k
j : ai] ∩ (ai, . . . , aj)

k ⊂ Ii−1(ai, . . . , aj)
k−1.

Now

[Ii−1I
k
j : ai] ∩ Ik

j = [Ii−1I
k
j : ai] ∩ [Ii−1I

k−1
j + (ai, . . . , aj)

k]

= Ii−1I
k−1
j + [Ii−1I

k
j : ai] ∩ (ai, . . . , aj)

k

= Ii−1I
k−1
j + Ii−1(ai, . . . , aj)

k−1 (by (7))

= Ii−1I
k−1
j .

Claim 2 is proved.

Denote

(8) Λt = (ai)
k−t(ai, . . . , aj)

t

for t = 0, 1, . . . , k.
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Claim 3. In order to prove (6), it is enough to prove that

(9) Ii−1I
k−1 ∩ Λt ⊂ Ii−1I

k−1 ∩ Λt−1 + Ii−1(ai)
k−t(ai+1, . . . , aj)

t−1,

for i = 1, . . . , j, k ≥ 1, t = 1, . . . , k.

Indeed, if (9) holds we would have:

Ii−1I
k−1 ∩ (ai, . . . , aj)

k = Ii−1I
k−1 ∩ Λk

⊂ Ii−1I
k−1 ∩ Λk−1 + Ii−1(ai)

0(ai+1, . . . , aj)
k−1

⊂ . . .

⊂ Ii−1I
k−1 ∩ Λ0 + Ii−1

k∑

t=1

(ai)
k−t(ai+1, . . . , aj)

t−1(10)

= Ii−1I
k−1 ∩ Λ0 + Ii−1(ai, . . . , aj)

k−1.

Now let α ∈ Ii−1I
k−1∩Λ0 = Ii−1I

k−1∩ (ai)
k. Then α = rak

i and r ∈ Ii−1I
k−1 :

ak
i = Ii−1 : ai by (3). Hence rai ∈ Ii−1 and so α = raia

k−1
i ∈ Ii−1(ai)

k−1. Thus

(11) Ii−1I
k−1 ∩ Λ0 ⊂ Ii−1(ai)

k−1.

Now from (10) and (11) we have

Ii−1I
k−1 ∩ (ai, . . . , aj)

k ⊂ Ii−1(ai)
k−1 + Ii−1(ai, . . . , aj)

k−1

= Ii−1(ai, . . . , aj)
k−1.

Claim 3 is proved.

We will now prove (6) by induction on i. Let us first treat the case i = j. We
need to show that

Ij−1I
k−1 ∩ (aj)

k ⊂ Ij−1(aj)
k−1

for k ≥ 1. Since 〈a〉 is a c-sequence, this is equivalent to

[Ij−1I
k : aj ] ∩ Ik ∩ (aj)

k ⊂ Ij−1(aj)
k−1,

i.e., with

[Ij−1I
k : aj ] ∩ (aj)

k ⊂ Ij−1(aj)
k−1.

If rak
j ∈ Ij−1I

k : aj , then by (3), r ∈ Ij−1I
k : ak+1

j = Ij−1 : aj , hence raj ∈ Ij−1

and so rak
j = raja

k−1
j ∈ Ij−1(aj)

k−1.
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Now let i < j and suppose that (6) holds for i+1 and any k ≥ 1. By Claim 3,
to prove that then (6) holds for i and any k ≥ 1, it is enough to prove that (9)
holds for i and any k ≥ 1, t = 1, . . . , k. For that purpose let

α ∈ Ii−1I
k−1 ∩ Λt

= Ii−1I
k−1 ∩ [Λt−1 + (ai)

k−t(ai+1, . . . , aj)
t].

We can write α = δ + ε ∈ Ii−1I
k−1, where

δ ∈ Λt−1,

ε ∈ (ai)
k−t(ai+1, . . . , aj)

t.

More concretely, let

δ = ak−t+1
i d,

ε = ak−t
i e,

where

(12)
d ∈ (ai, . . . , aj)

t−1,

e ∈ (ai+1, . . . , aj)
t.

Then

(13) α = δ + ε = ak−t
i (e+ aid) ∈ Ii−1I

k−1.

Now if we divide both sides of the equality

[Ii−1I
k : ai] ∩ Ik = Ii−1I

k−1

by ak−t
i (e+ aid), we get

Ii−1I
k : ak−t+1

i (e+ aid) = Ii−1I
k−1 : ak−t

i (e+ aid).

By induction on k we get

Ii−1I
k : ak−t+1

i (e+ aid) = Ii−1I
t−1 : (e+ aid).

Since by (13), α = δ + ǫ = ak−t+1
i (e+ aid) ∈ Ii−1I

k, we have

(14) e+ aid ∈ Ii−1I
t−1.



Sequences between d-sequences and sequences of linear type 7

Note that

(15) aid ∈ IiI
t−1.

From (14) and (15) we get

(16) e ∈ IiI
t−1.

Now from (12) and (16), using the inductive hypothesis (6) for i + 1 and any
k ≥ 1, we get

(17) e ∈ Ii(ai+1, . . . , aj)
t−1.

Hence

ε = ak−t
i e

∈ Iia
k−t
i (ai+1, . . . , aj)

t−1 (by (17))

= Ii−1a
k−t
i (ai+1, . . . , aj)

t−1 + ak−t+1
i (ai+1, . . . , aj)

t−1

∈ Λt−1 + Ii−1a
k−t
i (ai+1, . . . , aj)

t−1 (by (8))

and consequently

α = δ + ε ∈ [Λt−1 + Ii−1a
k−t
i (ai+1, . . . , aj)

t−1] ∩ Ii−1I
k−1

= Ii−1I
k−1 ∩ Λt−1 + Ii−1a

k−t
i (ai+1, . . . , aj)

t−1.

The theorem is proved. �

3. Relations between c-sequences and other types of sequences

Theorem 3.1. Every c-sequence is a sequence of linear type.

Proof: Every c-sequence generates an ideal of linear type ([1, Theorem 3]). Now
the statement follows from Theorem 2.3. �

Thus, by Introduction and Theorem 3.1, we have

{d-sequences} ⊂ {c-sequences} ⊂ {sequences of linear type}.

For one-element sequences all three notions coincide. But, in general, for se-
quences of at least two elements, both of the above inclusions are strict, as Ex-
ample 2.2 and the example that follows illustrate.
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Example 3.2. Let R = k[X, Y, U, V ]/(UX, V X, UY, U2, V 2, UV ) = k[x, y, u, v],
where k is a field. Then 〈x, y〉 is a sequence of linear type which is not a c-sequence.
Indeed, let us first show that I = (x, y) is an ideal of linear type. We can write

R = A[X, Y ]/(uX, vX, uY ),

where A = k[u, v] with u2 = v2 = uv = 0. Hence R is a symmetric algebra of
some A-module (namely A2/(A(u, 0) + A(v, 0) + A(0, u))) and so (by [3, p. 87])
its augmentation ideal I = (x, y) is an ideal of linear type.
Also it is easy to verify that (0 : x) = (0 : x2) = (u, v). Thus 〈x, y〉 is a

sequence of linear type.
But (0 : x) ∩ (x, y) contains a nonzero element vy and thus the first condition

for 〈x, y〉 to be a c-sequence is not satisfied.

Thus it can happen that an ideal I of linear type can be generated by a sequence
〈a〉 of linear type which is not a c-sequence. In the remaining part of the paper we
will show that this cannot happen if 〈a〉 is a weakly relative regular or a proper
sequence. We will first establish an analogue for c-sequences of the following two
statements:

(i) 〈a〉 is a proper sequence if and only if the corresponding sequence of 1-forms
〈a〉 in SR(I) is a d-sequence ([7, Theorem 2.2]);

(ii) 〈a〉 is a d-sequence if and only if the corresponding sequence of 1-forms 〈a∗〉
in grI(R) is a d-sequence ([5, Theorem 1.2] (⇒) and [3, Theorem 12.10] (⇐)).

Proposition 3.3. Let a1, . . . , an ∈ R and let a1t, . . . , ant be the corresponding
1-forms in R[It]. Then 〈a1, . . . , an〉 is a c-sequence in R if and only if 〈a1t, . . . , ant〉
is a d-sequence in R[It].

Proof: Denote I = (a1t, . . . , ant) = R[It]+, the ideal in R[It] generated by
a1t, . . . , ant. Also Ii−1 = (a1t, . . . , ai−1t) and Ii−1 = (a1, . . . , ai−1), i = 1, 2,
. . . , n. Then 〈at〉 is a d-sequence in R[It] if and only if

[Ii−1 : ait] ∩ I = Ii−1, i = 1, 2, . . . , n.

This is equivalent to

(c1t+ c2t
2 + . . . )ait ∈ Ii−1 ⇒ c1t+ c2t

2 + · · · ∈ Ii−1, i = 1, 2, . . . , n,

where cj ∈ Ij , j = 1, 2, . . . are arbitrary elements. This in turn is equivalent to

ck ∈ Ii−1I
k : ai ⇒ ck ∈ Ii−1I

k−1, i = 1, 2, . . . , n, k ≥ 1,

where each ck ∈ Ik. This is the same as

[Ii−1I
k : ai] ∩ Ik ⊂ Ii−1I

k−1, i = 1, 2, . . . , n, k ≥ 1,

which is the condition for 〈a〉 to be a c-sequence. �
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Corollary 3.4. Let 〈a1, . . . , an〉 be a sequence in R and let I = (a1, . . . , an).
Then the following are equivalent:

(i) 〈a〉 is a c-sequence;
(ii) 〈a〉 is a weakly relative regular sequence and I is of linear type;
(iii) 〈a〉 is a proper sequence and I is of linear type.

Proof: (i)⇒(ii): follows from the definition of a weakly relatively regular se-
quence and [1, Theorem 3].
(ii)⇒(iii): follows from [3, p. 113].
(iii)⇒(i): By [7, Theorem 2.2], if 〈a〉 is a proper sequence, then the corresponding
sequence of 1-forms 〈a〉 is a d-sequence in SR(I). Since I is assumed to be of
linear type, SR(I) is canonically isomorphic to R[It]. Hence 〈a1t, . . . , ant〉 is a
d-sequence in R[It]. Now by Proposition 3.3, 〈a1, . . . , an〉 is a c-sequence in R.

�

Thus if I = (a) is an ideal of linear type, where 〈a〉 is a proper or weakly
relative regular sequence, then 〈a〉 is necessarily a c-sequence. Note that neither
proper nor weakly relative regular sequences are sequences of linear type.

Remark 3.5. Corollary 3.4 is useful for computational purposes . Namely, in
order to test by computer programs whether some sequence is a c-sequence, we
would have to test infinitely many conditions. Using Corollary 3.4(ii), it is enough
to test only two things: that the ideal generated by the sequence is of linear type
(which is a known procedure) and that the sequence is weakly relative regular
(which is easy).
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