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A universal property of C0-semigroups

Gerd Herzog, Christoph Schmoeger

Abstract. Let T : [0,∞) → L(E) be a C0-semigroup with unbounded generator A :
D(A) → E. We prove that (T (t)x − x)/t has generically a very irregular behaviour for
x /∈ D(A) as t → 0+.
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1. Introduction

Let (E, ‖ · ‖) be a complex Banach space, L(E) the Banach algebra of all
bounded endomorphisms of E, and T : [0,∞) → L(E) a C0-semigroup with
generator A : D(A)→ E defined as

(1) Ax = lim
t→0+

T (t)x − x

t

with D(A) the set of all x ∈ E where this limit exists. It is well known that A
is closed, D(A) is a dense subset of E, and that D(A) = E if and only if A is
bounded [5]. Throughout the paper let us assume thatA is unbounded. Motivated
by the very irregular behaviour of difference quotients of continuous functions
(see [2] and the references given there), first discovered in Marcinkiewicz’s famous
result on the existence of universal primitives [4], we will prove in this paper that
in the frame above (T (t)x−x)/t has generically a chaotic behaviour for x /∈ D(A)
as t → 0+.

2. Main result

Let (E∗, ‖ · ‖) denote the topological dual space of E and let ω denote the
Fréchet space of all complex sequences (zk)k∈N endowed with the topology of
coordinatewise convergence. We will prove the following result:



84 G.Herzog, C. Schmoeger

Theorem 1. Let (tn)n∈N be a sequence in (0,∞) with limit 0. Then there exists
a sequence (ϕk)k∈N in E∗ such that for each sequence (ck)k∈N in C \ {0} the set
of all x ∈ E with the property

{(
ckϕk

(
T (tn)x − x

tn

))

k∈N

: n ∈ N

}
is dense in ω,

is a dense Gδ subset of E.

3. Universal elements

We will make use of the following Universality Criterion of Grosse-Erdmann
[2, Theorem 1]:

Let X, Y be topological spaces with X a Baire space and Y second countable.
Let Lj : X → Y (j ∈ J) be a family of continuous mappings. An element x ∈ X
is called universal for this family if {Ljx : j ∈ J} is dense in Y . Let U denote the
set of all universal elements.

Proposition 1 (Universality Criterion). The following conditions are equivalent.

1. The set U is a dense Gδ-subset of X .
2. The set U is dense in X .
3. The set {(x, Ljx) : x ∈ X, j ∈ J} is dense in X × Y .

Now, consider the case that specifically (E, ‖ ·‖) is a Banach space, and that F
is a metrizable separable topological vector space. Let d be a translation-invariant
metric on F defining its topology. Let Ln : E → F (n ∈ N) be a sequence of
continuous linear operators, let B : D → F be the linear operator defined by

Bx = lim
n→∞

Lnx

on

D = {x ∈ E : (Lnx) is convergent},

and assume that D is a dense subset of E. The following criterion is an adaptation
of Proposition 1 to this case (see also [3]):

Proposition 2. Under the conditions and notations above, assume that

(2) {Bx : x ∈ D, ‖x‖ ≤ 1}

is dense in F . Then U is a dense Gδ-subset of E.
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Proof: Since D is a subspace of E and B is linear, (2) implies that

{Bx : x ∈ D, ‖x‖ ≤ ε}

is dense in F for each ε > 0. But then

{Bx : x ∈ D, ‖x − x0‖ ≤ ε}

is dense in F for each ε > 0 and each x0 ∈ E. Indeed, fix y ∈ F and let
δ > 0. Choose x1 ∈ D with ‖x1 − x0‖ ≤ ε/2, and x ∈ D with ‖x‖ ≤ ε/2 and
d(Bx, y − Bx1) ≤ δ. Then

‖(x+ x1)− x0‖ ≤ ‖x‖+ ‖x1 − x0‖ ≤ ε,

and
d(B(x+ x1), y) = d(Bx, y − Bx1) ≤ δ.

Now, let x0 ∈ E, y0 ∈ F , and ε > 0. We find x ∈ D such that

‖x − x0‖ ≤ ε, d(Bx, y0) ≤ ε/2.

By choosing n ∈ N such that d(Lnx, Bx) ≤ ε/2 we obtain d(Lnx, y0) ≤ ε. Thus

{(x, Lnx) : x ∈ E, n ∈ N}

is dense in E × F . An application of Proposition 1 completes the proof. �

4. Unbounded functionals

To prepare the application of Proposition 2 to our problem we first investigate
unbounded functionals. Let D be any subspace of E, let B1 denote the unit ball
in D, that is

B1 = {x ∈ D : ‖x‖ ≤ 1},

and note that ω∗, the topological dual space of ω, is the space of all finite complex
sequences [7, Chapter 2–3].

Proposition 3. Let Ψk : D → C, k ∈ N, be a sequence of linearly independent

linear functionals such that each

Ψ ∈ span{Ψk : k ∈ N}, Ψ 6= 0

is unbounded, and let f : D → ω be defined by f(x) = (Ψk(x))k∈N. Then f(B1)
is dense in ω.
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Proof: We first consider a single unbounded functional Ψ : D → C and prove
that Ψ(B1) = C. Clearly 0 ∈ Ψ(B1). Let α ∈ C\{0}. Since Ψ(B1) is unbounded,
there exists x0 ∈ B1 such that |Ψ(x0)| > |α|. Set

y0 :=
α

Ψ(x0)
x0.

Then

‖y0‖ =
|α|

|Ψ(x0)|
‖x0‖ ≤ 1, Ψ(y0) =

α

Ψ(x0)
Ψ(x0) = α.

Next, the set f(B1) is closed and convex. Assume, by way of contradiction,

f(B1) 6= ω, and let (zk)k∈N /∈ f(B1). According to the separation theorem for
closed convex sets and points, we find a functional (ξk)k∈N ∈ ω∗ (ξk = 0 for all
k > k0), and β ∈ R such that

Re

k0∑

k=1

ξkzk < β < Re

k0∑

k=1

ξkΨk(x) (x ∈ B1).

Now Ψ :=
∑k0

k=1 ξkΨk 6= 0, hence Ψ is unbounded. Therefore ReΨ(B1) = R,
a contradiction. �

5. Closed operators

In this section we prove two propositions on general closed operators which we
apply later to A.

Proposition 4 ([6, Chapter IV.5, Problem 11]). Let B : D(B)→ E be a closed
and unbounded operator on E, and let V be a closed subspace of E such that
D(B) ∩ V = {0}. Then D(B)⊕ V is not closed in E.

Proof: Assume that D(B)⊕ V is closed in E. Set

G(B) := {(x, Bx) : x ∈ D(B)} ⊆ E × E.

Since B is closed, the set G(B) is closed, and G(B) becomes a Banach space when
endowed with the graph norm

‖(x, Bx)‖ = ‖x‖+ ‖Bx‖.

We define S : G(B)→ (D(B)⊕ V )/V by S(x, Bx) = x̂ with x̂ = x+ V . Then S
is bijective, linear, and S is continuous since

‖S(x, Bx)‖ = ‖x̂‖ ≤ ‖x‖ ≤ ‖(x, Bx)‖ (x ∈ D(B)).

Thus, S−1 : (D(B) ⊕ V )/V → G(B) is continuous, by the Open Mapping Theo-
rem. Consequently,

‖Bx‖ ≤ ‖(x, Bx)‖ = ‖S−1(x̂)‖ ≤ ‖S−1‖‖x̂‖ ≤ ‖S−1‖‖x‖ (x ∈ D(B)).

Hence B is continuous, a contradiction. �
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Remark. Note that Proposition 4 implies that if V is an algebraic complement of
D(B), then V cannot be closed and has therefore infinite dimension, in particular.
Now, let B : D(B) → E be a densely defined closed and unbounded operator

on E. Then B has an adjoint

B∗ : D(B∗)→ E∗,

with
D(B∗) = {ϕ ∈ E∗ : ϕ ◦ B is continuous on D(B)}.

It is well known that B∗ is a closed linear operator, and that D(B∗) = E∗ if and
only if B is continuous [1, Theorem II.2.6, II.2.8].

Proposition 5. Let B : D(B)→ E be a densely defined closed and unbounded
operator on E, and let W be a subspace of E∗ such that E∗ = D(B∗)⊕W . Then
W is not closed in E∗ and dimW =∞.

Proof: We know that B∗ is closed, and that D(B) 6= E since B is unbounded.
By means of [1, Corollary II.4.8] the operator B∗ is unbounded too. Thus, the
proof is finished according to the remark following Proposition 4. �

6. Proof of Theorem 1

We apply Proposition 5 to B = A: LetW be an algebraic complement ofD(A∗)
in E∗. Since dimW = ∞ we can choose a countably infinite linear independent
subset of W denoted by {ϕk : k ∈ N}.
We define a sequence of continuous linear operators Ln : E → ω, n ∈ N, by

Lnx =

(
ckϕk

(
T (tn)x − x

tn

))

k∈N

and we set Ψk = ck(ϕk ◦ A) (k ∈ N). Since

D(A∗) = {ϕ ∈ E∗ : ϕ ◦ A is continuous on D(A)}

we conclude that each

Ψ ∈ span{Ψk : k ∈ N}, Ψ 6= 0

is an unbounded functional on D(A). Next let C : D → ω be defined by

Cx = lim
n→∞

Lnx

on
D := {x ∈ E : (Lnx) is convergent},
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and note that D(A) ⊆ D, hence D is dense in E, and that

f(x) := (Ψk(x))k∈N = Cx (x ∈ D(A)).

Let B1 denote the closed unit ball in D(A). Now, f(B1) is dense in ω according
to Proposition 3. Therefore

{Cx : x ∈ D, ‖x‖ ≤ 1}

is dense in ω, and, according to Proposition 2 applied to B = C, the set of all
x ∈ E with the property

{Lnx : n ∈ N} is dense in ω

is a dense Gδ subset of E. �
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