
Commentationes Mathematicae Universitatis Carolinae

Barnabás Farkas; Lajos Soukup
More on cardinal invariants of analytic P -ideals

Commentationes Mathematicae Universitatis Carolinae, Vol. 50 (2009), No. 2, 281--295

Persistent URL: http://dml.cz/dmlcz/133434

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2009

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/133434
http://project.dml.cz


Comment.Math.Univ.Carolin. 50,2 (2009) 281–295 281

More on cardinal invariants of analytic P -ideals

Barnabás Farkas, Lajos Soukup

Abstract. Given an ideal I on ω let a(I) (ā(I)) be minimum of the cardinalities of
infinite (uncountable) maximal I-almost disjoint subsets of [ω]ω . We show that
a(Ih) > ω if Ih is a summable ideal; but a(Z~µ) = ω for any tall density ideal
Z~µ including the density zero ideal Z. On the other hand, you have b ≤ ā(I)
for any analytic P -ideal I, and ā(Z~µ) ≤ a for each density ideal Z~µ.

For each ideal I on ω denote bI and dI the unbounding and dominating
numbers of 〈ωω ,≤I〉 where f ≤I g iff {n ∈ ω : f(n) > g(n)} ∈ I. We show that
bI = b and dI = d for each analytic P -ideal I.

Given a Borel ideal I on ω we say that a poset P is I-bounding iff ∀x ∈ I∩V P

∃ y ∈ I ∩ V x ⊆ y. P is I-dominating iff ∃ y ∈ I ∩ V P ∀x ∈ I ∩ V x ⊆∗ y.
For each analytic P -ideal I if a poset P has the Sacks property then P

is I-bounding; moreover if I is tall as well then the property I-bounding/I-
dominating implies ωω-bounding/adding dominating reals, and the converses of
these two implications are false.

For the density zero ideal Z we can prove more: (i) a poset P is Z-bounding
iff it has the Sacks property, (ii) if P adds a slalom capturing all ground model
reals then P is Z-dominating.

Keywords: analytic P -ideals, cardinal invariants, forcing

Classification: 03E35, 03E17

1. Introduction

In this paper we investigate some properties of some cardinal invariants as-
sociated with analytic P -ideals. Moreover we analyze related “bounding” and
“dominating” properties of forcing notions.

Let us denote fin the Frechet ideal on ω, i.e. fin = [ω]<ω. Further we always
assume that if I is an ideal on ω then the ideal is proper , i.e. ω /∈ I, and fin ⊆ I,
so especially I is non-principal . Write I+ = P(ω)\I and I∗ = {ω\X : X ∈ I}.

An ideal I on ω is analytic if I ⊆ P(ω) ≃ 2ω is an analytic set in the usual
product topology. I is a P -ideal if for each countable C ⊆ I there is an X ∈ I
such that Y ⊆∗ X for each Y ∈ C, where A ⊆∗ B iff A\B is finite. I is tall (or
dense) if each infinite subset of ω contains an infinite element of I.

A function ϕ : P(ω) → [0,∞] is a submeasure on ω iff ϕ(X) ≤ ϕ(Y ) for
X ⊆ Y ⊆ ω, ϕ(X ∪ Y ) ≤ ϕ(X) + ϕ(Y ) for X,Y ⊆ ω, and ϕ({n}) < ∞ for
n ∈ ω. A submeasure ϕ is lower semicontinuous iff ϕ(X) = limn→∞ ϕ(X ∩n) for
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each X ⊆ ω. A submeasure ϕ is finite if ϕ(ω) < ∞. Note that if ϕ is a lower
semicontinuous submeasure on ω then ϕ(

⋃

n∈ω An) ≤
∑

n∈ω ϕ(An) holds as well
for An ⊆ ω. We assign the exhaustive ideal Exh(ϕ) to a submeasure ϕ as follows

Exh(ϕ) =
{

X ⊆ ω : lim
n→∞

ϕ(X\n) = 0
}

.

Solecki [So, Theorem 3.1] proved that an ideal I ⊆ P(ω) is an analytic P -ideal
or I = P(ω) iff I = Exh(ϕ) for some lower semicontinuous finite submeasure.
Therefore each analytic P -ideal is Fσδ (i.e. Π0

3), hence a Borel subset of 2ω. It is
straightforward to see that if ϕ is a lower semicontinuous finite submeasure on ω
then the ideal Exh(ϕ) is tall iff limn→∞ ϕ({n}) = 0.

Let I be an ideal on ω. A family A ⊆ I+ is I-almost-disjoint (I-AD in short),
if A∩B ∈ I for each {A,B} ∈ [A]2. An I-AD family A is an I-MAD family if for
each X ∈ I+ there exists an A ∈ A such that X ∩ A ∈ I+, i.e. A is ⊆-maximal
among the I-AD families.

Denote a(I) the minimum of the cardinalities of infinite I-MAD families. In
Theorem 2.2 we show that a(Ih) > ω if Ih is a summable ideal; but a(Z~µ) = ω
for any tall density ideal Z~µ including the density zero ideal

Z =
{

A ⊆ ω : lim
n→∞

|A ∩ n|

n
= 0

}

.

On the other hand, if you define ā(I) as minimum of the cardinalities of uncount-
able I-MAD families then you have b ≤ ā(I) for any analytic P -ideal I, and
ā(Z~µ) ≤ a for each density ideal Z~µ (see Theorems 2.6 and 2.8).

In Theorem 3.1 we prove under CH the existence of an uncountable Cohen-
indestructible I-MAD family for each analytic P -ideal I.

A sequence 〈Aα : α < κ〉 ⊂ [ω]ω is a tower if it is ⊆∗-descending, i.e. Aβ ⊆
∗ Aα

if α ≤ β < κ, and it has no pseudointersection, i.e. a set X ∈ [ω]ω such that
X ⊆∗ Aα for each α < κ. In Section 4 we show it is consistent that the continuum
is arbitrarily large and for each tall analytic P -ideal I there is a tower of height
ω1 whose elements are in I∗.

Given an ideal I on ω and f, g ∈ ωω, write f ≤I g if {n ∈ ω : f(n) > g(n)} ∈ I.
As usual let ≤∗=≤fin. The unbounding and dominating numbers of the partially
ordered set 〈ωω,≤I〉, denoted by bI and dI are defined in the natural way, i.e.
bI is the minimal size of a ≤I-unbounded family, and dI is the minimal size of
a ≤I-dominating family. By these notations b = bfin and d = dfin. In Section 5
we show that bI = b and dI = d for each analytic P -ideal I. We also prove, in
Corollary 6.8, that for any analytic P -ideal I a poset P is ≤I-bounding iff it is
ωω-bounding, and P adds ≤I-dominating reals iff it adds dominating reals.

In Section 6 we introduce the I-bounding and I-dominating properties of forc-
ing notions for Borel ideals: P is I-bounding iff any element of I ∩V P is contained
in some element of I ∩ V ; P is I-dominating iff there is an element in I ∩ V P

which mod-finite contains all elements of I ∩ V .
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In Theorem 6.2 we show that for each tall analytic P -ideal I, if a forcing
notion is I-bounding then it is ωω-bounding, and if it is I-dominating then it
adds dominating reals. Since the random real forcing is not I-bounding for each
tall summable and tall density ideal I by Proposition 6.3, the converse of the
first implication is false. Since a σ-centered forcing cannot be I-dominating for a
tall analytic P -ideal I by Theorem 6.4, the standard dominating real forcing D
witnesses that the converse of the second implication is also false.

We prove in Theorem 6.5 that the Sacks property implies the I-bounding
property for each analytic P -ideal I.

Finally, based on a theorem of Fremlin we show that the Z-bounding property
is equivalent to the Sacks property.

2. Around the almost disjointness number of ideals

For any ideal I on ω, denote by a(I) the minimum of the cardinalities of infinite
I-MAD families.

To start the investigation of this cardinal invariant we recall the definition
of two special classes of analytic P -ideals: the density ideals and the summable
ideals (see [Fa]).

Definition 2.1. Let h : ω → R+ be a function such that
∑

n∈ω h(n) = ∞. The
summable ideal corresponding to h is

Ih =
{

A ⊆ ω :
∑

n∈A

h(n) <∞
}

.

Let 〈Pn : n < ω〉 be a decomposition of ω into pairwise disjoint nonempty
finite sets and let ~µ = 〈µn : n ∈ ω〉 be a sequences of probability measures,
µn : P(Pn)→ [0, 1]. The density ideal generated by ~µ is

Z~µ =
{

A ⊆ ω : lim
n→∞

µn(A ∩ Pn) = 0
}

.

A summable ideal Ih is tall iff limn→∞ h(n) = 0; and a density ideal Z~µ is tall
iff

(†) lim
n→∞

max
i∈Pn

µn({i}) = 0.

Clearly the density zero ideal Z is a tall density ideal, and the summable and
the density ideals are proper ideals.

Theorem 2.2. (1) a(Ih) > ω for any summable ideal Ih.
(2) a(Z~µ) = ω for any tall density ideal Z~µ.

Proof: (1): We show that if {An : n < ω} ⊆ I+
h is I-AD then there is B ∈ I+

h

such that B ∩An ∈ I for n ∈ ω.
For each n ∈ ω let Bn ⊆ An \

⋃

{Am : m < n} be finite such that
∑

i∈Bn
h(i) >

1, and put

B =
⋃

{Bn : n ∈ ω}.



284 B. Farkas, L. Soukup

(2): Write ~µ = 〈µn : n ∈ ω〉 and µn concentrates on Pn. By (†) we have
limn→∞ |Pn| =∞.

Now for each n we can choose kn ∈ ω and a partition {Pn,k : k < kn} of Pn
such that

(a) limn→∞ kn =∞,
(b) if k < kn then µn(Pn,k) ≥

1
2k+1 .

Put Ak =
⋃

{Pn,k : k < kn} for each k ∈ ω. We show that {Ak : k ∈ ω} is a
Z~µ-MAD family.

If kn > k then µn(Ak ∩Pn) = µn(Pn,k) ≥
1

2k+1 . Since for an arbitrary k for all
but finitely many n we have kn > k it follows that

lim sup
n→∞

µn(Ak ∩ Pn) = lim sup
n→∞

µn(Pn,k) ≥ lim sup
n→∞

1

2k+1
=

1

2k+1
> 0,

thus Ak ∈ Z
+
~µ .

Assume that X ∈ Z+
~µ . Pick ε > 0 with lim supn→∞ µn(X ∩ Pn) > ε. For a

large enough k we have 1
2k+1 <

ε
2 so if k < kn then

µn(Pn \
⋃

{Pn,i : i ≤ k}) ≤ 1
2k+1 <

ε
2 .

So for each large enough n there is in ≤ k such that µn(X ∩ Pn,in) > ε
2(k+1) .

Then in = i for infinitely many n, so lim supn→∞ µn(X ∩ Ai) ≥
ε

2(k+1) , and so

X ∩Ai ∈ Z
+
~µ . �

This theorem gives new proof of the following well-known fact:

Corollary 2.3. The density zero ideal Z is not a summable ideal.

Given two ideals I and J on ω write I ≤RK J (see [Ru]) iff there is a function
f : ω → ω such that

I = {I ⊆ ω : f−1I ∈ J },

and write I ≤RB J (see [LaZh]) iff there is a finite-to-one function f : ω → ω
such that

I = {I ⊆ ω : f−1I ∈ J }.

The following observations imply that there are I-MAD families of cardinality
c for each analytic P -ideal I.

Observation 2.4. Assume that I and J are ideals on ω, I ≤RK J witnessed by
a function f : ω → ω. If A is an I-AD family then {f−1A : A ∈ A} is a J -AD
family.

Observation 2.5. fin ≤RB I for any analytic P -ideal I.

Proof: Let I = Exh(ϕ) for some lower semicontinuous finite submeasure ϕ on ω.
Since ω /∈ I we have limn→∞ ϕ(ω\n) = ε > 0. Hence by the lower semicontinuous
property of ϕ for each n > 0 there is m > n such that ϕ([n,m)) > ε/2.
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So there is a partition {In : n < ω} of ω into finite pieces such that ϕ(In) > ε/2
for each n ∈ ω. Define the function f : ω → ω by the stipulation f ′′In = {n}.
Then f witnesses fin ≤RB I. �

For any analytic P -ideal I denote ā(I) the minimum of the cardinalities of
uncountable I-MAD families.

Clearly a(I) > ω implies a(I) = ā(I), especially a(Ih) = ā(Ih) for summable
ideals.

Theorem 2.6. ā(Z~µ) ≤ a for each density ideal Z~µ.

Proof: Let f : ω → ω be the finite-to-one function defined by f−1{n} = Pn,
where ~µ = 〈µn : n ∈ ω〉 and µn : P(Pn)→ [0, 1]. Specially f witnesses fin ≤RB Z~µ.

Let A be an uncountable (fin-)MAD family. We show that f−1[A] = {f−1A :
A ∈ A} is a Z~µ-MAD family.

By Observation 2.4, f−1[A] is a Z~µ-AD family.

To show the maximality let X ∈ Z+
~µ be arbitrary, lim supn→∞ µn(X ∩ Pn) =

ε > 0. Thus

J = {n ∈ ω : µn(X ∩ Pn) > ε/2}

is infinite. So there is A ∈ A such that A ∩ J is infinite.
Then f−1A ∈ f−1[A] and X ∩ f−1A ∈ Z+

~µ because there are infinitely many

n such that Pn ⊆ f−1A and µn(X ∩ Pn) > ε/2. �

Problem 2.7. Does ā(I) ≤ a hold for each analytic P -ideal I?

Theorem 2.8. b ≤ ā(I) provided that I is an analytic P -ideal.

Remark. If X ⊂
[

ω
]ω

is an infinite almost disjoint family then there is a tall ideal
I such that X is I-MAD. So the theorem above does not hold for an arbitrary
tall ideal on ω.

Proof: I = Exh(ϕ) for some lower semicontinuous finite submeasure ϕ.
Let A be an uncountable I-AD family of cardinality smaller than b. We show

that A is not maximal.
There exists an ε > 0 such that the set

Aε =
{

A ∈ A : lim
n→∞

ϕ(A\n) > ε
}

is uncountable. Let A′ = {An : n ∈ ω} ⊆ Aε be a set of pairwise distinct elements
of Aε. We can assume that these sets are pairwise disjoint. For each A ∈ A\A′

choose a function fA ∈ ωω such that

(∗A) ϕ
(

(A ∩An) \ fA(n)
)

< 2−n for each n ∈ ω.

Using the assumption |A| < b there exists a strictly increasing function f ∈ ωω

such that fA ≤∗ f for each A ∈ A\A′. For each n pick g(n) > f(n) such that
ϕ
(

An ∩ [f(n), g(n))
)

> ε, and let

X =
⋃

n∈ω

(

An ∩ [f(n), g(n))
)

.
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Clearly X ∈ Z+
~µ because for each n < ω there is m such that Am∩ [f(m), g(m)) ⊆

X\n and so ϕ(X \ n) ≥ ϕ
(

Am ∩ [f(m), g(m))
)

> ε, i.e. limn→∞ ϕ(X\n) ≥ ε.
We have to show that X ∩A ∈ Z~µ for each A ∈ A. If A = An for some n then

X ∩A = X ∩An = An ∩ [f(n), g(n)), i.e. the intersection is finite.
Assume now that A ∈ A\A′. Let δ > 0. We show that if k is large enough

then ϕ((A ∩X) \ k) < δ.
There is N ∈ ω such that 2−N+1 < δ and fA(n) ≤ f(n) for each n ≥ N .
Let k be so large that k contains the finite set

⋃

n<N [f(n), g(n)).

Now (X∩A)\k =
⋃

n∈ω

(

An∩A∩[f(n), g(n))
)

\k and
(

An∩A∩[f(n), g(n))
)

\k =
∅ if n < N , so

(X ∩A)\k =
⋃

n≥N

(

An ∩A ∩ [f(n), g(n))
)

\k

⊆
⋃

n≥N

((An ∩A)\f(n)) ⊆
⋃

n≥N

((An ∩A)\fA(n)).

Thus by (∗A) we have

ϕ((X ∩A) \ k) ≤
∑

n≥N

ϕ(An ∩A \ fA(n)) ≤
∑

n≥N

1

2n
= 2−N+1 < δ.

�

3. Cohen-indestructible I-mad families

If ϕ is a lower semicontinuous finite submeasure on ω then clearly ϕ is deter-
mined by ϕ ↾ [ω]<ω. Using this observation one can define forcing indestructibility
of I-MAD families for an analytic P -ideal I. The following theorem is a modifi-
cation of Kunen’s proof for existence of Cohen-indestructible MAD family from
CH (see [Ku, Chapter VIII Theorem 2.3]).

Theorem 3.1. Assume CH. For each analytic P -ideal I then there is an un-
countable Cohen-indestructible I-MAD family.

Proof: We will define the uncountable Cohen-indestructible I-MAD family {Aξ :
ξ < ω1} ⊆ I+ by recursion on ξ ∈ ω1. The family {Aξ : ξ < ω1} will be fin-AD as
well. Our main concern is that we do have a(I) > ω so it is not automatic that
{Aη : η < ξ} is not maximal for ξ < ω1.

Denote C the Cohen forcing. Let I = Exh(ϕ) be an analytic P -ideal. Let

{〈pξ, Ẋξ, δξ〉 : ω ≤ ξ < ω1} be an enumeration of all triples 〈p, Ẋ, δ〉 such that

p ∈ C, Ẋ is a nice name for a subset of ω, and δ is a positive rational number.
Write ε = limn→∞ ϕ(ω \ n) > 0. Partition ω into infinite sets {Am : m < ω}

such that limn→∞ ϕ(Am \ n) = ε for each m < ω.
Assume ξ ≥ ω and we have Aη ∈ I+ for η < ξ such that {Aη : η < ξ} is a

fin-AD so especially an I-AD family.

Claim: There is X ∈ I+ such that |X ∩Aζ | < ω for ζ < ξ.
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Proof of the claim: Write ξ = {ζi : i < ω}. By recursion on j ∈ ω we can

choose xj ∈
[

Aℓj
]<ω

for some ℓj ∈ ω such that

(i) ϕ(xj) ≥ ε/2,
(ii) xj ∩ (

⋃

i≤j Aζi
) = ∅.

Assume that {xi : i < j} is chosen. Pick ℓj ∈ ω \ {ζi : i < j}. Let m ∈ ω be such

that Aℓj ∩
⋃

{Aζi
: i ≤ j} ⊆ m. Since ϕ(Aℓj \m) ≥ ε, there is xj ∈

[

Aℓj\m
]<ω

with ϕ(xj) ≥ ε/2.
Let X =

⋃

{xj : j < ω}. Then |Aζ ∩X | < ω for ζ < ξ and limn→∞(X \ n) ≥
ε/2. �

If pξ does not force (a) and (b) below then let Aξ be X from the claim.

(a) limn→∞ ϕ̌(Ẋξ\n) > δ̌ξ,

(b) ∀ η < ξ̌ Ẋξ ∩ Ǎη ∈ I.

Assume pξ 
(a)∧(b). Let {Bξk : k ∈ ω} = {Aη : η < ξ} and {pξk : k ∈ ω} =
{p′ ∈ C : p′ ≤ pξ} be enumerations. Clearly for each k ∈ ω we have

pξk 
 lim
n→∞

ϕ̌
(

(Ẋξ\
⋃

{B̌ξl : l ≤ ǩ})\n
)

> δ̌ξ,

so we can choose a qξk ≤ pξk and a finite aξk ⊆ ω such that ϕ(aξk) > δξ and

qξk 
 ǎξk ⊆ (Ẋξ\
⋃

{B̌ξl : l ≤ ǩ})\ǩ. Let Aξ =
⋃

{aξk : k ∈ ω}. Clearly Aξ ∈ I+

and {Aη : η ≤ ξ} is a fin-AD family.
Thus A = {Aξ : ξ < ω1} ⊆ I

+ is a fin-AD family.
We show that A is a Cohen-indestructible I-MAD. Assume otherwise there

is a ξ such that pξ 
 limn→∞ ϕ̌(Ẋξ\n) > δ̌ξ ∧ ∀ η < ω1 Ẋξ ∩ Ǎη ∈ I, specially

pξ 
(a)∧(b). There is a pξk ≤ pξ and an N such that pξk 
 ϕ̌((Ẋξ ∩ Ǎξ)\Ň) < δ̌ξ.

We can assume k ≥ N , so pξk 
 ϕ̌((Ẋξ ∩ Ǎξ)\ǩ) < δ̌ξ. By the choice of qξk and aξk
we have qξk 
 ǎξk ⊆ (Ẋξ∩Ǎξ)\ǩ, so qξk 
 ϕ̌((Ẋξ∩Ǎξ)\ǩ) > δ̌ξ, a contradiction. �

4. Towers in I∗

Let I be an ideal on ω. A ⊆∗-decreasing sequence 〈Aα : α < κ〉 is a tower

in I∗ if (a) it is a tower (i.e. there is no X ∈
[

ω
]ω

with X ⊆∗ Aα for α < κ),
and (b) Aα ∈ I∗ for α < κ. Under CH it is straightforward to construct towers
in I∗ for each tall analytic P -ideal I. The existence of such towers is consistent
with 2ω > ω1 as well by the Theorem 4.2 below. Denote Cα the standard forcing
adding α Cohen reals by finite conditions.

Lemma 4.1. Let I = Exh(ϕ) be a tall analytic P -ideal in the ground model V .

Then there is a set X ∈ V C1 ∩ I such that |X ∩ S| = ω for each S ∈
[

ω
]ω
∩ V .

Proof: Since I is tall we have limn→∞ ϕ({n}) = 0. Fix a partition 〈In : n ∈ ω〉
of ω into finite intervals such that ϕ({x}) < 1

2n for x ∈ In+1 (we cannot say
anything about ϕ({x}) for x ∈ I0). Then X ′ ∈ I whenever |X ′ ∩ In| ≤ 1 for
each n.
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Let {ink : k < kn} be the increasing enumeration of In. Our forcing C adds a
Cohen real c ∈ ωω over V . Let

Xα = {ink : c(n) ≡ k mod kn} ∈ V
C ∩ I.

A trivial density argument shows that |Xα ∩ S| = ω for each S ∈ V ∩ [ω]ω. �

Theorem 4.2. 
Cω1
”There exists a tower in I∗ for each tall analytic P -ideal I.”

Proof: Let V be a countable transitive model and G be a Cω1
-generic filter

over V . Let I = Exh(ϕ) be a tall analytic P -ideal in V [G] with some lower
semicontinuous finite submeasure ϕ on ω. There is a δ < ω1 such that ϕ ↾

[ω]<ω ∈ V [Gδ] where Gδ = G ∩ Cδ, so we can assume ϕ ↾ [ω]<ω ∈ V .
Work in V [G] recursion on ω1 we construct the tower Ā = 〈Aα : α < ω1〉 in I∗

such that Ā ↾ α ∈ V [Gα].
Because I contains infinite elements we can construct in V a sequence 〈An :

n ∈ ω〉 in I∗ which is strictly ⊆∗-descending, i.e. |An\An+1| = ω for n ∈ ω.
Assume 〈Aξ : ξ < α〉 are done.

Since I is a P -ideal there is A′
α ∈ I

∗ with A′
α ⊆

∗ Aβ for β < α.
By Lemma 4.1 there is a set Xα ∈ V [Gα+1]∩ I such that Xα ∩ S 6= ∅ for each

S ∈
[

ω
]ω
∩ V [Gα].

Let Aα = A′
α\Xα ∈ V [Gα+1]∩I

∗ so S *∗ Aα for any S ∈ V [Gα]∩ [ω]ω . Hence
V [G] |=”〈Aα : α < ω1〉 is a tower in I∗”. �

Problem 4.3. Do there exist towers in I∗ for some tall analytic P -ideal I in ZFC?

5. Unbounding and dominating numbers of ideals

A supported relation (see [Vo]) is a triple R = (A,R,B) where R ⊆ A × B,
dom(R) = A, ran(R) = B, and we always assume that for each b ∈ B there is an
a ∈ A such that 〈a, b〉 /∈ R.

The unbounding and dominating numbers of R are defined as:

b(R) = min{|A′| : A′ ⊆ A ∧ ∀ b ∈ B A′ * R−1{b}},

d(R) = min{|B′| : B′ ⊆ B ∧A = R−1B′}.

For example bI = b(ωω,≤I , ω
ω) and dI = d(ωω ,≤I , ω

ω). Note that b(R) and
d(R) are defined for each R, but in general b(R) ≤ d(R) does not hold.

We recall the definition of Galois-Tukey connection of relations.

Definition 5.1 ([Vo]). Let R1 = (A1, R1, B1) and R2 = (A2, R2, B2) be sup-
ported relations. A pair of functions φ : A1 → A2, ψ : B2 → B1 is a Galois-Tukey

connection from R1 to R2, in notation (φ, ψ) : R1 � R2, if a1R1ψ(b2) whenever
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φ(a1)R2b2. In a diagram:

ψ(b2) ∈ B1
ψ

←−−−− B2 ∋ b2

R1 ⇐= R2

a1 ∈ A1
φ

−−−−→ A2 ∋ φ(a1)

We write R1 � R2 if there is a Galois-Tukey connection from R1 to R2. If
R1 � R2 and R2 � R1 then we say R1 and R2 are Galois-Tukey equivalent , in
notation R1 ≡ R2.

Fact 5.2. If R1 � R2 then b(R1) ≥ b(R2) and d(R1) ≤ d(R2).

Theorem 5.3. If I ≤RB J then (ωω,≤I , ω
ω) ≡ (ωω,≤J , ω

ω).

Proof: Fix a finite-to-one function f : ω → ω witnessing I ≤RB J .
Define φ, ψ : ωω → ωω as follows:

φ(x)(i) = max(x′′f−1{i}),

ψ(y)(j) = y(f(j)).

We prove two claims.

Claim 5.3.1. (φ, ψ) : (ωω,≤J , ω
ω) � (ωω,≤I , ω

ω).

Proof of the claim: We show that if φ(x) ≤I y then x ≤J ψ(y). Indeed,
I = {i : φ(x)(i) > y(i)} ∈ I. Assume that f(j) = i /∈ I. Then φ(x)(i) =
max(x′′f−1{i}) ≤ y(i). Since y(i) = ψ(y)(j), so

x(j) ≤ max(x′′f−1{f(j)}) ≤ y(f(j)) = ψ(y)(j).

Since f−1I ∈ J this yields x ≤J ψ(y). �

Claim 5.3.2. (ψ, φ) : (ωω,≤I , ω
ω) � (ωω,≤J , ω

ω).

Proof of the claim: We show that if ψ(y) ≤J x then y ≤I φ(x). Assume
on the contrary that y 6≤I φ(x). Then A = {i ∈ ω : y(i) > φ(x)(i)} ∈ I+. By
definition of φ, we have A = {i : y(i) > max(x′′f−1{i})}.

Let B = f−1A ∈ J+. For j ∈ B we have f(j) ∈ A and so

ψ(y)(j) = y(f(j)) > φ(x)(f(j)) = max(x′′f−1{f(j)}) ≥ x(j).

Hence ψ(y) 6≤I x, a contradiction. �

These claims prove the statement of the theorem, so we are done. �

By Fact 5.2 we have:
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Corollary 5.4. If I ≤RB J holds then bI = bJ and dI = dJ .

By Observation 2.5 this yields:

Corollary 5.5. If I is an analytic P -ideal then (ωω,≤∗, ωω) ≡ (ωω,≤J , ω
ω),

and bI = b and dI = d.

6. I-bounding and I-dominating forcing notions

Definition 6.1. Let I be a Borel ideal on ω. A forcing notion P is I-bounding if


P ∀ A ∈ I ∃B ∈ I ∩ V A ⊆ B.

P is I-dominating if


P ∃B ∈ I ∀ A ∈ I ∩ V A ⊆∗ B.

Theorem 6.2. Let I be a tall analytic P -ideal. If P is I-bounding then P is
ωω-bounding as well; if P is I-dominating then P adds dominating reals.

Proof: Assume that I = Exh(ϕ) for some lower semicontinuous finite submea-
sure ϕ. For A ∈ I let

dA(n) = min
{

k ∈ ω : ϕ(A \ k) < 2−n
}

.

Clearly if A ⊆ B ∈ I then dA ≤ dB .
It is enough to show that {dA : A ∈ I} is cofinal in 〈ωω,≤∗〉. Let f ∈ ωω.

Since I is a tall ideal we have limk→∞ ϕ({k}) = 0 but limm→∞(ω \m) = ε > 0.
Thus for all but finite n ∈ ω we can choose a finite set An ⊆ ω\f(n) such that
2−n ≤ ϕ(An) < 2−n+1, so A =

⋃

{An : n ∈ ω} ∈ I and f ≤∗ dA.
Why? We can assume that if k ≥ f(n) then ϕ({k}) < 2−n. Let n be so large

that 2−n < ε. Now if there is no a suitable An then ϕ(ω\f(n)) ≤ 2−n < ε,
a contradiction. �

The converse of the first implication of Theorem 6.2 is not true by the following
proposition.

Proposition 6.3. The random forcing is not I-bounding for any tall summable
and tall density ideal I.

Proof: Denote B the random forcing and λ the Lebesgue-measure.
If I = Ih is a tall summable ideal then we can choose pairwise disjoint sets

H(n) ∈ [ω]ω such that
∑

l∈H(n) h(l) = 1 and max{h(l) : l ∈ H(n)} < 2−n for

each n ∈ ω. Let H(n) = {lnk : k ∈ ω}. For each n fix a partition {[Bnk ] : k ∈ ω}

of B such that λ(Bnk ) = h(lnk ) for each k ∈ ω. Let Ẋ be a B-name such that


B Ẋ = {ľnk : ˇ[Bnk ] ∈ Ġ}. Clearly 
B Ẋ ∈ Ih. Ẋ shows that B is not Ih-
bounding.
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Assume on the contrary that there is a [B] ∈ B and an A ∈ Ih such that

[B] 
 Ẋ ⊆ Ǎ. There is an n ∈ ω such that

∑

ln
k
∈A

λ(Bnk ) =
∑

ln
k
∈A

h(lnk ) < λ(B).

Choose a k such that lnk /∈ A and [Bnk ]∧[B] 6= [∅]. We have [Bnk ]∧[B] 
 ľnk ∈ Ẋ\Ǎ,
a contradiction.

If I = Z~µ is a tall density ideal then for each n fix a partition {[Bnk ] : k ∈ Pn}

of B such that λ(Bnk ) = µn({k}) for each k. Let Ẋ be a B-name such that


B Ẋ = {ǩ : ˇ[Bnk ] ∈ Ġ}. Clearly 
B Ẋ ∈ Z~µ. Ẋ shows that B is not Z~µ-
bounding.

Assume on the contrary that there is a [B] ∈ B and an A ∈ Z~µ such that

[B] 
 Ẋ ⊆ Ǎ. There is an n ∈ ω such that

∑

k∈A∩Pn

λ(Bnk ) = µn(A ∩ Pn) < λ(B).

Choose a k ∈ Pn\A such that [Bnk ] ∧ [B] 6= [∅]. We have [Bnk ] ∧ [B] 
 ǩ ∈ Ẋ\Ǎ,
a contradiction. �

The converse of the second implication of Theorem 6.2 is not true as well: the
Hechler forcing is a counterexample according to the following theorem.

Theorem 6.4. If P is σ-centered then P is not I-dominating for any tall analytic
P -ideal I.

Proof: Assume that I = Exh(ϕ) for some lower semicontinuous finite submea-
sure ϕ. Let ε = limn→∞ ϕ(ω \ n) > 0.

Let P =
⋃

{Cn : n ∈ ω} where Cn is centered for each n. Assume on the

contrary that 
P Ẋ ∈ I ∧ ∀ A ∈ I ∩ V A ⊆∗ Ẋ for some P-name Ẋ .
For each A ∈ I choose a pA ∈ P and a kA ∈ ω such that

(◦) pA 
 Ǎ\ǩA ⊆ Ẋ ∧ ϕ(Ẋ \ ǩA) < ε/2.

For each n, k ∈ ω let Cn,k = {A ∈ I : pA ∈ Cn∧kA = k}, and let Bn,k =
⋃

Cn,k.
We show that for each n and k

ϕ(Bn,k \ k) ≤ ε/2.

Assume indirectly ϕ(Bn,k\k) > ε/2 for some n and k. There is a k′ such that
ϕ(Bn,k ∩ [k, k′)) > ε/2 and there is a finite D ⊆ Cn,k such that Bn,k ∩ [k, k′) =
(
⋃

D) ∩ [k, k′). Choose a common extension q of {pA : A ∈ D}. Now we have

q 

⋃

{A\ǩ : A ∈ Ď} ⊆ Ẋ and so

q 
 ε/2 < ϕ(B̌n,k ∩ [ǩ, ǩ′)) = ϕ((
⋃

Ď) ∩ [ǩ, ǩ′)) ≤ ϕ(Ẋ ∩ [ǩ, ǩ′)) ≤ ϕ(Ẋ\ǩ),

which contradicts (◦).
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So for each n and k the set ω \Bn,k is infinite, so ω \Bn,k contains an infinite
Dn,k ∈ I. Let D ∈ I be such that Dn,k ⊆

∗ D for each n, k ∈ ω.
Then, there is no n, k such that D ⊆∗ Bn,k, a contradiction. �

By this theorem an by Lemma 4.1 the Cohen forcing is neither I-dominating
nor I-bounding for any tall analytic P -ideal I.

Finally, in the rest of the paper we compare the Sacks property and the I-
bounding property.

Theorem 6.5. If P has the Sacks property then P is I-bounding for each analytic
P -ideal I.

Proof: Let I = Exh(ϕ). Assume 
P Ẋ ∈ I. Let dẊ be a P-name for an element

of ωω such that 
P dẊ(ň) = min{k ∈ ω : ϕ(Ẋ\k) < 2−ň}. We know that P is

ωω-bounding. If p 
 dẊ ≤ f̌ for some strictly increasing f ∈ ωω then by the

Sacks property there is a q ≤ p and a slalom S : ω →
[

[ω]<ω
]<ω

, |S(n)| ≤ n such
that

q 
 ∀∞ n Ẋ ∩ [f(n), f(n+ 1)) ∈ S(n).

Now let

A =
⋃

n∈ω

{D ∈ S(n) : ϕ(D) < 2−n}.

A ∈ I because ϕ(A\f(n)) ≤
∑

k≥n ϕ(A ∩ [f(k), f(k + 1)) ≤
∑

k≥n
k
2k . Clearly

q 
 Ẋ ⊆∗ Ǎ. �

A supported relation R = (A,R,B) is called Borel-relation iff there is a Polish
space X such that A,B ⊆ X and R ⊆ X2 are Borel sets. Similarly a Galois-
Tukey connection (φ, ψ) : R1 � R2 between Borel-relations is called Borel GT-

connection iff φ and ψ are Borel functions. To be Borel-relation and Borel GT-
connection is absolute for transitive models containing all relevant codes.

Some important Borel-relations:

(A): (I,⊆, I) and (I,⊆∗, I) for a Borel ideal I.

(B): Denote Slm the set of slaloms on ω, i.e. S ∈ Slm iff S : ω → [ω]<ω and
|S(n)| = 2n for each n. Let ⊑ and ⊑∗ be the following relations on ωω × Slm:

f ⊑(∗) S ⇐⇒ ∀(∞) n ∈ ω f(n) ∈ S(n).

The supported relations (ωω,⊑, Slm) and (ωω,⊑∗, Slm) are Borel-relations.

(C): Denote ℓ+1 the set of positive summable series. Let ≤ be the coordinate-
wise and ≤∗ the almost everywhere coordinate-wise ordering on ℓ+1 . (ℓ+1 ,≤, ℓ

+
1 )

and (ℓ+1 ,≤
∗, ℓ+1 ) are Borel-relations.

Definition 6.6. Let R = (A,R,B) be a Borel-relation. A forcing notion P is
R-bounding if


P ∀ a ∈ A∃ b ∈ B ∩ V aRb;
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and R-dominating if


P ∃ b ∈ B ∀ a ∈ A ∩ V aRb.

For example the property of being I-bounding/dominating is the same as being
(I,⊆∗, I)-bounding/dominating.

We can reformulate some classical properties of forcing notions:

ωω-bounding ≡ (ωω,≤(∗), ωω)-bounding

adding dominating reals ≡ (ωω,≤∗, ωω)-dominating

Sacks property ≡ (ωω,⊑(∗), Slm)-bounding

adding a slalom capturing ≡ (ωω,⊑∗, Slm)-dominating

all ground model reals

If R = (A,R,B) is a supported relation then let R⊥ = (B,¬R−1, A) where
b(¬R−1)a iff not aRb. Clearly (R⊥)⊥ = R and b(R) = d(R⊥). Now if R is a
Borel-relation then R⊥ is a Borel-relation too, and a forcing notion isR-bounding
iff it is not R⊥-dominating.

Fact 6.7. Assume R1 � R2 are Borel-relations with Borel GT-connection and P
is a forcing notion. If P isR2-bounding/dominating then P isR1-bounding/domi-
nating.

By Corollary 5.5 this yields

Corollary 6.8. For each analytic P -ideal I (1) a poset P is ≤I-bounding iff it is
ωω-bounding, (2) forcing with a poset P adds ≤I-dominating reals iff this forcing
adds dominating reals.

We will use the following theorem.

Theorem 6.9 ([Fr], 526B, 524I). There are Borel GT-connections (Z,⊆,Z) �
(ℓ+1 ,≤, ℓ

+
1 ) and (ℓ+1 ,≤

∗, ℓ+1 ) ≡ (ωω,⊑∗, Slm).

Note that there is no Galois-Tukey connection from (ℓ+1 ,≤, ℓ
+
1 ) to (Z,⊆,Z) so

they are not GT-equivalent (see [LoVe, Theorem 7]).

Corollary 6.10. If P adds a slalom capturing all ground model reals then P is
Z-dominating.

Proof: By Fact 6.7 and Theorem 6.9, adding slalom is the same as (ℓ+1 ,≤
∗, ℓ+1 )-

dominating. Let ẋ be a P-name such that 
P ẋ ∈ ℓ+1 ∧ ∀ y ∈ ℓ+1 ∩ V y ≤∗ ẋ.

Moreover let Ẋ be a P-name such that 
P Ẋ = {z ∈ ℓ+1 : |z\ẋ| < ω, ∀ n
(z(n) 6= ẋ(n) ⇒ z(n) ∈ ω)}. Let (φ, ψ) : (Z,⊆,Z) � (ℓ+1 ,≤, ℓ

+
1 ) be a Borel

GT-connection. Now if Ȧ is a P-name such that 
P ∀ z ∈ Ẋ ψ(z) ⊆∗ Ȧ then Ȧ
shows that P is Z-dominating. �

Denote D the dominating forcing and LOC the Localization forcing.
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Observation 6.11. If I is an arbitrary analytic P -ideal then the two step iter-
ation D ∗ LOC is I-dominating.

Indeed, let I ∈ V ⊆ M ⊆ N be transitive models, d ∈ M ∩ ωω be strictly

increasing and dominating over V , and S ∈ N , S : ω →
[

[ω]<ω
]<ω

, |S(n)| ≤ n
a slalom which captures all reals from M . Now if

Xn =
⋃

{A ∈ S(n) ∩ P([d(n), d(n+ 1)) : ϕ(A) < 2−n}

then it is easy to see that Y ⊆∗
⋃

{Xn : n ∈ ω} ∈ I ∩N for each Y ∈ V ∩ I.

Problem 6.12. For which analytic P -ideal I does (I,⊆(∗), I) � (ℓ+1 ,≤
(∗), ℓ+1 )

hold, or “adding slaloms” imply I-dominating, or at least LOC is I-dominating?

Problem 6.13. Does Z-dominating (or I-dominating) imply adding slaloms?

We will use the following deep result of Fremlin to prove Theorem 6.15.

Theorem 6.14 ([Fr], 526G). There is a family {Pf : f ∈ ωω} of Borel subsets of

ℓ+1 such that the following hold:

(i) ℓ+1 =
⋃

{Pf : f ∈ ωω},
(ii) if f ≤ g then Pf ⊆ Pg,
(iii) (Pf ,≤, ℓ

+
1 ) � (Z,⊆,Z) with a Borel GT-connection for each f .

Theorem 6.15. P is Z-bounding iff P has the Sacks property.

Proof: Let {Pf : f ∈ ωω} be a family satisfying (i), (ii), and (iii) in Theo-

rem 6.14, and fix Borel GT-connections (φf , ψf ) : (Pf ,≤, ℓ
+
1 ) � (Z,⊆,Z) for

each f ∈ ωω. Assume P is Z-bounding and 
P ẋ ∈ ℓ+1 . P is ωω-bounding by
Theorem 6.2 so using (ii) we have 
P ℓ

+
1 =

⋃

{Pf : f ∈ ωω ∩ V }. We can choose

a P-name ḟ for an element of ωω ∩ V such that 
P ẋ ∈ Pḟ . By the Z-bounding

property of P there is a P-name Ȧ for an element of Z∩V such that 
P φḟ (ẋ) ⊆ Ȧ,

so 
P ẋ ≤ ψḟ (Ȧ) ∈ ℓ+1 ∩ V . So P is (ℓ+1 ,≤
(∗), ℓ+1 )-bounding. By Theorem 6.9 and

Fact 6.7 P has the Sacks property.
The converse implication was proved in Theorem 6.5. �

Problem 6.16. Does the I-bounding property imply the Sacks property for each
tall analytic P -ideal I?
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