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Abstract

The properties of the regular linear model are well known (see [1],
Chapter 1). In this paper the situation where the vector of the first
order parameters is divided into two parts (to the vector of the useful
parameters and to the vector of the nuisance parameters) is considered.
It will be shown how the BLUEs of these parameters will be changed by
constraints given on them. The theory will be illustrated by an example
from the practice.
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1 Introduction, notations

The following notation will be used throughout the paper:

R" the space of all n-dimensional real vectors;
Up, Am,n the real column p-dimensional vector, the real m X n matrix;
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the transpose, the rank of the matrix A;

rs-th element of matrix A;

the column space, the null space of the matrix A;

a generalized inverse of a matrix A (satisfying AA~A = A);
the Moore—Penrose generalized inverse of a matrix A (satisfying
AATA=A, ATAAT = AT, (AAT) = AAT, (ATA) = ATA);
the orthogonal projector in the Euclidean norm onto .# (A);
the orthogonal projector in the Euclidean norm onto

M- (A) = Ker(A');

the k x k identity matrix;

the m X n null matrix;

the null vector;

le=(1,...,1) € R".

If #(A) C #(S), S p.s.d., then the symbol P denotes the projector
projecting vectors in .#(S) onto .4 (A) along .#(SA™'). A general representa-

tion of all such projectors P is given by A(A'S™A)~A’S™ + B(I — SS™),
where B is arbitrary, (see [3], (2.14)). M5 =1 — P% .

Assertion 1 (see [1], Lemma 10.1.35) Let X be any n x k matriz and X an
n X n p.s.d. matriz.

(i) If ¥ is p.d., then

(MxSMx)t =y ! -y 1X(X'S1X)"X's ' =2'MY .

(i)  (MxSMx)" =Mx(MxSMx)t = (MxSMx)"Mx
=Mx(MxSMx)" M.

2 Best linear unbiased estimators

Let us consider the following linear model
v=x.5) () e 1)

where Y = (Y'1,...,Y,,) is a random observation vector; 3 € R¥ is a vector
of the useful parameters; x € R! is a vector of the nuisance parameters; X n,k 1S
a design matrix belonging to the vector 8; S, ; is a design matrix belonging to
the vector «.

We suppose that

1. E(Y)= X3+ Sk, VB € R*, Vk € R,

2. var(Y) = X is a known matrix,

3. matrix ¥ is not a function of the vector (', k')’

If matrix X is positive definite and r(X,S) = k + [ < n, the model is said
to be regular, (see [1], p. 13).



Linear model with nuisance parameters . .. 111

Theorem 1 In the regular model (1) the BLUEs of the parameters are given
as
B=Cc X'y ly
—CT'X'STIS[S'(MxXMx)TS] IS’y HI - XCT' X'y

= CT'X'STHI - S[S'(MxXMx)"S|'S' (MxXMx)"}Y, (2)
R=[S'(MxXMx)" S| 18> HIr - xCc'xX's1)v
= [ (MxXMx)"S]| 'S (MxXMx)'Y, (3)

where C = X'Y71X.

Proof According to the Theorem 1.1.1 in [1] and using the following Rohde’s
formula for inverse of partitioned p.d. matrix (see [1], Lemma 10.1.40)

F, G\ '

G, H
 (F'+F'GH-GF'G)"'G'F ', -F'GH-GF'G)"!
- —(H-G'F'G)"'G'F, (H-G'F'G)!

(4)

the BLUE of the vector parameter (3, ')’ is given by

()-[(5)rea] " (5)=>

_ [X’21X7 X’Els}_l (X’21>Y_ ( ) (X’21Y>
T 8vlx, §'vls S'y1 —\[21], S’y )
where
=C '+ CTIX'S1S[S (MxEMx)*tS)1S'sLxC Y,
= _C'X'S18[S' (MxSMx)*S] !,
=[S (MxXMx)*S]"18's"1xC,
= [S'(MxSMx)"tS] L.

As ¥ is supposed to be positive definite, we utilized Assertion 1, (i). The
rest of the proof is obvious. O

Theorem 2 For the estimators B, k 1s valid

var(f) = C"'+ CTIX'S7IS[S/ (M xEXMx)T 8|71 S's" 1 XC™t, (5)
var(k) = [S'(MxXMx)"S]7}, (6)
cov(B, i) = ~CTIX'S7LS[S (M xSMx)* 8] (7)
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Proof

var(f) = C'X'S HI - S[S' (M xXMx)" 8] 'S8 (MxXMx) %
x {I —(MxXMx)*S[S'(MxEMx)*ts]"1s'}x1xC™!
=C '+ CIX'2IS[S (MxEMx)TS]TIS'y I X,
) =[S (MxEXMx)TS] 'S (MxEMx)"MxSMx(MxXMx)"
x S[S' (MxEXMx)"S]™' =[S (MxXMx)"S]™*,

x>

var(
cov(B, k) = CTIX'S™HI - S[S'(MxXMx)" S| 'S (MxXMx)"}
X D(MxEXMx)TS[S'(MxXMx)"S]™?
= -CT'X'S7S[S' (MxEMx)" S|t

In the course of the proof the Assertion 1, (ii) was used. O

Let us consider model (1) with constrains given on both parameters, i.e. the
model

Y=(X,S)<g)+s, b+ B8+ Bak = o, (8)

where we suppose for the ¢ X k matrix B and ¢ x [ matrix By that

r(By)=1<gq, r(Bi,B2)=q<k+l.

Theorem 3 The BLUFEs B, i of the parameters (3, k under the model (8) are
given by

B=p-(C'B,+C'X'v1SZ27U)
x [BiC™'B, +UZ 'U'| Y (B13 + Bak +b), (9)
k=it 2 U [B.CT'B,+UZ U] (B1f+ Bais+b),  (10)

where U = BiC'X'S"1S — By, Z = S'(MxXMx)*S and where 37/% are
given in Theorem 1.

Proof In the following regular model with constraints

Y ~, (A0,%), b+ Bf=o,
r(Apk) =k <n, r(Bgr)=¢q<k, Xpd,

there is (according [2], theorem 4.3.1) for the BLUE of the parameter ¢

6= {I-(A'S'A)"'B'[B(A'S"'A)"'B|"'B}d
—(A'S'A)'B'[B(A'’Y"'A) "B b,

where § = (A’S1A)~"'A’S"1Y | is the BLUE of # without constraints.
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In the model (8) we have

A (X,S), 0— (i) B — (B, B»).

Thus analogously

()G (3] ()

o {(£) s} (3)]

()] () {()oxo) ()]

where B, k are given in Theorem 1.
Let us calculate first

() ms) (8]

[31732 (%%M ﬂ_ -

= (B:C™'B, +U[S'(MxXMx)"S|"'U")

where U = B;C ' X'S~18 — B, and where 7 7 , are given in

the proof of Theorem 1. Further
/ —1

()] (2) - (HE

5 -]

C'B,+C'X'21S[S'(MxXMx)+S|~'U’
—[S/(MXzMx)jLS]*lU/ ’

Let us (for the sake of simplicity) use the notation Z = S’ (M x>~ M x)*S, then

3\ _J(Io\ (C'By+C'X's'Sz7'U’
2] 1\o, I -z v’
x [B;C~'B] + UZlU’]l(Bl,BQ)} (f)

1 —1 vy /v—1 —177/
_<C B, +C X'Y37'5Z U)[BlclB’1+Ule']1b.

-z v’
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Thus

e
Il

{I-(C™'By+C'X's"'SZz7'U")B,C'B, +UZ 'U'|"'B,}
—(C'Bi+C'X'y"18Zz7'U)B,.C'B, + UZ U ' Byt
—(CT'B\+Cc'X's71sz ' U)B,CT B, + UZ U’ 'b.

k=2 W[B,C'B,+UZ 'U|'B.j
+[I+Z'U'(B:.C'B+UZ 'U' ) 'Bs]
+z'U'B,Cc'B,+UZ U .
The statement of the Theorem 3 is now obvious. O

Theorem 4 For the BLUEs é, i it is valid

var(3) = var(8) — (C™' By + C"' X'S"'82'U)[B,C ' B, + UZ U]
x (BiIC'+UZ 'S’y ' XC™), (11)
var(k) = var(k) — Z'U'[B,C™'B,+UZ 'U1"'UZ . (12)
Proof We have )
var(3) = var[A( — B#],
where
A=I-(C'B,+C'X's"'sz7'U)\[B,C™'B, +UZ 'U'|"'By,
B = (CT'B{+C'X'x"'SZz7'U)[B\.C™'B, +UZ 'U'| "' B..
Analologously . .
var(k) = var[F 8 + GR],

where

F =Zz'U'B,C'B,+UZ 'U'|™'By,
G=1+Z"'U[B,C'B,+UZ U 'B..

We get the expressions for var(B) and var(/%) after longer but easy calculations.
O

Example 1 Consider the following situation. Let’s have points Fj, F5 and
F3 of existing local network and points P, and Ps, for which it is necessary to
estimate their coordinates (see Figure 1). We have the measured values Y7, Y> of
coordinates of the point F; = (1, 32), the measured values Y3, Y} of coordinates
of the point Fy = (3, 34) and the measured values Y5, Y5 of coordinates of the
point F3 = (85, 8s). Moreover, we have the measured values Y7, Yz, Yy, Y10 and
Y11 of angles 67 and (g and distances (B9, G190 and (1. Finally, we know the
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measured values Y7o and Yi3 of angles k1 and k2. The values 8 and x are in
meters and in radians, respectively.

— 1000
Fzz§?3,ﬁ41 d3 F1=[p,B,] ﬂzoog
By
&
P1=jx1yi]’ B
P2=[x2,y2[/Bg — 1400
a\
— 1600
F3=[B, B~ P3=[x3.y3]
{ { { { { { 1800
1600 1400 1200 1000 800 600 400

Y-axis
Figure 1: Layout of the situation in Example 1

We have the model (1), where (X, S) = I;3.
Assume the results of measurements to be (see [4])

1200.003 m
499.999 m
1200.001 m
1469.113 m
1629.649 m
1196.073 m
Y = | 2.876604026 rad
4.207717253 rad
216.347 m
103.095 m
245.478 m
0.707031134 rad
1.080434554 rad

We take the covariance matrix ¥ from the model (1) in the form

Y 065 06,2
Y= 056 24 05
02,6 025 X¢

We assume the coordinate accuracy of the points Fy, F5 and Fj of exist-
ing local network to be approximately the same as the accuracy of measured
parameters 3;, j = 7,...,11, and as the accuracy of measured parameters x;
and ko.
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The accuracy of coordinates Y;, ¢ = 1...6, of the points F}, F> and Fj3 is
given by the covariance matrix 3"

1.6987 1.5583 0.1928 1.0711 —1.8915 —2.6295
1.5583  7.3592 —1.4785 —3.895 —0.0798 —3.4642
0.1928 —1.4785 5.0406 —1.4122 —5.2334 2.8907
1.0711 —-3.895 —1.4122 6.5277  0.341 —2.6328
—1.8915 —0.0798 —5.2334  0.341 7.125 —0.2613
—2.6295 —3.4642 2.8907 —2.6328 —0.2613 6.097

»F =0.0012 x

The accuracy of measured distances was 3 mm and the accuracy of measured
angles was 5 cc = 57/(200 - 100 - 100) = 5/636620, (the standard deviation of
the theodolite is op = 5 cc, i.e. that which corresponds to 5 centesimal seconds).

We thus suppose that the covariance matrix for (Yz7,...,Y71) is
d.a 00032 X I33 032
e = ’ 5 2 ’
02,3 (200.100.100) X I2,2

_ 00032 X I3’3 03’2
023 6.17x107 1 x Ty, )"

Accordingly, we suppose that the covariance matrix of measured angles
(Yi2,Y13) is

5% 2 5 2
Ea: S I = - I =6.1 1 —11 I ]
(200~100~100) e (636620) X Ipp =617 x 107" x Iy

The aim is to find conditions for parameters 3 and k.
To that end, we first determine (see Figure 1) the coordinates of points

Pr = (z1,y1), P2 = (v2,92) and P3 = (z3,y3):
x1 = P34 Bocos (& + k1),
y1 = Ba+ PBocos (5 + k1),

(it follows from the fact that the point P; shall be situated on a circle with
circumference 9 and with center in point F5, and from the fact that the point
Py is reached from the point F, via the angle ZFy, Fo, P = K1);

T9 = x1 + (10 COS ((arctan gg:gi +0- 7r) + 7+ 57) ,

Y2 = y1 + Prosin ((arctan gg:gi +0- 7r) Lo+ ﬁ7) ’

(it follows from the fact that the point P shall be situated on a circle with
circumference (1o and with center in point P;, and from the fact that the point
P, is reached from the point P, via the angle ZFy, Py, P, = (37);

T3 = Tg + 11 cos ((arctan n-w2 4 0. 7r) + 7+ 58) ,

r1—x2

Y3 = y2 + P11 sin ((arctanﬁ +0-7r) +7T+/58),
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(it follows from the fact that the point P3 shall be situated on a circle with
circumference 311 and with center in point P, and from the fact that the point
P; is reached from the point P, via the angle ZPy, Py, P3 = (g).

It can be seen from Figure 1 that the conditions g(f3, k) = o for parameters
[ and & are (involving the conditions given above)

g1 = (z3— B5)> + (y3 — Bs)* = 0,

(77 -+ arctan M) — (77 + arctan u) — ko = 0.

g2
x3 — B T — X3

The first constraint says that the point Pj is equivalent to F3.
The second constraint reflects the fact that £ZPs, P3, F| = Ko.
Now we use the Taylor expansion—the linear version of the condition

560 = () ) =0

is B163+ B2dk +b = o, where the matrix B, = %;;“0), By = %2,’”0), and

b=g(B" k") at the approximate point.

So we can consider the model (8).

In the linearized model we determine numerically the estimates and the
covariance matrices according to Theorem 3 and Theorem 4

1200.000 m

500.000 m
1200.000 m
1469.112 m
1629.651 m (

I

@
I

1196.073 m and
2.876605771 rad
4.207720046 rad

216.347 m
103.096 m
245.475 m

0.707030785 rad
1.080438743 rad )

2 - 4.90-1071 —9.24 .10 12
var(3) = (Ql, Qg) and var(k) = (_9.24. 10-12 430. 1011) )

where

1.43-107%  1.79-107% —4.45.1077 8.08-1077 —9.83-10"7 —2.60-10"°
1.79-107%  7.14-107% —1.01-10"% —3.60-10"% —7.73.1077 —3.54-107°
—4.45-1077 —1.01-10"% 3.34.-107% —-1.83.-107% —2.90-10"¢ 2.85-10"°
8.08-1077 —3.60-10"% —1.83-10% 6.07-107% 1.02.-107% —2.47.10"°
-9.83-1077 —7.73-1077 —2.90-107%  1.02-107% 3.88-107% —249.1077
Q1= -260-107% —354-107° 2.85.-107° -2.47.107% —2.49.1077  6.01-107°
6.18-1071° —1.03-107° 1.19.-107*° 1.96-107° —7.29.1071° —9.31.1071°
1.03-1072 —1.32-107% 1.23-107% 2.21-107° —2.26-107° —8.86-1071°
-2.36-1077 —8.35-10"% —1.30-107% 5.29.1077 1.54-107% —4.45.10"7
1.95-1077 —3.96-10"7 —1.52-1077  8.10-1077 —4.31-10"% —4.13-10"7
—1.32-107% 8.08-1077 —3.93-107% —4.53-10"7 5.26-107% —3.56-10""
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6.18 -
—1.03 -

1.11

Q2 =

—1.05

1.96 -
—=7.29 -
—9.31-

5.11 -

—4.57 -
—4.63 -
—2.57 -

1071 1.03-
107° —1.32-
210719 1.23
107°  2.21.
10710 —2.26-
10710 —8.86 -
107 —1.05-
-1071 5.05
107 —3.63
107° —4.45.
107  6.83-
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107° —2.36-1077 1.95-1077 —1.32-
107 —8.35-107% —3.96-10"7 8.08-
2107 —1.30-107% —1.52-1077 —3.93-
107°  5.29-1077 8.10-1077 —4.53-
10~° 1.54-1076 —4.31-107% 5.26-
10719 —4.45.1077 —4.13-1077 —3.56 -
107 —4.57.107° —4.63-107° —2.57-
21071 —3.63-107°% —4.45-107° 6.83-
2107 2.20-107° —2.15-107°% —4.26 -
107° —2.15-107% 2.30-107° —1.59-
107 —4.26-107% —1.59-107% 1.51-

All computations in the example were performed in Matlab.
To make comparisons easier, the following table shows the results.

1076
1077
1076
1077
106
1077
107°
10711
1076
1076
107°

The second column shows

v e @) T ke ()
R/ R . R/
4] [4,] 4]
1200.003 m 4.12 mm 1200.000 m 1.13 mm 3 mm
499.999 m 8.58 mm 500.000 m 2.67 mm —1mm
1200.001 m 7.10 mm 1200.000 m 1.83 mm 1 mm
1469.113 m 8.08 mm 1469.112 m 2.46 mm 1 mm
1629.649 m 8.44 mm 1629.651 m 1.97 mm —2mm
1196.073 m 7.81 mm 1196.073 m 2.45 mm 0 mm
2.876604026 rad 5.00 cc| 2.87605771 rad 4.55 cc —1.111 cc
4.207717253 rad 5.00 cc | 4.20772005 rad 4.53 cc —1.778 cc
216.347 m 3.00 mm 216.347 m 4.69 mm 0 mm
103.095 m 3.00 mm 103.096 m 4.79 mm —1mm
245.478 m 3.00 mm 245.475 m 3.89 mm 3 mm
0.707031134 rad 5.00 cc | 0.707030785 rad 4.46 cc 0.222 cc
1.080434554 rad 5.00 cc | 1.080438743 rad 4.17 cc —2.667 cc

that the dispersions of elements of the measured
vector Y are different. We can see in the table that dispersions of some elements

of estimators 3 and & have decreased and some have increased in the process
of estimation, which is due to the tendency to distribute the uncertainty of
measurements equally.
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