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Abstract

It is shown that every directoid equipped with sectionally switching
mappings can be represented as a certain implication algebra. Moreover,
if the directoid is also commutative, the corresponding implication algebra
is defined by four simple identities.
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The concept of directoid was introduced by J. Ježek and R. Quackenbush
[4] in the sake to axiomatize algebraic structures defined on upward directed
ordered sets. In certain sense, directoids generalize semilattices. For the reader
convenience, we repeat definitions and basic properties of these concepts.
An ordered set (A;≤) is upward directed if U(x, y) �= ∅ for every x, y ∈ A,

where U(x, y) = {a ∈ A; x ≤ a and y ≤ a}. Elements of U(x, y) are referred to
be common upper bounds of x, y. Of course, if (A;≤) has a greatest element
then it is upward directed.
Let (A;≤) be an upward directed set and � denots a binary operation on A.

The pair A = (A;�) is called a directoid if

(i) x � y ∈ U(x, y) for all x, y ∈ A;

(ii) if x ≤ y then x � y = y and y � x = y.
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36 Ivan CHAJDA

If, moreover, the operation � is commutative, A is called a commutative direc-
toid.

Example 1 Consider an ordered set A = {a, b, c, d, 1} whose diagram is visu-
alized in Fig. 1.
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Fig. 1

Define a � b = d, b � a = c, c � d = d � c = 1 and for other couples x, y ∈ A by
the condition (ii). Then A = (A;�) is a directoid which is not commutative.

Of course, every ∨-semilattice is a commutative directoid. When we change
in our Example 1 the definition of � only in one instance, i.e. we put b� a = d,
the resulting algebra is a commutative directoid which is not a semilattice.
The following axiomatization of directoids was involved in [4]:

Proposition 1 A groupoid A = (A;�) is a directoid if and only if it satisfies
the following identities

(D1) x � x = x;

(D2) (x � y) � x = x � y;

(D3) y � (x � y) = x � y;

(D4) x � ((x � y) � z) = (x � y) � z.

Then a binary relation ≤ defined on A by the rule

x ≤ y if and only if x � y = y (R)

is an order and x � y ∈ U(x, y) for each x, y ∈ A.
A groupoid A = (A;�) is a commutative directoid if and only if it satisfies

the identities (D1), (D4) and

(D5) x � y = y � x.

Let us note that if a directoid A = (A;�) is associative, i.e. if it satisfies
the identity x � (y � z) = (x � y) � z then it is also commutative and hence a
semilattice.
Of course, every upward directed set (A;≤) can be converted into a (co-

mutative) directoid whenever one assignes to a couple x, y ∈ A an element
λ(x, y) ∈ U(x, y) such that for x ≤ y we pick up λ(x, y) = λ(y, x) = y. Then
for x� y = λ(x, y), (A;�) is a directoid; if, moreover, λ(x, y) = λ(y, x) for every
pair x, y of A, the directoid is commutative.
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Let (A;≤, 1) be an ordered set with a greatest element 1. For p ∈ A, the
interval [p, 1] will be called a section. A mapping f of [p, 1] into itself will
be called a sectional mapping. To distinguish sectional mappings on different
sections, we introduce the following notation: if f is a sectional mapping on
[p, 1] and x ∈ [p, 1] then f(x) will be denoted by xp. A sectional mapping on
[p, 1] is called a switching mapping if pp = 1 and 1p = p and it is called an
involution if xpp = x for each x ∈ [p, 1]. Of course, any involution is a bijection
and if a sectional mapping on [p, 1] is a switching involution then

xp = 1 iff x = p and xp = p iff x = 1.

(A;≤, 1) will be called with sectionally switching involutions if there is a sec-
tional switching involution on the section [p, 1] for each p ∈ A.
The concept of implication algebra was introduced by J. C. Abbott [1]. It

is a groupoid A = (A; ◦) with a distinguished element 1 (which is an algebraic
constant, namely A satisfies x ◦ x = 1) in which an order ≤ can be induced by
x ≤ y if and only if x ◦ y = 1. It was shown [1] that (A;≤) is a semilattice
with a greatest element 1 where x∨ y = (x ◦ y) ◦ y and, moreover, every section
[p, 1] is equipped by a sectional antitone involution xp = x ◦ p (which is in
fact a complementation in this section). This concept was generalized in [2]
and applied in [3] for axiomatization of logical connective implication in many-
valued logics. Let us note the name implication algebra express the fact that
x ◦ y is interpreted as a connective implication x ⇒ y.

Lemma 1 Let A = (A; ◦, 1) be an algebra of type (2, 0) satisfying the following
conditions

(A1) x ◦ x = 1, x ◦ 1 = 1;
(A2) x ◦ y = 1 implies y = (y ◦ x) ◦ x;

(A3) x ◦ ((((x ◦ y) ◦ y) ◦ z) ◦ z) = 1.
Define a binary relation ≤ on A by the setting

x ≤ y if and only if x ◦ y = 1. (∗)

Then (A;≤) is an ordered set with a greatest element 1 where for each p ∈ A
the mapping x �→ xp = x ◦ p is a sectional switching involution on [p, 1].

Proof By (A1) and (A2) we infer immediately

1 ◦ x = (x ◦ x) ◦ x = x. (∗∗)

Due to (A1), the relation ≤ is reflexive and x ≤ 1 for each x ∈ A. Suppose x ≤ y
and y ≤ x. Then x ◦ y = 1, y ◦ x = 1 and, by (A2), y = (y ◦ x) ◦ x = 1 ◦ x = x
thus ≤ is antisymmetrical. Suppose x ≤ y and y ≤ z. Then x ◦ y = 1, y ◦ z = 1
and by (A1) and (A3) we have

x◦z = x◦(1◦z) = x◦((y◦z)◦z) = x◦(((1◦y)◦z)◦z) = x◦((((x◦y)◦y)◦z)◦z) = 1

thus x ≤ z proving transitivity of ≤.
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Now, let p ∈ A and x ∈ [p, 1]. Then p ≤ x and hence p ◦ x = 1. Due to (A2)
we conclude xpp = (x ◦ p) ◦ p = x thus every sectional mapping x �→ xp = x ◦ p
is an involution on [p, 1]. Applying (A1) and (∗∗) we infer that it is a switching
mapping. �

Lemma 2 Let A = (A; ◦, 1) satisfy (A1), (A2), (A3) and

(A4) y ◦ (x ◦ y) = 1;

(A5) x ◦ ((x ◦ y) ◦ y) = 1.

Then (x ◦ y) ◦ y ∈ U(x, y) for each x, y ∈ A.

Proof By Lemma 1, ≤ defined by (∗) is an order on A. Replace x by x ◦ y
in (A4) we obtain y ◦ ((x ◦ y) ◦ y) = 1 thus y ≤ (x ◦ y) ◦ y. By (A5) we have
x ≤ (x ◦ y) ◦ y thus (x ◦ y) ◦ y ∈ U(x, y). �

Since every implication algebra in the sense of [1] satisfies (A1)–(A5), it mo-
tivates us to introduce the following concept: An algebraA = (A; ◦, 1) satisfying
(A1)–(A5) will be called a weak d−implication algebra. We can state

Theorem 1 Let A = (A; ◦, 1) be a weak d-implication algebra. Define a binary
operation � on A by

x � y = (x ◦ y) ◦ y

and for each p ∈ A define xp = x ◦ p. Then D(A) = (A;�) is a directoid with
the greatest element 1 with sectionally switching involutions whose induced order
coincides with that of A.

Proof Define x � y = (x ◦ y) ◦ y and xp = x ◦ p, for x ∈ [p, 1].
(a) Let x ◦ y = 1. Then x � y = (x ◦ y) ◦ y = 1 ◦ y = y.
(b) Let ≤ be the induced order on A. By (A4) we have x ◦ y ∈ [y, 1]. Suppose
now x � y = y. Then, since the sectional mapping on [y, 1] is an involution, we
infer

x ◦ y = (x ◦ y)yy = ((x ◦ y) ◦ y) ◦ y = (x � y) ◦ y = y ◦ y = 1.

We have shown x ◦ y = 1 if and only if x � y = y thus the order on A defined
by (∗) coincides with that of (A;�) defined by (R). The fact that (A;�) is a
directoid follows directly by Lemma 2 and the fact that x ≤ y gets x � y =
(x ◦ y) ◦ y = 1 ◦ y = y and, by (A2), also y � x = (y ◦ x) ◦ x = y. By Lemma 1,
sectional mappings x �→ xp for x ∈ [p, 1] are switching involutions. �

Example 2 Let A = {a, b, c, d, 1} and the operation ”◦” on A is given by the
table

◦ a b c d 1
a 1 c 1 1 1
b d 1 1 1 1
c d d 1 d 1
d c c c 1 1
1 a b c d 1
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One can easily verify the conditions (A1) – (A5) thus A = (A; ◦, 1) is a weak
d-implication algebra. For � defined by x � y = (x ◦ y) ◦ y we obtain just the
directoid depicted in Example 1.

To show that directoids with sectional switching involutions can be repre-
sented by weak d-implication algebras, we need to prove the converse of Theo-
rem 1.

Theorem 2 Let D = (D;�, 1) be a directoid with a greatest element 1, ≤ its
induced order. Let for each p ∈ D there exists a sectional switching involution
x �→ xp on [p, 1]. Define

x ◦ y = (x � y)y.

Then A(D) = (D; ◦, 1) is a weak d-implication algebra.

Proof Since y ≤ x � y in D, we have x � y ∈ [y, 1] and hence the definition of
the new operation ”◦” is sound. Moreover, (x ◦ y) ◦ y = (x � y)yy = x � y.
We have to verify the conditions (A1)–(A5).

(A1): x ◦ x = (x � x)x = xx = 1 and x ◦ 1 = (x � 1)1 = 11 = 1.

(A2): Suppose x◦ y = 1. Then (x�y)y = 1 thus (since the sectional mapping is
a switching bijection) also x� y = y. Conversely, if x� y = y then x ◦ y = 1, i.e.
the order induced on D coincides with that given by (∗) in Theorem 1. Hence,
if x ◦ y = 1 then x ≤ y thus y ∈ [x, 1], i.e. (y ◦ x) ◦ x = yxx = y.

(A3): By (D4) we have x ≤ (x � y) � z thus

x ◦ ((((x ◦ y) ◦ y) ◦ z) ◦ z) = x ◦ ((x � y) � z) = 1.

(A4): Since x� y ∈ [y, 1], we have x ◦ y = (x� y)y ∈ [y, 1] thus y ≤ x ◦ y whence
y ◦ (x ◦ y) = 1.

(A5): Since y ≤ x � y we have

(x ◦ y) ◦ y = ((x � y)y � y)y = (x � y)yy = x � y.

Thus x ≤ x � y = (x ◦ y) ◦ y proving x ◦ ((x ◦ y) ◦ y) = 1. �

In what follows, we modify our results for commutative directoids. For this,
define a one more concept.
An algebra A = (A; ◦, 1) of type (2,0) is called a d-implication algebra if it

satisfies the identities (A1), (A3) and

(B1) (x ◦ y) ◦ y = (y ◦ x) ◦ x;

(B2) ((x ◦ y) ◦ y) ◦ y = x ◦ y.

The fact that every d-implication algebra is also a weak d-implication algebra
will be clear from the next theorems. Let us only mention that d-implication
algebras are determined by identities and hence they form a variety.
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Lemma 3 Let A = (A; ◦, 1) be a d-implication algebra. Define a binary relation
≤ on A by the setting x ≤ y if and only if x ◦ y = 1. Then ≤ is an order on A
and 1 is a greatest element.

Proof By (A1), ≤ is reflexive. Suppose x ≤ y and y ≤ x. Then x ◦ y = 1,
y ◦ x = 1 and, due to (B1), also x = 1 ◦ x = (y ◦ x) ◦ x = (x ◦ y) ◦ y = 1 ◦ y = y,
i.e. ≤ is antisymmetrical. Transitivity of ≤ can be shown identically as in the
proof of Lemma 1. By (A1), x ≤ 1 for each x ∈ A. �

Theorem 3 Let A = (A; ◦, 1) be a d-implication algebra. Define

x � y = (x ◦ y) ◦ y

and for x ∈ [y, 1] let xy = x ◦ y. Then C(A) = (A;�) is a commutative directoid
with a greatest element 1 and with sectionally switching involutions.

Proof By Lemma 3, (A;≤) is an ordered set where x ≤ y if and only if x◦y = 1
and 1 is a greatest element of (A;≤). Due to (B1) we infer x � y = y � x.
By (B1) and (A3) we have

x ◦ (x � y) = x ◦ ((x ◦ y) ◦ y) = x ◦ ((((x ◦ y) ◦ y) ◦ y) ◦ y) = 1

thus x ≤ x � y. Analogously y ≤ y � x = x � y thus x � y ∈ U(x, y). Further, if
x ≤ y then

x � y = (x ◦ y) ◦ y = 1 ◦ y = y.

We have shown that (A;�) is a commutative directoid. Analogously as in the
previous proofs, the induced order of (A;�) coincides with ≤. Hence, 1 is a
greatest element of (A;�).
Now, let y ∈ A and x ∈ [y, 1]. Then y ≤ x and hence xyy = (x ◦ y) ◦ y =

x � y = x. Further, yy = y ◦ y = 1 and 1y = 1 ◦ y = y thus for each y ∈ A the
mapping x �→ xy is a sectional switching involution on [y, 1]. �

Theorem 4 Let C = (C;�, 1) be a commutative directoid with a greatest ele-
ment 1. Let ≤ be its induced order and for each p ∈ C there exists a sectional
switching involution x �→ xp on [p, 1]. Define

x ◦ y = (x � y)y.

Then A(C) = (C; ◦, 1) is a d-implication algebra.

Proof It was shown in Theorem 2 that ” ◦ ” is correctly defined operation on
C satisfying (A1) and (A3), and that (x ◦ y) ◦ y = x � y. Since x � y = y � x,
(B1) is evident. It remains to prove (B2). Since y ≤ x � y, we derive

((x ◦ y) ◦ y) ◦ y = (x � y) ◦ y = (x � y)y = x ◦ y. �



Directoids with sectionally switching involutions 41

Remark 1 Let A = (A; ◦, 1) be a d-implication algebra, C(A) the induced
commutative directoid and A(C(A)) the induced d-implication algebra. Denote
by • the binary operation in A(C(A)). Then

x • y = (x � y)y = ((x ◦ y) ◦ y) ◦ y = x ◦ y

by (B2) thus A(C(A)) = A.

Remark 2 Let C = (C;�, 1) be a commutative directoid with 1 and with
sectionally switching involutions. Let A(C) be the induced d-implication alge-
bra and C(A(C)) the induced directoid. Denote by ∪ the binary operation in
C(A(C)). Since x � y ∈ [y, 1], we derive

x ∪ y = (x ◦ y) ◦ y = ((x � y)y � y)y = (x � y)yy = x � y

thus also C(A(C)) = C.

Remark 3 Hence, the mutual correspondence between commutative directoids
with 1 and with sectional switching involutions and d-algebras is one-to-one and
hence every such C can be identify with A(C). However, d-implication algebras
form a variety thus also the induced commutative directoids.
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