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Abstract

The estimation procedures in the multiepoch (and specially twoepoch)
linear regression models with the nuisance parameters that were described
in [2], Chapter 9, frequently need finding the inverse of a 3×3 partitioned
matrix. We use different kinds of such inversion in dependence on sim-
plicity of the result, similarly as in well known Rohde formula for 2 × 2
partitioned matrix. We will show some of these formulas, also methods
how to get the other formulas, and then we applicate the formulas in es-
timation of the mean value parameters in the twoepoch linear regression
model with the nuisance parameters.

Key words: Inversion of partitioned matrices; Rohde formula; twoe-
poch regression model; useful and nuisance parameters; best linear
estimators of the mean value parameter.
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1 Notations

The following notation will be used throughout the paper:

Rn the space of all n-dimensional real vectors;
u, A the real column vector, the real matrix;
A′, r(A) the transpose, the rank of the matrix A;
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68 Karel HRON

M(A), Ker(A) the range, the null space of the matrix A;
A− a generalized inverse of a matrix A (satisfying

AA−A = A);
A+ the Moore-Penrose generalized inverse of a matrix

A (satisfying AA+A = A,A+AA+ = A+,
(AA+)′ = AA+, (A+A)′ = A+A);

PA the orthogonal projector ontoM(A) (in Euclidean
sense);

MA = I−PA the orthogonal projector ontoM⊥(A) = Ker(A′);
Ik the k × k identity matrix;
0m,n the m× n null matrix;
1k = (1, . . . , 1)′ ∈ Rk;
χ2

r random variable with chi squared distribution
with r degrees of freedom;

χ2
r(1− α) (1− α)-quantile of this distribution.

If M(A) ⊂ M(S), S positive semidefinite (p.s.d.), then the symbol PS−
A

denotes the projector projecting vectors inM(S) ontoM(A) alongM(SA⊥).
A general representation of all such projectors PS−

A is given by

A(A′S−A)−A′S− + B(I− SS−),

where B is arbitrary, (see [4], (2.14)). MS−
A = I−PS−

A .

2 Inversion of partitioned matrices

Lemma 1 (Rohde) Let

D =
(

A B
B′ C

)

be (symmetric) positive definite (p.d.). Then

D−1 =

=
(

(A−BC−1B′)−1 −(A−BC−1B′)−1BC−1

−C−1B′(A−BC−1B′)−1 C−1 + C−1B′(A−BC−1B′)−1BC−1

)
(1)

=
(

A−1 + A−1B(C−B′A−1B)−1B′A−1 −A−1B(C−B′A−1B)−1

−(C−B′A−1B)−1B′A−1 (C−B′A−1B)−1

)
. (2)

Proof see [1, Theorem 8.5.11, p. 99].

Theorem 1 (Version I) Let

Q =

⎛
⎝

A B D
B′ C F
D′ F′ E

⎞
⎠
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be p.d. Then

Q−1 =

⎛
⎝

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎞
⎠ ,

where

Q11 = [A−DE−1D′ − (B−DE−1F′)(C− FE−1F′)−1(B′ − FE−1D′)]−1,

Q12 = −Q11(B−DE−1F′)(C− FE−1F′)−1,

Q13 = −(Q11D + Q12F)E−1,

Q21 = −(C− FE−1F′)−1(B′ − FE−1D′)Q11 = (Q12)′,
Q22 = (C− FE−1F′)−1 + (C− FE−1F′)−1(B′ − FE−1D′)Q11

× (B−DE−1F′)(C− FE−1F′)−1,

Q23 = −(Q21D + Q22F)E−1,

Q31 = −E−1(D′Q11 + F′Q21) = (Q13)′,
Q32 = −E−1(D′Q12 + F′Q22) = (Q23)′,
Q33 = E−1 + E−1(D′Q11D + D′Q12F + F′Q21D + F′Q22F)E−1.

Proof Let us denote

U =
(

A B
B′ C

)
, V =

(
D
F

)
.

The matrix U is p.d. so that we get with use of Lemma 1, formula (1)

Q−1 =
(

U V
V′ E

)−1

(1)
=
(

(U−VE−1V′)−1 −(U−VE−1V′)−1VE−1

−E−1V′(U−VE−1V′)−1 E−1 + E−1V′(U−VE−1V′)−1VE−1

)

with p.d. matrix

(U−VE−1V′)−1 =
(

A−DE−1D′ B−DE−1F′

B′ − FE−1D′ C− FE−1F′

)−1

.

An application of Rohde formula (1) again and arrangement give us the desired
result. �

Corollary 1 Inverse of partitioned p.d. matrix
⎛
⎝

A B D
B′ C 0
D′ 0 E

⎞
⎠

is equal to ⎛
⎝

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎞
⎠ =
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=

⎛
⎝

Q11 −Q11BC−1 −Q11DE−1

−C−1B′Q11 C−1 + C−1B′Q11BC−1 −Q21DE−1

−E−1D′Q11 −E−1D′Q12 E−1 + E−1D′Q11DE−1

⎞
⎠ ,

where
Q11 = (A−BC−1B′ −DE−1D′)−1.

Theorem 2 (Version II) Let

Q =

⎛
⎝

A B D
B′ C F
D′ F′ E

⎞
⎠

be p.d. Then

Q−1 =

⎛
⎝

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎞
⎠ ,

where

Q11 = (A−DE−1D′)−1 + (A−DE−1D′)−1(B−DE−1F′)Q22

× (B′ − FE−1D′)(A−DE−1D′)−1,

Q12 = −(A−DE−1D′)−1(B−DE−1F′)Q22,

Q13 = −(Q11D + Q12F)E−1,

Q21 = −Q22(B′ − FE−1D′)(A−DE−1D′)−1,

Q22 = [C− FE−1F′ − (B′ − FE−1D′)(A−DE−1D′)−1(B−DE−1F′)]−1,

Q23 = −(Q21D + Q22F)E−1,

Q31 = −E−1(D′Q11 + F′Q21),
Q32 = −E−1(D′Q12 + F′Q22),
Q33 = E−1 + E−1(D′Q11D + D′Q12F + F′Q21D + F′Q22F)E−1.

Proof follows directly from the proof of Theorem 1, if we use Rohde formula
(2) instead of (1) in inverting p.d. matrix

(
A−DE−1D′ B−DE−1F′

B′ − FE−1D′ C− FE−1F′

)−1

. �

Remark 1 (Version III & Version IV) We use (1) and (2) in inverting p.d.
matrix

U =
(

A B
B′ C

)

in

Q−1 =
(

U V
V′ E

)−1

(2)
=
(

U−1 + U−1V(E−V′U−1V)−1V′U−1 −U−1V(E−V′U−1V)−1

−(E−V′U−1V)−1V′U−1 (E−V′U−1V)−1

)
,

where V = (D′,F′)′.
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Remark 2 (Version V & Version VI) Let us denote

W = (B,D), Z =
(

C F
F′ E

)

in

Q =

⎛
⎝

A B D
B′ C F
D′ F′ E

⎞
⎠ .

The matrix Z is p.d. and using (1) we get

Q−1 =
(

A W
W′ Z

)−1

(1)
=
(

(A−WZ−1W′)−1 −(A−WZ−1W′)−1WZ−1

−Z−1W′(A−WZ−1W′)−1 Z−1 + Z−1W′(A−WZ−1W′)−1WZ−1

)
.

The only thing that remains is to invert Z by (1) and (2).

Remark 3 (Version VII & Version VIII) Using Rohde formula (2) in p.d.
matrix inversion

Q−1 =
(

A W
W′ Z

)−1

we obtain(
A−1 + A−1W(Z−W′A−1W)−1W′A−1 −A−1W(Z−W′A−1W)−1

−(Z−W′A−1W)−1W′A−1 (Z−W′A−1W)−1

)

with p.d. matrix

(Z−W′A−1W)−1 =
(

C−B′A−1B F−B′A−1D
F′ −D′A−1B E−D′A−1D

)−1

.

An application of (1) and (2) again give us the result. For
⎛
⎝

A B D
B′ C F
D′ F′ E

⎞
⎠
−1

=

⎛
⎝

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎞
⎠ ,

it is interesting to compare Version VIII,

Q11 = A−1 + A−1(BQ22B′ + BQ23D′ + DQ32B′ + DQ33D′)A−1,

Q12 = −A−1(BQ22 + DQ32),
Q13 = −A−1(BQ23 + DQ33),
Q21 = −(Q22B′ + Q23D′)A−1,

Q22 = (C−B′A−1B)−1 + (C−B′A−1B)−1(F−B′A−1D)Q33

× (F′ −D′A−1B)(C−B′A−1B)−1,

Q23 = −(C−B′A−1B)−1(F−B′A−1D)Q33,

Q31 = −(Q32B′ + Q33D′)A−1,

Q32 = −Q33(F′ −D′A−1B)(C−B′A−1B)−1,

Q33 = [E−D′A−1D− (F′ −D′A−1B)(C−B′A−1B)−1(F−B′A−1D)]−1,
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with Version I—it’s in the certain sense “dual” form of Version VIII. Similar
comparisons can be done with other couples of formulas.

3 Twoepoch linear model

The theory of the linear regression models is one of the established statistical
disciplines and it may seem that nearly all has been investigated there. But
this is valid only for the simplest structures of the linear models. In the prac-
tice we need to solve more and more complicated problems and investigation
of corresponding structures of models is at the beginning. The formulas are
quite complicated there but easy programmable and it enables us to get the
estimations of unknown parameters in linear models.
The estimation procedures in multiepoch linear regression models with nui-

sance parameters and its application in geodesy were described in [2, Chapter 9].
But in the twoepoch case we can derive the estimations using convenient inverse
of 3 × 3 partitioned matrices much easily so it legitimates to deal with them
specially.
We derive optimum estimators of the useful mean value within a linear

twoepoch model with the stable and variable (nonstable) parameters, when the
data are affected by a systematic (deterministic) influence, i.e. by a noise which
can be described by a linear model and whose parameters called nuisance, are
estimable from results of the measurement. The subject of an interpretation are
changes of the useful parameters in the single epochs and their characteristics
of accuracy.
Sometimes the dimension of the useful mean value parameters is essentially

smaller than that one of the nuisance parameter. In connection with this fact
the problem occurs how to determine the optimum estimators of the useful
parameters and their accuracy without evaluating in each epoch the large vector
of the nuisance parameters.
One of the fundamental types of multiepoch and specially twoepoch model

(which may exist also in the form with the nuisance parameters) was described
in [2, p. 366].
Replicated measurements studying existence of deformation of some object

and its course (if it exists) are realized in separate networks especially con-
structed for this purpose. It consists of a group of supporting points, whose
position is assumed to be stable (this assumption—hypothesis—is verified dur-
ing the measurement), and a group of points, whose movements related to the
position of the stable points, are investigated (the coordinates of the group of
the stable points are a priori unknown). As far as the processing of the mea-
sured results is concerned this means, that in the framework of each epoch and
after finishing each epoch both the coordinates of the supporting points and
the coordinates of the investigated points, are to be determined. The former
serve to verify the above-mentioned hypothesis on the stableness of the group
of supporting points.
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Let us describe another example from the microeconomics practice. The
progress of daily receipts in retail trade in the same months of two following
years is observed. This progress usually consists of weekly period part and trend
part. The weekly period doesn’t change a lot because of conservative behaviour
of the shoppers (i.e. useful stable parameters in expression of the entire linear
model modelling the situation) in contrast to the trend. There is an influence of
the commercial offers, inflation etc. (i.e. variable parameters; we suppose that
the annual changes are not dramatical). The trend can be quite complicated and
we need often only a small fraction of information that it contains. Here, the
nonstable parameters in case of quadratic trend can be divided into the useful
linear term parameter, that gives some pieces of information about increase or
decrease of receipts, and two nuisance parameters (absolute term and quadratic
term). The data in the above mentioned problem are usually characterized by
a large dispersion and dependence among them.
The result of the measurement at the i-th time point in the first epoch could

be described as

Y1i = β1 cosλt1i + β2 sin λt1i + γ1t1i + κ11 + κ12t
2
1i + ε1i, i = 1, . . . , n1

(λ is known from periodogram, see [5, p. 92]) and

Y2i = β1 cosλt2i + β2 sin λt2i + γ2t2i + κ21 + κ22t
2
2i + ε2i, i = 1, . . . , n2

in the second epoch. Here β1 cosλtji + β2 sinλtji describes the weekly period
(the measurements must begin with respect to this period in both epochs) and
γjtji +κj1 +κj2t

2
ji, j = 1, 2 the quadratical trend in the first and second epoch,

respectively.
Let us consider the observation vector Y = (Y′

1,Y
′
2)′. The model described

above could be rewritten in the form

(
Y1

Y2

)
=
(

X1 W1 0 Z1 0
X2 0 W2 0 Z2

)⎛
⎝

β
γ
κ

⎞
⎠+

(
ε1

ε2

)
, (3)

where

X1 =

⎛
⎜⎝

cosλt11 sin λt11
...

...
cosλt1n1 sin λt1n1

⎞
⎟⎠ , X2 =

⎛
⎜⎝

cosλt21 sinλt21
...

...
cosλt2n2 sin λt2n2

⎞
⎟⎠ ,

W1 = (t11, . . . , t1n1)
′, W2 = (t21, . . . , t2n2)

′,

Z1 =

⎛
⎜⎝

1 t211
...
...

1 t21n1

⎞
⎟⎠ , Z2 =

⎛
⎜⎝

1 t221
...
...

1 t22n2

⎞
⎟⎠ ,

β = (β1, β2)′, γ = (γ1, γ2)′, κ = (κ11, κ12, κ21, κ22)′.
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The matrices X1,X2,W1,W2,Z1,Z2 are known, the vector β is a vector of the
useful stable parameters, γ is a vector of the useful variable parameters and κ
is a vector of the nuisance variable parameters.
With respect to above mentioned, let us consider the linear model (3), called

the twoepoch model with the stable and nonstable parameters and with the
nuisance parameters. We suppose that

• (Y′
1,Y

′
2)
′ is a (n1 + n2)-dimensional random observation vector after the

second epoch of measurement,

• β ∈ Rk is a vector of the useful stable parameters, the same in both
epochs,

• γ = (γ′1, γ
′
2)
′ ∈ Rl1+l2 is a vector of the useful nonstable parameters in

the first and the second epoch of measurement,

• κ = (κ′1, κ
′
2)
′ ∈ Rs1+s2 is a vector of the nuisance nonstable parameters

in first and second epoch,

• X1, X2 are n1 × k, n2 × k design matrices belonging to the vector β,

• W1 is a n1 × l1 design matrix belonging to the vector γ1,

• W2 is a n2 × l2 design matrix belonging to the vector γ2,

• Z1 is a n1 × s1 design matrix belonging to the vector κ1,

• Z2 is a n2 × s2 design matrix belonging to the vector κ2.

We suppose that

1. E(Y1) = X1β + W1γ1 + Z1κ1, E(Y2) = X2β + W2γ2 + Z2κ2,

∀β ∈ Rk, ∀γ1 ∈ Rl1 , ∀γ2 ∈ Rl2 , ∀κ1 ∈ Rs1 , ∀κ2 ∈ Rs2 ;

2. var
[(

Y1

Y2

)]
=
(

Σ1 0
0 Σ2

)
,

3. the matrix Σi is not a function of the vector (β′, γ′i, κ
′
i)
′ for i = 1, 2.

If the matrix
(

Σ1 0
0 Σ2

)
is p.d. and

r

[(
X1 W1 0 Z1 0
X2 0 W2 0 Z2

)]
= k + l1 + l2 + s1 + s2 < n1 + n2,

the model is said to be regular (see [2, p. 13]).
The described model arises by sequential realizations of the linear partial

regression models,

Y1 = (X1,W1,Z1)

⎛
⎝

β
γ1

κ1

⎞
⎠+ ε1, var(Y1) = Σ1 (4)
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and

Y2 = (X2,W2,Z2)

⎛
⎝

β
γ2

κ2

⎞
⎠+ ε2, var(Y2) = Σ2, (5)

representing the model of the measurement within the first and second epoch,
respectively.

Theorem 3 The BLUE, i.e. the best linear unbiased estimator, of the param-
eters β, γi, κi, i = 1, 2 in the single first and second epoch modelled by (4) and
(5), respectively, are

β̂
(i)

= (X′
iΣ

−1
i MΣ−1

i

Zi
M

Σ−1
i M

Σ−1
i

Zi

Wi
Xi)−1X′

iΣ
−1
i MΣ−1

i

Zi
M

Σ−1
i M

Σ−1
i

Zi

Wi
Yi,

γ̂i
(i) = (W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i MΣ−1

i

Zi
(Yi −Xiβ̂

(i)
),

κ̂i
(i) = (Z′iΣ

−1
i Zi)−1Z′iΣ

−1
i (Yi −Xiβ̂

(i) −Wiγ̂
(i)
i ),

(Version I) and equivalently

β̂
(i)

= (X′
iΣ

−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i MΣ−1

i

Zi
(Yi −Wiγ̂

(i)
i ),

γ̂i
(i) = (W′

iΣ
−1
i MΣ−1

i

Zi
M

Σ−1
i M

Σ−1
i

Zi

Xi
Wi)−1W′

iΣ
−1
i MΣ−1

i

Zi
M

Σ−1
i M

Σ−1
i

Zi

Xi
Yi,

κ̂i
(i) = (Z′iΣ

−1
i Zi)−1Z′iΣ

−1
i (Yi −Xiβ̂

(i) −Wiγ̂
(i)
i ),

(Version II) for i = 1, 2.

Proof According to [2, Theorem 1.1.1, p. 13], the BLUE of the vector parameter
(β′, γ′i, κ

′
i)
′, i = 1, 2, in each epoch separately, is given by
⎛
⎜⎝

β̂
(i)

γ̂i
(i)

κ̂i
(i)

⎞
⎟⎠ =

⎡
⎣
⎛
⎝

X′
i

W′
i

Z′i

⎞
⎠Σ−1

i (Xi,Wi,Zi)

⎤
⎦
−1⎛
⎝

X′
i

W′
i

Z′i

⎞
⎠Σ−1

i Yi.

Using Theorem 1 and Theorem 2, the crucial point of the proof consists in the
fact that ⎡

⎣
⎛
⎝

X′
i

W′
i

Z′i

⎞
⎠Σ−1

i (Xi,Wi,Zi)

⎤
⎦
−1

=

=

⎛
⎝

X′
iΣ

−1
i Xi X′

iΣ
−1
i Wi X′

iΣ
−1
i Zi

W′
iΣ

−1
i Xi W′

iΣ
−1
i Wi W′

iΣ
−1
i Zi

Z′iΣ
−1
i Xi Z′iΣ

−1
i Wi Z′iΣ

−1
i Zi

⎞
⎠
−1

=

⎛
⎝

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎞
⎠ ,

where (MΣ−1
i

Zi
= I−PΣ−1

i

Zi
= I− Zi(Z′iΣ

−1
i Zi)−1Z′iΣ

−1
i )
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Q11
T.1= [X′

iΣ
−1
i MΣ−1

i

Zi
Xi −X′

iΣ
−1
i MΣ−1

i

Zi
Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1

×W′
iΣ

−1
i MΣ−1

i

Zi
Xi]−1 = (X′

iΣ
−1
i MΣ−1

i

Zi
M

Σ−1
i M

Σ−1
i

Zi

Wi
Xi)−1,

Q12 = −Q11X′
iΣ

−1
i MΣ−1

i

Zi
Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1,

Q13 = −Q11[X′
iΣ

−1
i Zi −X′

iΣ
−1
i MΣ−1

i

Zi
Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i Zi]

× (Z′iΣ
−1
i Zi)−1,

Q21 = −(W′
iΣ

−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i MΣ−1

i

Zi
XiQ11,

Q22 = (W′
iΣ

−1
i MΣ−1

i

Zi
Wi)−1 + (W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i MΣ−1

i

Zi
Xi

×Q11X′
iΣ

−1
i MΣ−1

i

Zi
Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1,

Q23 = −(W′
iΣ

−1
i MΣ−1

i

Zi
Wi)−1[W′

iΣ
−1
i Zi −W′

iΣ
−1
i MΣ−1

i

Zi
XiQ11X′

iΣ
−1
i Zi

+ W′
iΣ

−1
i MΣ−1

i

Zi
XiQ11X′

iΣ
−1
i MΣ−1

i

Zi
Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1

×W′
iΣ

−1
i Zi](Z′iΣ

−1
i Zi)−1,

Q31 = −(Z′iΣ
−1
i Zi)−1[Z′iΣ

−1
i Xi − Z′iΣ

−1
i Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1

×W′
iΣ

−1
i MΣ−1

i

Zi
Xi]Q11,

Q32 = −(Z′iΣ
−1
i Zi)−1[Z′iΣ

−1
i Wi − Z′iΣ

−1
i XiQ11X′

iΣ
−1
i MΣ−1

i

Zi
Wi

+ Z′iΣ
−1
i Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i MΣ−1

i

Zi

×XiQ11X′
iΣ

−1
i MΣ−1

i

Zi
Wi](W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1,

Q33 = (Z′iΣ
−1
i Zi)−1 + (Z′iΣ

−1
i Zi)−1[Z′iΣ

−1
i XiQ11X′

iΣ
−1
i Zi

− Z′iΣ
−1
i XiQ11X′

iΣ
−1
i MΣ−1

i

Zi
Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i Zi

− Z′iΣ
−1
i Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i MΣ−1

i

Zi
XiQ11X′

iΣ
−1
i Zi

+ Z′iΣ
−1
i Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i Zi

+ Z′iΣ
−1
i Wi(W′

iΣ
−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i MΣ−1

i

Zi
XiQ11X′

iΣ
−1
i MΣ−1

i

Zi
Wi

× (W′
iΣ

−1
i MΣ−1

i

Zi
Wi)−1W′

iΣ
−1
i Zi](Z′iΣ

−1
i Zi)−1

and

Q11
T.2= (X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1 + (X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i MΣ−1

i

Zi
WiQ22

×W′
iΣ

−1
i MΣ−1

i

Zi
Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1,

Q12 = −(X′
iΣ

−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i MΣ−1

i

Zi
WiQ22,
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Q13 = −(X′
iΣ

−1
i MΣ−1

i

Zi
Xi)−1[X′

iΣ
−1
i Zi −X′

iΣ
−1
i MΣ−1

i

Zi
WiQ22W′

iΣ
−1
i Zi

+ X′
iΣ

−1
i MΣ−1

i

Zi
WiQ22W′

iΣ
−1
i MΣ−1

i

Zi
Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1

×X′
iΣ

−1
i Zi](Z′iΣ

−1
i Zi)−1,

Q21 = −Q22W′
iΣ

−1
i MΣ−1

i

Zi
Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1,

Q22 = (W′
iΣ

−1
i MΣ−1

i

Zi
M

Σ−1
i M

Σ−1
i

Zi

Xi
Wi)−1,

Q23 = −Q22[W′
iΣ

−1
i Zi −W′

iΣ
−1
i MΣ−1

i

Zi
Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i Zi]

× (Z′iΣ
−1
i Zi)−1,

Q31 = −(Z′iΣ
−1
i Zi)−1[Z′iΣ

−1
i Xi − Z′iΣ

−1
i WiQ22W′

iΣ
−1
i MΣ−1

i

Zi
Xi +

Z′iΣ
−1
i Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i MΣ−1

i

Zi
WiQ22W′

iΣ
−1
i MΣ−1

i

Zi
Xi]

× (X′
iΣ

−1
i MΣ−1

i

Zi
Xi)−1,

Q32 = −(Z′iΣ
−1
i Zi)−1[Z′iΣ

−1
i Wi − Z′iΣ

−1
i Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1

×X′
iΣ

−1
i MΣ−1

i

Zi
Wi]Q22,

Q33 = (Z′iΣ
−1
i Zi)−1 + (Z′iΣ

−1
i Zi)−1[Z′iΣ

−1
i WiQ22W′

iΣ
−1
i Zi

− Z′iΣ
−1
i WiQ22W′

iΣ
−1
i MΣ−1

i

Zi
Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i Zi

− Z′iΣ
−1
i Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i MΣ−1

i

Zi
WiQ22W′

iΣ
−1
i Zi

+ Z′iΣ
−1
i Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i Zi

+ Z′iΣ
−1
i Xi(X′

iΣ
−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i MΣ−1

i

Zi
WiQ22W′

iΣ
−1
i MΣ−1

i

Zi
Xi

× (X′
iΣ

−1
i MΣ−1

i

Zi
Xi)−1X′

iΣ
−1
i Zi](Z′iΣ

−1
i Zi)−1,

respectively. Regarding that

β̂
(i)

= Q11X′
iΣ

−1
i Yi + Q12W′

iΣ
−1
i Yi + Q13Z′iΣ

−1
i Yi,

γ̂i
(i) = Q21X′

iΣ
−1
i Yi + Q22W′

iΣ
−1
i Yi + Q23Z′iΣ

−1
i Yi,

κ̂i
(i) = Q31X′

iΣ
−1
i Yi + Q32W′

iΣ
−1
i Yi + Q33Z′iΣ

−1
i Yi,

i = 1, 2, the proof is complete. �

Notation 1 The model (3) can be rewritten as

Y = (W,Z)
(

δ
κ

)
+ ε, (6)

where

Y =
(

Y1

Y2

)
, W =

(
X1 W1 0
X2 0 W2

)
, Z =

(
Z1 0
0 Z2

)
, δ =

(
β
γ

)
, ε =

(
ε1

ε2

)
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and

Σ = var(Y) =
(

Σ1 0
0 Σ2

)
,

so we get the (ordinary) linear model with nuisance parameters.

Proposition 1 In the regular model (6) the BLUE of the parameter (δ′, κ′)′ is
given as

(
δ̂
κ̂

)
=

(
(W′Σ−1MΣ−1

Z W)−1W′Σ−1MΣ−1

Z

(Z′Σ−1Z)−1Z′Σ−1MΣ−1MΣ−1
Z

W

)
Y. (7)

Proof See [3, Theorem 1].

Theorem 4 In the regular model (3) the BLUEs of the parameters β, γ1, γ2, κ1,
κ2 are given as

β̂ = (X′
1Σ

−1
1 MΣ−1

1
Z1

M
Σ−1

1 M
Σ−1

1
Z1

W1
X1 + X′

2Σ
−1
2 MΣ−1

2
Z2

M
Σ−1

2 M
Σ−1

2
Z2

W2
X2)−1

× (X′
1Σ

−1
1 MΣ−1

1
Z1

M
Σ−1

1 M
Σ−1

1
Z1

W1
Y1 + X′

2Σ
−1
2 MΣ−1

2
Z2

M
Σ−1

2 M
Σ−1

2
Z2

W2
Y2),

γ̂1 = (W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1W′
1Σ

−1
1 MΣ−1

1
Z1

(Y1 −X1β̂),

γ̂2 = (W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1W′
2Σ

−1
2 MΣ−1

2
Z2

(Y2 −X2β̂),

κ̂1 = (Z′1Σ
−1
1 Z1)−1Z′1Σ

−1
1 (Y1 −X1β̂ −W1γ̂1),

κ̂2 = (Z′2Σ
−1
2 Z2)−1Z′2Σ

−1
2 (Y2 −X2β̂ −W2γ̂2).

Proof According to Notation 1 we can use (7) to get the result. Here

Σ−1MΣ−1

Z = Σ−1 −Σ−1Z(Z′Σ−1Z)−1Z′Σ−1 =

(
Σ−1

1 MΣ−1
1

Z1
0

0 Σ−1
2 MΣ−1

2
Z2

)

thus (we have used Corollary 1)

(W′Σ−1MΣ−1

Z W)−1 =

=

⎛
⎜⎜⎝

X′
1Σ

−1
1 MΣ−1

1
Z1

X1 + X′
2Σ

−1
2 MΣ−1

2
Z2

X2 X′
1Σ

−1
1 MΣ−1

1
Z1

W1 X′
2Σ

−1
2 MΣ−1

2
Z2

W2

W′
1Σ

−1
1 MΣ−1

1
Z1

X1 W′
1Σ

−1
1 MΣ−1

1
Z1

W1 0

W′
2Σ

−1
2 MΣ−1

2
Z2

X2 0 W′
2Σ

−1
2 MΣ−1

2
Z2

W2

⎞
⎟⎟⎠

−1

C.1=

⎛
⎝

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎞
⎠ ,
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where

Q11 = (X′
1Σ

−1
1 MΣ−1

1
Z1

M
Σ−1

1 M
Σ−1

1
Z1

W1
X1 + X′

2Σ
−1
2 MΣ−1

2
Z2

M
Σ−1

2 M
Σ−1

2
Z2

W2
X2)−1,

Q12 = −Q11X′
1Σ

−1
1 MΣ−1

1
Z1

W1(W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1,

Q13 = −Q11X′
2Σ

−1
2 MΣ−1

2
Z2

W2(W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1,

Q21 = −(W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1W′
1Σ

−1
1 MΣ−1

1
Z1

X1Q11,

Q22 = (W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1 + (W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1W′
1Σ

−1
1 MΣ−1

1
Z1

X1

×Q11X′
1Σ

−1
1 MΣ−1

1
Z1

W1(W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1,

Q23 = (W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1W′
1Σ

−1
1 MΣ−1

1
Z1

X1

×Q11X′
2Σ

−1
2 MΣ−1

2
Z2

W2(W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1,

Q31 = −(W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1W′
2Σ

−1
2 MΣ−1

2
Z2

X2Q11,

Q32 = (W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1W′
2Σ

−1
2 MΣ−1

2
Z2

X2

×Q11X′
1Σ

−1
1 MΣ−1

1
Z1

W1(W′
1Σ

−1
1 MΣ−1

1
Z1

W1)−1,

Q33 = (W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1 + (W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1W′
2Σ

−1
2 MΣ−1

2
Z2

X2

×Q11X′
2Σ

−1
2 MΣ−1

2
Z2

W2(W′
2Σ

−1
2 MΣ−1

2
Z2

W2)−1.

Utilizing that

W′Σ−1MΣ−1

Z =

⎛
⎜⎜⎝

X′
1Σ

−1
1 MΣ−1

1
Z1

X′
2Σ

−1
2 MΣ−1

2
Z2

W′
1Σ

−1
1 MΣ−1

1
Z1

0

0 W′
2Σ

−1
2 MΣ−1

2
Z2

⎞
⎟⎟⎠ ,

we get (after some calculations) the BLUEs of the useful parameters β, γ1, γ2.
To get the same for the nuisance parameters κ1, κ2 it is sufficient to realize that

(Z′Σ−1Z)−1Z′Σ−1 =
(

(Z′1Σ
−1
1 Z1)−1Z′1Σ

−1
1 0

0 (Z′2Σ
−1
2 Z2)−1Z′2Σ

−1
2

)

and

MΣ−1MΣ−1
Z

W Y = Y −W(W′Σ−1MΣ−1

Z W)−1W′Σ−1MΣ−1

Z Y

=
(

Y1

Y2

)
−
(

X1 W1 0
X2 0 W2

)⎛
⎝

β̂
γ̂1

γ̂2

⎞
⎠ =

(
Y1 −X1β̂ −W1γ̂1

Y2 −X2β̂ −W2γ̂2

)
. �
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Remark 4 Regarding that Σ1 and Σ2 are supposed to be positive definite, we
can write (see [2, Lemma 10.1.35, p. 441])

Σ−1
1 MΣ−1

1
Z1

= Σ−1
1 −Σ−1

1 Z1(Z′1Σ
−1
1 Z1)−1Z′1Σ

−1
1 = (MZ1Σ1MZ1)

+,

Σ−1
2 MΣ−1

2
Z2

= Σ−1
2 −Σ−1

2 Z2(Z′2Σ
−1
2 Z2)−1Z′2Σ

−1
2 = (MZ2Σ2MZ2)

+,

respectively.
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