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Abstract

In this note we describe the structure of dually residuated �-monoids
(DR�-monoids) that have no non-trivial convex subalgebras.
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A dually residuated �-monoid, a DR�-monoid for short, is an algebra

(A,⊕, 0,∨,∧,�,�)

of type 〈2, 0, 2, 2, 2, 2〉 such that

(a) (A,⊕, 0,∨,∧) is a lattice-ordered monoid, i.e., (A,⊕, 0) is a monoid, (A,∨,∧)
is a lattice and ⊕ distributes over both ∨ and ∧,

(b) for any a, b ∈ A, a� b is the least element x ∈ A with x⊕ b ≥ a, and a� b
is the least element y ∈ A with b⊕ y ≥ a, and

(c) A satisfies the identities

((x � y) ∨ 0)⊕ y ≤ x ∨ y, y ⊕ ((x � y) ∨ 0) ≤ x ∨ y,
x� x ≥ 0, x� x ≥ 0.
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If the operation ⊕ is commutative then A is called a commutative DR�-monoid.
In such a case, the operations � and � coincide, and also conversely, A is
commutative whenever � = �.
Commutative DR�-monoids were originally introduced by K. L. N. Swamy

[10] in order to capture the common features of Abelian �-groups and Boolean
algebras. The above definition, omitting the commutativity of ⊕, is due to
T. Kovář [6] and allows us to consider all �-groups in the setting of DR�-monoids.
Indeed, given an arbitrary �-group (G,+,−, 0,∨,∧), then (G,+, 0,∨,∧,�,�) is
a DR�-monoid in which x� y := x− y and x� y := −y + x.
The reader familiar with residuated lattices easily recognizes that the name

“dually residuated �-monoid” says less than the definition since DR�-monoids
are equivalent to a certain proper subclass of residuated lattices. To be more
precise, by a residuated lattice we mean an algebra (L, ·, e,∨,∧,→,�) of type
〈2, 0, 2, 2, 2, 2〉, where (L, ·, e) is a monoid, (L,∨,∧) is a lattice and the equiva-
lences

a · b ≤ c iff a ≤ b→ c iff b ≤ a � c (1)

hold for all a, b, c ∈ L. Though it need not be evident at once, it not hard to
show that our DR�-monoids are termwise equivalent to those residuated lattices
satisfying the identities

x ∧ y = ((x→ y) ∧ e) · x = x · ((x � y) ∧ e). (2)

Residuated lattices that fulfil (2) were considered e.g. in [2], [5] under the name
GBL-algebras.
Now, we shortly review some relevant concepts from [7]. Given aDR�-monoid

A, we define the absolute value of x ∈ A by

|x| := x ∨ (0� x) = x ∨ (0 � x).

A non-empty subset I of A is called an ideal if

(I1) a⊕ b ∈ I for all a, b ∈ I,
(I2) a ∈ I and |b| ≤ |a| imply b ∈ I.
By a non-trivial ideal of we mean an ideal I with {0} ⊂ I ⊂ A.
The set I (A) of all ideals of A partially ordered by set-inclusion forms an

algebraic distributive lattice in which infima agree with set-theoretical intersec-
tions. Hence for every X ⊆ A there exists the smallest ideal I(X) containing
X ; for ∅ �= X we have

I(X) = {a ∈ A : |a| ≤ |x1| ⊕ · · · ⊕ |xn| for some x1, . . . , xn ∈ X,n ∈ N}.

It can be easily proved that I ⊆ A is an ideal if and only if I is a convex
subalgebra of A.
The congruence kernels are characterized as the so-called normal ideals: An

ideal I of A is said to be normal if

a� b ∈ I iff a� b ∈ I
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for every a, b ∈ A. If I is a normal ideal then the relation ΘI defined via

(a, b) ∈ ΘI iff (a� b) ∨ (b � a) ∈ I

is a congruence with [0]ΘI = I, and conversely, for any congruence Θ on A,
I = [0]Θ is a normal ideal such that ΘI = Θ. Therefore, the congruence lattice
of A is isomorphic to the lattice of all normal ideals of A. For the sake of brevity,
we write A/I for the quotient algebra A/Θ, where I = [0]Θ, and the elements
of A/I are denoted by a/I rather than [a]Θ.

There are two basic kinds of DR�-monoids from which every DR�-monoid
can be built using direct products: �-groups and lower bounded DR�-monoids,
i.e., DR�-monoids having 0 as a least element.
Let A be an arbitrary DR�-monoid. Put

GA := {a ∈ A : a⊕ (0� a) = 0 = (0� a)⊕ a}

and
SA := {a ∈ A : 0� a = 0} = {a ∈ A : 0 � a = 0}.

Both GA and SA are ideals of A; obviously, the first one is an �-group and the
second one is a lower bounded DR�-monoid. T. Kovář proved in [6] that A is the
direct sum of GA and SA. The same result for GBL-algebras was independently
obtained by N. Galatos and C. Tsinakis (see [2]).

Assume that a DR�-monoid A has no non-trivial ideals. Since both GA and
SA are (normal) ideals of A, it is clear that either A = GA or A = SA. In the
former case, A is an �-group having no non-trivial convex �-subgroups, and hence
it is an Archimedean totally ordered group which is isomorphic to a subgroup
of the additive group of reals equipped with the usual order. Therefore, in the
sequel we concentrate on lower bounded DR�-monoids which have no non-trivial
ideals.

For every x, y ∈ A and n ∈ N0, we inductively define

0� x := 0, (n+ 1)� x := n� x⊕ x,

and
x�0 y := x, x�n+1 y := (x�n y)� y;

x�n y is defined analogously.

Lemma 1 Let A be a lower bounded DR�-monoid. The following are equiva-
lent:

(a) A has no non-trivial ideals;

(b) for every a, b ∈ A, a �= 0, there exists n ∈ N such that b ≤ n� a;

(c) for every a, b ∈ A, a �= 0, there exists n ∈ N such that b�n a = 0;

(d) for every a, b ∈ A, a �= 0, there exists n ∈ N such that b�n a = 0.
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Proof Obviously, (b)–(d) are equivalent. Moreover, since

I(a) := I({a}) = {b ∈ A : b ≤ n� a for some n ∈ N},

it follows that each of these conditons is equivalent to (a). �

Lemma 2 Let A be a lower bounded DR�-monoid and H be its normal ideal.
Then the ideal lattice I (A/H) of the quotient DR�-monoid A/H is isomorphic
to the interval [H,A] of the lattice I (A).

Proof If I ∈ I (A) and H ⊆ I then

φ(I) := {x/H : x ∈ I}

is an ideal of A/H . Conversely, if J ∈ I (A/H) then

ψ(J) := {x ∈ A : x/H ∈ J}

is an ideal of A such that H ⊆ ψ(J). It is easily seen that the mappings φ and
ψ are mutually inverse order-preserving bijections between I (A/H) and [H,A]
ordered by set-theoretical inclusion. �

An ideal I ∈ I (A) is called maximal if I ⊂ A and there is no ideal J ∈ I (A)
such that I ⊂ J ⊂ A. In view of Lemma 2 we have:

Proposition 3 Let A be a lower bounded DR�-monoid and H be a normal ideal
with H ⊂ A. Then H is maximal if and only if the quotient DR�-monoid A/H
has no non-trivial ideals.

Lemma 4 Let A be a lower bounded DR�-monoid that has no non-trivial ideals.
Then for every a, b ∈ A, a �= 0,

a� b = a =⇒ b = 0, a� b = a =⇒ b = 0.

Proof We show that the set

Ja := {x ∈ A : a� x = a}

is an ideal of A. Clearly, 0 ∈ Ja. If x, y ∈ Ja then a� (x⊕y) = (a�y)�x = a�
x = a, so that x⊕y ∈ Ja. Finally, if x ∈ Ja and y ≤ x then a = a�x ≤ a�y ≤ a,
and hence a = a� y.
However, since a /∈ Ja and A has no non-trivial ideals, it follows that Ja =

{0}, and consequently, a� b = a entails b = 0 as claimed. �

Lemma 5 Let A be a lower bounded DR�-monoid having no non-trivial ideals.
If 0 < x ≤ y < a and a� x = a� y or a� x = a� y, then x = y.

Proof We have y = x∨y = (y�x)⊕x, so that a�x = a�y = a�((y�x)⊕x) =
(a� x) � (y � x). Since a� x �= 0, we obtain y � x = 0 by Lemma 4, yielding
y ≤ x, so x = y. �
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Theorem 6 Let A be a DR�-monoid that has no non-trivial ideals. Then A
satisfies the identities

x ∧ y = x� ((x � y) ∨ 0) = x� ((x� y) ∨ 0). (3)

Proof In the case when A is an �-group the identities (3) evidently hold.
Hence assume that A is a lower bounded DR�-monoid. Note that x � ((x �
y) ∨ 0) = x � (x � y) and x � ((x � y) ∨ 0) = x � (x � y). If x ≤ y then
x � (x � y) = x � 0 = x = x ∧ y and also x � (x � y) = x = x ∧ y. Further,
let x � y, i.e., x ∧ y < x. Since both x � (x � y) and x � (x � y) are common
lower bounds of {x, y}, we may suppose that 0 < x ∧ y < x. In this case
we have 0 < x � (x � y) ≤ x ∧ y < x because x � (x � y) = 0 would mean
x = x� y yielding y = 0 which is impossible due to 0 < x ∧ y. Finally, we have
x � (x � (x � y)) = x � y = x � (x ∧ y) which entails x � (x � y) = x ∧ y by
Lemma 5. By replacing � and � we get x� (x� y) = x ∧ y. �

Therefore, a DR�-monoid without non-trivial ideals is either an �-group or
is lower bounded and verifies the identities

x ∧ y = x� (x� y) = x� (x� y). (4)

SuchDR�-monoids were investigated in [8], [9] and called here generalized pseudo
MV -algebras (GPMV -algebras for short). The name is motived by the fact that
bounded GPMV -algebras are termwise equivalent to pseudo MV -algebras. In
the literature, there exist two classes of algebras that are equivalent to GPMV -
algebras, namely, integral GMV-algebras and Wajsberg pseudo-hoops (see [2]
and [3], respectively).
By [9], every GPMV -algebra A can be embedded into the positive cone

G(A)+ of an �-group G(A) such that, assuming A ⊆ G(A), A is a lattice ideal
of G(A)+ which generates G(A)+ as a semigroup, and the operations �, � on
A are given as follows:

a� b := (a− b) ∨ 0, a� b := (−b+ a) ∨ 0.

Moreover, the ideal lattice I (A) of A and the lattice C (G(A)) of all convex
�-subgroups of G(A) are isomorphic under the mapping assigning to each I ∈
I (A) the convex �-subgroup of G(A) generated by I. In view of the well-
known fact that an �-group is totally ordered exactly if its lattice of all convex
�-subgroups is a chain, this means that A is totally ordered if and only if so is
G(A), and hence we gain:

Corollary 7 Every DR�-monoid which has no non-trivial ideals is totally or-
dered.

In [9], the Archimedean property for GPMV -algebra is defined in the fol-
lowing way. Given a GPMV -algebra A, we introduce a partial addition + by
setting a+ b := a⊕ b iff (a⊕ b)� b = a, or equivalently, (a⊕ b)� a = b. Observe
that if A ⊆ G(A), then + is the restriction of the group addition to those pairs
of elements of A whose sum belongs to A.
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This partial operation is associative in the sense that a+ b and (a + b) + c
exist iff b+ c and a+ (b + c) exist and (a+ b) + c = a+ (b + c), and therefore,
for any a ∈ A, n ∈ N0, we may define

0 · a := 0, (n+ 1) · a := n · a+ a.

Accordingly, we write a� b whenever n·a exists and n·a ≤ b for all n ∈ N. Now,
we say that a GPMV -algebra A is Archimedean if a �� b for all a, b ∈ A \ {0}.
As proved in [9], a GPMV -algebraA is Archimedean if and only if G(A) is an

Archimedean �-group, hence all ArchimedeanGPMV -algebras are commutative.
Therefore we conclude:

Theorem 8 Let A be a DR�-monoid having no non-trivial ideals. Then A is
either an Archimedean totally ordered group or A is Archimedean totally ordered
GPMV -algebra.

In fact, if A is a totally ordered Archimedean GPMV -algebra then the �-
group G(A) is isomorphic to a subgroup of the additive group R of real numbers
with the usual order, and consequently, we may always assume that A is a subset
of R+; the operations � and � agree and we have a� b = a� b = max{a− b, 0}.

Corollary 9 Let A be a lower bounded DR�-monoid. If H is a normal ideal
of A which is simultaneously a maximal ideal, then A/H is a totally ordered
Archimedean GPMV -algebra.
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