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Abstract

The simple incidence structure D(A, 2) formed by points and un-
ordered pairs of distinct parallel lines of a finite affine plane A = (P ,L) of
order n > 2 is a 2− (n2, 2n, 2n− 1) design. If n = 3, D(A, 2) is the com-
plementary design of A. If n = 4, D(A, 2) is isomorphic to the geometric
design AG3(4, 2) (see [2; Theorem 1.2]). In this paper we give necessary
and sufficient conditions for a 2− (n2, 2n, 2n− 1) design to be of the form
D(A, 2) for some finite affine plane A of order n > 4. As a consequence
we obtain a characterization of small designs D(A, 2).

Key words: 2− (n2, 2n, 2n− 1) designs; incidence structure; affine
planes.
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By a 2 − (v, k, λ) design we mean a pair D = (P ,B) where P is a set of
v points and B is a collection of distinguished subsets of P called blocks such
that each block contains k points and any two distinct points are contained in
exactly λ common blocks1. Our main result is the following

Theorem 1 Let n be an integer with n > 4 and let D = (P ,B) be a
2 − (n2, 2n, 2n − 1) design. Then D is of the form D(A, 2) if and only if
the following two conditions are satisfied: (c1) any three distinct points of D
*Supported by MIUR, Università di Palermo.
1For further definitions (and basic results) about 2-designs see [1].
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are contained in exactly 3 or n − 1 common blocks; (c2) if X1, X2, . . . , Xn−1

are n − 1 distinct blocks of D such that |X1 ∩ X2 ∩ · · · ∩ Xn−1| > 2, then
X1 ∩X2 ∩ · · · ∩Xn−1 = Xi ∩Xj whenever i �= j.

Before proving the theorem we need some preliminary results about
2− (n2, 2n, 2n− 1) designs.

Lemma 1 Suppose A = (P ,L) is a finite affine plane of order n > 4 and let
D(A, 2) be the system of points and unordered pairs of distinct parallel lines
of A. Then D(A, 2) is a 2− (n2, 2n, 2n−1) design satisfying the following prop-
erties:

(1) any three distinct collinear points of A are contained in exactly n − 1
blocks of D(A, 2);

(2) any three distinct non-collinear points of A are joined by precisely 3 blocks
of D(A, 2);

(3) if X1, X2, . . . , Xn−1 are n − 1 distinct blocks of D(A, 2) such that |X1 ∩
X2 ∩ · · · ∩ Xn−1| > 2, then X1 ∩ X2 ∩ · · · ∩ Xn−1 = Xi ∩ Xj whenever
i �= j.

Proof This follows directly from the definition of D(A, 2). �

Lemma 2 Let n be an integer greater than 4 and let D = (P ,B) be a
2 − (n2, 2n, 2n − 1) design any three distinct points of which are contained in
exactly 3 or n− 1 blocks. Then for any choice of two distinct points x, y in D
there are precisely n− 2 points z ∈ P \ {x, y} with the property that x, y, z are
joined by n− 1 distinct blocks of D.

Proof Let x, y be any two distinct points of D and denote by c the number
of points z ∈ P \ {x, y} with the property that x, y, z are joined by n − 1
blocks of D. Then 0 ≤ c ≤ n2 − 2 and n2 − 2 − c is the number of points
w ∈ P \{x, y} with the property that x, y, w are joined by exactly 3 blocks of D.
Thus, counting the point block pairs (p, C) with x �= p �= y and {x, y, p} ⊂ C,
we find 3(n2 − 2 − c) + (n − 1)c = (2n − 2)(2n − 1) which can be written as
(n− 4)c = (n− 4)(n− 2). Hence, since n− 4 �= 0, c = n− 2 and the lemma is
proved. �

Lemma 3 Let n be an integer with n > 4 and let D = (P ,B) be a
2−(n2, 2n, 2n−1) design. If X1, X2, . . . , Xn−1 are n−1 distinct blocks of D such
that X1∩X2∩· · ·∩Xn−1 = Xi∩Xj whenever i �= j, then |X1∩X2∩· · ·∩Xn−1| ≥ n
with equality if and only if X1 ∪X2 ∪ . . .Xn−1 = P.

Proof Write X1 ∪X2 ∪ · · · ∪Xn−1 = l ∪ (X1 \ l) ∪ (X2 \ l) ∪ · · · ∪ (Xn−1 \ l),
where l = X1∩X2∩· · ·∩Xn−1. Then |X1∪X2∪· · ·∪Xn−1| = a+(n−1)(2n−a) =
n2 + (n − 2)(n − a) with a = |l|. Thus, since D has n2 points, we obtain
n2 ≥ n2 + (n − 2)(n − a) which, since n > 4, gives n ≤ a. Moreover n = a is
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equivalent to ask |X1 ∪X2 ∪ · · · ∪Xn−1| = n2, i.e. X1 ∪X2 ∪ · · · ∪Xn−1 = P ,
and the lemma is proved. �

Proof of Theorem 1 In view of Lemma 1, we have only to prove that D =
D(A, 2) for some affine plane A (of order n), provided conditions (c1) and (c2)
hold. DefineA = (P ,L) by taking P as the set of points and the set L = {l ⊂ P :
|l| > 2, l = L1 ∩ L2 ∩ · · · ∩ Ln−1 with L1, L2, . . . , Ln−1 distinct blocks of D} as
the set of lines. By Lemma 2, L is non empty. Let l ∈ L and let L1, L2, . . . , Ln−1

be the n−1 distinct blocks ofD such that l = L1∩L2∩· · ·∩Ln−1. Then condition
(c2) gives l = Li ∩ Lj whenever i �= j so that, by Lemma 3, l contains at least
n points. On the other hand, as any three distinct points of l are joined by the
n− 1 blocks Li (i = 1, 2, . . . , n− 1), it follows from Lemma 2 that l contains at
most 2 + (n− 2) = n points. Thus we must have n ≤ |l| ≤ n and consequently
|l| = n. Let x, y be any two distinct points of D. By Lemma 2 we may choose
a point z ∈ P \ {x, y} and n− 1 distinct blocks Z1, Z2, . . . , Zn−1 ∈ B such that
{x, y, z} ⊆ Z1 ∩ Z2 ∩ · · · ∩ Zn−1. Therefore h = Z1 ∩ Z2 ∩ . . . Zn−1 belongs to
L and passes through both x and y. Assume that {x, y} ⊆ k for some k ∈ L
with k �= h. Writing k as the intersection k = W1 ∩ W2 ∩ . . .Wn−1 of n − 1
distinct blocksW1, W2, . . . , Wn−1 ∈ B we obtain {x, y, p} ⊆ Z1∩Z2∩· · ·∩Zn−1

or {x, y, p} ⊆ W1 ∩ W2 ∩ · · · ∩ Wn−1 whenever p ∈ h ∪ k is a point such that
x �= p �= y. Then from Lemma 2 we deduce |h ∪ k| ≤ 2 + (n − 2) = n which
contradicts our assumption k �= h and shows that h is the unique element in
L containing {x, y}. Thus each l ∈ L has n points and each pair of points is
on exactly one common point set m ∈ L: this is sufficient to conclude that
A = (P ,L) is a finite affine plane of order n. Note that such a plane A = (P ,L)
has the properties: (i) for any line l ∈ L and any point x ∈ P , x /∈ l, there is
just one block of D containing both l and x; (ii) if a block C ∈ B contains a
line h ∈ L and if y ∈ C is a point not on h, then C = h ∪ k where k ∈ L is the
only line of A through y not intersecting h. Property (i) follows from the fact
that (by condition (c2) and Lemma 3) the point set P can be written as disjoint
union P = l∪ (L1 \ l)∪ (L2 \ l)∪· · ·∪ (Ln−1 \ l), if L1, L2, . . . , Ln−1 are the n−1
distinct blocks of D through the line l ∈ L. To show (ii) we proceed as follows.
Denote by k the line of A through y parallel to h. Let z ∈ C \ h be a point
distinct from y and denote by l the line of A joining y to z. We claim that l = k.
In fact l �= h and l = W1 ∩ W2 ∩ · · · ∩ Wn−1 for suitable n − 1 distinct blocks
W1, W2, . . . , Wn−1 ∈ B. Suppose there is a point w ∈ h ∩ l. Then y, z, w are
three distinct points belonging to l and, by condition (c1), there is no block in
D containing {y, z, w}, apart from the blocks Wi. But h ⊂ C forces w ∈ C and
consequently {y, z, w} ⊂ C. Thus we have C = Wi for some i ∈ {1, 2, . . . , n−1}
so that l ⊂ C. Then l ∪ h ⊆ C and there is just one point p ∈ C such that
p /∈ l ∪ h, since |C| = 2n = 1 + |l ∪ h|. As p belongs to n + 1 lines of A, we may
choose a line s ∈ L through p such that w /∈ s and s meets both l and h. Since
C = {p} ∪ l ∪ h, we have that s intersects C in exactly three points, namely
p, l ∩ s and h ∩ s. On the other hand, if S1, S2, . . . , Sn−1 are the n− 1 distinct
blocks of D such that s = S1 ∩ S2 ∩ · · · ∩ Sn−1, we infer from condition (c1)
that S1, S2, . . . , Sn−1 are the only blocks of D containing p, l ∩ s, h ∩ s. Since
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{p, l ∩ s, h ∩ s} ⊂ C, we obtain C = Sj for some j ∈ {1, 2, . . . , n− 1} and hence
s ⊂ C. Therefore s = s ∩ C consists of three points, a contradiction. Thus l
and h do not intersect and l is the unique line of A through y not intersecting
h, i.e. l = k. Therefore z ∈ k. As this is true for every point z ∈ C \ h distinct
from y and |C \ h| = n = |k|, we may conclude that C \ h = k. So C = h ∪ k
and (ii) holds.
As any parallel class of the affine plane A = (P ,L) consists of n lines and

A has n + 1 parallel classes, we infer from (i) and (ii) that D = (P ,B) contains
exactly (n + 1)n(n−1)

2 blocks X of the form X = l∪m with l, m distinct parallel

lines of A. But any 2 − (n2, 2n, 2n− 1) design has precisely b = (n + 1)n(n−1)
2

blocks. Then we must have

B = {X ⊂ P : X = l ∪m with l, m distinct parallel lines of A}

and hence D = D(A, 2). The theorem is proved. �

Since up to isomorphism there is just one affine plane of order 5, 7 or 8 we
have the following characterization of small designs D(A, 2).

Corollary 1 Suppose n is one of the numbers 5, 7, 8 and let A(n) be the de-
sarguesian affine plane of order n. There exists up to isomorphisms exactly
one 2 − (n2, 2n, 2n − 1) design D = (P ,B) satisfying conditions (c1), (c2) of
Theorem 1, namely the 2-design D(A(n), 2).

We end our investigation with a few remarks

Remark 1 If A = (P ,L) is a finite affine plane of order n > 4, then 0, 4, n
are the intersection numbers of the 2 − (n2, 2n, 2n − 1) design D(A, 2): i.e.
{0, 4, n} = {|X ∩ Y | : X, Y are two distinct blocks of D(A, 2)}.

Remark 2 There is no plane of order n = 6, but there is an example of a
2 − (36, 12, 11) design produced by H. Hanany [3], Table 5.23, p. 343. The
2 − (25, 10, 9) design D = (P ,B) exhibited by H. Hanany, loc. cit. Table 5.23,
p. 334 is not of the form D(A, 2): since D = (P ,B) admits 8 as an intersection
number (i.e. |X ∩ Y | = 8 for suitable distinct blocks X, Y ∈ B).
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