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Abstract

In this paper, we obtain some stability results for Picard and Mann
iteration processes in metric space and normed linear space respectively,
using two different contractive definitions which are more general than
those of Harder and Hicks [4], Rhoades [10, 11], Osilike [8], Osilike and
Udomene [9], Berinde [1, 2], Imoru and Olatinwo [5] and Imoru et al [6].
Our results are generalizations of some results of Harder and Hicks

[4], Rhoades [10, 11], Osilike [8], Osilike and Udomene [9], Berinde [1, 2],
Imoru and Olatinwo [5] and Imoru et al [6].
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1 Introduction

Let (X, d) be a complete metric space, T : X → X a selfmap of X . Suppose
that FT = {p ∈ X | Tp = p} is the set of fixed points of T . Let {xn}∞n=0 ⊂ X be
the sequence generated by an iteration procedure involving T which is defined
by

xn+1 = f(T, xn), n = 0, 1, 2, . . . (1)

where x0 ∈ X is the initial approximation and f is some function. Suppose
{xn}∞n=0 converges to a fixed point p of T . Let {yn}∞n=0 ⊂ X and set

εn = d(yn+1, f(T, yn)), n = 0, 1, 2, . . .
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Then, the iteration procedure (1) is said to be T-stable or stable with respect
to T if and only if limn→∞ εn = 0 implies limn→∞ yn = p. If in (1),

f(T, xn) = Txn, n = 0, 1, 2, . . . ,

then we have the Picard iteration process, while we obtain the Mann iteration
if

f(T, xn) = (1 − αn)xn + αnTxn, n = 0, 1, 2, . . . , αn ∈ [0, 1].

Several stability results have been obtained by various authors using differ-
ent contractive definitions. Harder and Hicks [4] obtained interesting stabil-
ity results for some iteration procedures using various contractive definitions.
Rhoades [10,11] generalized the results of Harder and Hicks [4] to a more gen-
eral contractive mapping. In Osilike [8], a generalization of some of the results
of Harder and Hicks [4] and Rhoades [11] was obtained by employing the fol-
lowing contractive definition: there exist a constant L ≥ 0 and a ∈ [0, 1) such
∀x, y ∈ X ,

d(Tx, T y) ≤ Ld(x, Tx) + ad(x, y). (2)

Condition(2) is more general than those of Rhoades[11] and Harder and Hicks[4].
As in Harder and Hicks [4], Berinde [1] obtained the same stability results for
the same iteration procedures using the same contractive definitions, but applied
a different method. The method of Berinde [1] is similar to that employed in
Osilike and Udomene [9] .
Recently, Imoru and Olatinwo [5] obtained some stability results for Pi-

card and Mann iteration procedures by using a more general contractive condi-
tion than those of Harder and Hicks [4], Rhoades [11], Osilike [8], Osilike and
Udomene [9] and Berinde [1]. In the paper [5], the following contractive defi-
nition was employed: there exist a ∈ [0, 1) and a monotone increasing function
φ : �+ → �+, with φ(0) = 0, such that ∀x, y ∈ X ,

d(Tx, T y) ≤ φ(d(x, Tx)) + ad(x, y). (3)

A function h : �+ → �+ is called a comparison function if:
(i) h is monotone increasing;
(ii) limn→∞ hn(t) = 0, ∀t ≥ 0.
We remark here that every comparison function satisfies the condition h(0) = 0.
It is our purpose in this paper to obtain some stability results by applying

two different contractive definitions using again the method of Berinde [1]. We
shall use the following contractive definitions:
I) there exist a constant a ∈ [0, 1) and a monotone increasing function Φ :
�+ → �+ with Φ(0) = 1, such that ∀x, y ∈ X ,

d(Tx, T y) ≤ ad(x, y)Φ(d(x, Tx)), (4)

II) there exist a constant L ≥ 0 and a function Ψ : �+ → �+ such that
∀x, y ∈ X ,

d(Tx, T y) ≤ Ψ(d(x, y))eLd(x,Tx) (5)
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where Ψ may be a comparison function or just a monotone increasing function.
The contractive conditions (4) and (5) are independent as the right-hand side
of (4) cannot be obtained from the right-hand side of (5) or vice-versa.
Condition (4) is more general than (2) in the following sense: If in (4),

Φ(u) = 1 +
ku

d(x, y)
, k ≥ 0, d(x, y) 	= 0, ∀x, y ∈ X, x 	= y, u ∈ �+,

then we obtain the condition (2).
Also, if in (4), we have

Φ(u) = 1 +
φ(u)
d(x, y)

, d(x, y) 	= 0, ∀x, y ∈ X, x 	= y, u ∈ �+,

where φ is also a monotone increasing function, then we obtain condition (3).
Also, if Φ(u) = 1, ∀u ∈ �+, then we have the strict contraction employed in
Harder and Hicks [4], Zeidler [13] and Berinde [1,2].
Similarly, condition (5) is more general than (2) in the sense that

if in (5),

Ψ(u) = (au+ Ld(x, Tx))e−Ld(x,Tx), a ∈ [0, 1), L ≥ 0, u ∈ �+, ∀x ∈ X,

and if Ψ is monotone increasing, then we obtain the condition(2).
Again, if Ψ(u) = au, a ∈ [0, 1), u ∈ �+ and L = 0 in (5), then we get the

strict contraction employed in Harder and Hicks [4], Berinde [1,2] and also in
the classical Banach’s contraction mapping principle discussed in Zeidler [13]
and other standard texts on the fixed point theory.
Moreover , if in (5),

Ψ(u) = (ψ(u) + Ld(x, Tx))e−Ld(x,Tx), ∀x ∈ X, u ∈ �+, L ≥ 0,

and if Ψ is monotone increasing and ψ is a comparison function, then we obtain
the contractive mapping of Imoru et al [6].
However, we obtain the contractive definition employed in the extension of

the Banach’s contraction mapping principle due to Berinde [3] if L = 0 in (5).
See also Berinde [2] for detail on the various generalizations of the Picard–
Banach–Caccioppoli theorem.
We shall employ the following Lemmas in the sequel.

Lemma 1 (Berinde [1]) If δ is a real number such that 0 ≤ δ < 1, and
{εn}∞n=0 is a sequence of positive numbers such that limn→∞ εn = 0, then for
any sequence of positive numbers {un}∞n=0 satisfying

un+1 ≤ δun + εn, n = 0, 1, . . . (6)

we have
lim

n→∞
un = 0.
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Remark 1 The proof of this lemma is contained in Berinde [1].

Lemma 2 If ψ : �+ → �+ is a subadditive comparison function and {εn}∞n=0 is
a sequence of positive numbers such that limn→∞ εn = 0, then for any sequence
of positive numbers {un}∞n=0 satisfying

un+1 ≤
s∑

m=0

δmψ
m(un) + εn, n = 0, 1, 2, . . . , (7)

where
∑s

m=0 δm = 1, δ0, δ1, . . . , δs ∈ [0, 1], we have

lim
n→∞

un = 0.

Remark 2 The proof of this Lemma is contained in Imoru et al [6].

Remark 3 If δk = 0 in (7), k = 1, 2, . . . , s, then we obtain the Lemma 1 of
Berinde [1] with 0 ≤ δo < 1.

Remark 4 If δ1 = 1 and δo = δ2 = δ3 = · · · = δs−1 = δs = 0 in (7), then we
obtain a stability result for the Picard iteration process.

Remark 5 We have a stability result for the Krasnoselskij iteration procedure
if δo = δ1 = 1/2 and δ2 = δ3 = · · · = δs = 0 in (7).

Remark 6 We obtain stability results for the Mann and Schaefer’s iteration
processes if δ0 + δ1 = 1, δ2 = δ3 = · · · = δs = 0 in (7).

Remark 7 If δ0 + δ1 + δ2 = 1, δ3 = δ4 = · · · = δs = 0 in (7), then we obtain a
stability result for the Ishikawa iteration procedure.

Remark 8 If
∑k

m=0 δm = 1 (i.e. s = k) in (7),then we have a stability result
for the Kirk’s iteration process.

2 Main Results

The following are stability results for the Picard iteration process.

Theorem 1 Let (X, d) be a complete metric space and T : X → X a selfmap
of X satisfying (4). Suppose T has a fixed point p. Let x0 ∈ X and let

xn+1 = f(T, xn) = Txn, n = 0, 1, . . .

be the Picard iteration associated to T . Suppose also that Φ : �+ → �+ is a
monotone increasing function such that Φ(0) = 1. Then, the Picard iteration is
T-stable.
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Proof Let εn = d(yn+1, T yn), n = 0, 1, . . . and suppose limn→∞ εn = 0. Then,
we shall establish that limn→∞ yn = p. using (4) and the triangle inequality.
Therefore,

d(yn+1, p) ≤ d(yn+1, T yn) + d(Tyn, p)

= εn + d(Tyn, T p) = d(Tp, T yn) + εn ≤ ad(p, yn)Φ(d(p, T p)) + εn

= ad(yn, p)Φ(0) + εn = ad(yn, p) + εn. (8)

Since a ∈ [0, 1), using Lemma 1 in (8) yields limn→∞ yn = p.
Conversely, let limn→∞ yn = p. Then, by (4) and the triangle inequality, we

have

εn = d(yn+1, T yn) ≤ d(yn+1, p) + d(p, T yn) = d(yn+1, p) + d(Tp, T yn)

≤ d(yn+1, p) + ad(p, yn)Φ(d(p, T p)) = d(yn+1, p) + ad(yn, p)Φ(0)

= d(yn+1, p) + ad(yn, p) → 0 as n→∞. �

Theorem 2 Let (X, d) be a complete metric space and T : X → X a selfmap
of X satisfying (5). Suppose that T has a fixed point p. Let x0 ∈ X and let

xn+1 = f(T, xn) = Txn, n = 0, 1, . . . ,

be the Picard iteration associated to T . Suppose that Ψ : R+ → R+ is a com-
parison function (or just a monotone increasing function) which is continuous.
Then, the Picard iteration is T-stable.

Proof Let εn = d(yn+1, T yn), n = 0, 1, . . . , and suppose that limn→∞ εn =
0. Then, we shall establish that limn→∞ yn = p, using (5) and the triangle
inequality. Therefore,

d(yn+1, p) ≤ d(yn+1, T yn) + d(Tyn, p)

= εn + d(Tyn, T p) = d(Tp, T yn) + εn ≤ Ψ(d(p, yn))eLd(p,Tp) + εn

= Ψ(d(yn, p)) + εn. (9)

Applying Lemma 2 in (9) yields limn→∞ yn = p.
Conversely, let limn→∞ yn = p. Then, by (5)and the triangle inequality, we

obtain

εn = d(yn+1, T yn) ≤ d(yn+1, p) + d(p, T yn) = d(yn+1, p) + d(Tp, T yn)

≤ d(yn+1, p) + Ψ(d(p, yn))eLd(p,Tp)

= d(yn+1, p) + Ψ(d(yn, p)) → 0 as n→∞. �

Remark 9 Theorem 1 is a generalization of Theorem 3.1 of Imoru and Olatinwo
[5], while Theorem 2 is a generalization of both Theorems P1 and P2 of Imoru
et al [6]. Also, each of the Theorem 3.1 of [5] and Theorems P1 and P2 of [6]
is itself a generalization of Theorem 2 of Harder and Hicks [4], Theorem 1 of
Rhoades[10, 11], Theorems 1 and 2 of Berinde [1], Theorem 1 of Osilike [8] as
well as Theorem 4 of Osilike and Udomene [9].
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We now establish some stability results for the Mann iteration process.

Theorem 3 Let (X, || · ||) be a normed linear space, and T : X → X a selfmap
of X satisfying (4). Suppose T has a fixed point p. Let xo ∈ X and let

xn+1 = f(T, xn) = (1− αn)xn + αnTxn, αn ∈ [0, 1], n = 0, 1, . . . ,

be the Mann iteration process such that 0 < α ≤ αn, n = 0, 1, 2, . . . Let
Φ : R+ → R+ be a monotone increasing function such that Φ(0) = 1. Then, the
Mann iteration process is T-stable.

Proof Let εn = ||yn+1 − (1 − αn)yn − αnTyn||, n = 0, 1, . . . and suppose
that limn→∞ εn = 0. Then,we shall prove that limn→∞ yn = p, by (4) and the
triangle inequality: Therefore,

||yn+1 − p|| ≤ ||yn+1 − (1− αn)yn − αnTyn||+ ||(1− αn)yn + αnTyn − p||
= εn + ||(1− αn)yn + αnTyn − (1− αn + αn)p||
= ||(1 − αn)(yn − p) + αn(Tyn − p)||+ εn

≤ (1− αn)||yn − p||+ αn||Tyn − p||+ εn

= (1− αn)||yn − p||+ αn||Tyn − Tp||+ εn

≤ (1− αn)||yn − p||+ αna||p− yn||Φ(||p− Tp||) + εn

= (1− αn)||yn − p||+ αn a||yn − p||Φ(0) + εn

= (1− αn)||yn − p||+ aαn||yn − p||+ εn

= [1− (1− a)αn]||yn − p||+ εn

≤ [1− (1− a)α]||yn − p||+ εn. (10)

Using Lemma 1 in (10) since 0 ≤ 1− (1− a)α < 1, we obtain

lim
n→∞

yn = p.

Conversely, let limn→∞ yn = p. Then, by (4) and the triangle inequality, we get

εn = ||yn+1 − (1− αn)yn − αnTyn||
≤ ||yn+1 − p||+ ||p− (1 − αn)yn − αnTyn||
= ||yn+1 − p||+ ||(1− αn + αn)p− (1− αn)yn − αnTyn||
= ||yn+1 − p||+ ||(1− αn)(p− yn) + αn(p− Tyn)||
≤ ||yn+1 − p||+ (1− αn)||yn − p||+ αn||p− Tyn||
= ||yn+1 − p||+ (1− αn)||yn − p||+ αn||Tp− Tyn||
≤ ||yn+1 − p||+ (1− αn)||yn − p||+ αna||p− yn||Φ(||p− Tp||)
= ||yn+1 − p||+ (1− αn)||yn − p||+ αna||yn − p||φ(0)
= ||yn+1 − p||+ [1− (1− a)αn]||yn − p||
≤ ||yn+1 − p||+ [1− (1− a)α]||yn − p|| → 0 as n→∞. �
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Theorem 4 Let (X, || · ||) be a normed linear space and T : X → X a selfmap
of X satisfying (5). Suppose that T has a fixed point p. Let x0 ∈ X and
let xn+1 = f(T, xn) = (1 − αn)xn + αnTxn, αn ∈ [0, 1], n = 0, 1, . . . , be
the Mann iteration process such that 0 < α ≤ αn, n = 0, 1, 2, . . . Suppose
that Ψ : R+ → R+ is a comparison function (or just a monotone increasing
function) which is continuous. Then, the Mann iteration is T-stable.

Proof Let εn = ||yn+1 − (1− αn)yn −αnTyn||, n = 0, 1, . . . , and suppose that
limn→∞ εn = 0. Then, we shall prove that limn→∞ yn = p, by using (5) and the
triangle inequality. Therefore,

||yn+1 − p|| ≤ ||yn+1 − (1− αn)yn − αnTyn||+ ||(1− αn)yn + αnTyn − p||
= εn + ||(1− αn)yn + αnTyn − (1− αn + αn)p||
= ||(1 − αn)(yn − p) + αn(Tyn − p)||+ εn

≤ (1− αn)||yn − p||+ αn||Tyn − p||+ εn

= (1− αn)||yn − p||+ αn||Tyn − Tp||+ εn

= (1− αn)||yn − p||+ αn||Tp− Tyn||+ εn

≤ (1− αn)||yn − p||+ αnΨ(||p− yn||)eL||p−Tp|| + εn

= (1− αn)||yn − p||+ αnΨ(||yn − p||) + εn

≤ (1− α)||yn − p||+ αΨ(||yn − p||) + εn. (11)

By applying Lemma 2 in (11), we obtain

lim
n→∞

yn = p.

Conversely, let limn→∞ yn = p. Then, by using (5) and the triangle inequality,
we have

εn = ||yn+1 − (1 − αn)yn − αnTyn||
≤ ||(yn+1 − p||+ ||p− (1− αn)yn − αnTyn||
= ||yn+1 − p||+ ||(1− αn + αn)p− (1− αn)yn − αnTyn||
= ||yn+1 − p||+ ||(1− αn)(p− yn) + αn(p− Tyn)||
≤ ||yn+1 − p||+ (1− αn)||yn − p||+ αnΨ(||p− yn||)eL||p−Tp||

= ||yn+1 − p||+ (1− αn)||yn − p||+ αnΨ(||yn − p||) → 0
≤ ||yn+1 − p||+ (1− α)||yn − p||+ αΨ(||yn − p||) → 0 as n→∞.

Remark 10 Theorem 3 is a generalization of Theorem 3.2 of Imoru and Olat-
inwo [5], while Theorem 4 is a generalization of Theorem M of Imoru et al [6].
Moreover, each of both Theorem 3.2 of [5] and Theorem M of [6] is itself a
generalization of Theorem 3 of Harder and Hicks [4] ,Theorem 2 of Rhoades [10,
11] and Theorem 3 of Berinde [1].
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Remark 11 If in (4), Φ(u) = eLu, L ≥ 0, or, in (5), Ψ(u) = au, a ∈ [0, 1),
u ∈ �+, then we obtain the following contractive definition: there exist a ∈ [0, 1)
and a constant L ≥ 0 such that ∀x, y ∈ X ,

d(Tx, T y) ≤ ad(x, y)eLd(x,Tx). (12)

By Remark 11, we obtain the following corollary to Theorems 1 and 2.

Corollary 1 Let (X, d) be a complete metric space and T : X → X a selfmap
of X satisfying (12). Suppose that T has a fixed point p. Let xo ∈ X and let

xn+1 = f(T, xn) = Txn, n = 0, 1, 2, . . .

be the Picard iteration. Then, the Picard iteration is T-stable.

In a similar manner, we obtain the following corollary to Theorems 3 and 4.

Corollary 2 Let (X, || · ||) be a normed linear space and T : X → X a selfmap
of X satisfying (12). Suppose that T has a fixed point p. Let x0 ∈ X and let

xn+1 = f(T, xn) = (1− αn)xn + αnTxn, αn ∈ [0, 1], n = 0, 1, . . .

be the Mann iteration process such that 0 < α ≤ αn. Then, the Mann iteration
process is T-stable.
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