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Abstract

The aim of this paper is to develop two different methods for an execut-
ing of the deformation measurement and to prove that these two methods
are equivalent which is a advantage for a conclusive verification of the
results of the experiment in a practice.
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1 Introduction

The aim is to develop two different methods for an executing of four epochs
experiment in which the movements of the reference points on a dam during the
gradual filling of the dam have been measured. According to the instructions
of a structural designer these points should move along the specific trajectories.
The aim of this experiment is to compare these theoretical trajectories with
empirical ones. In the first method coordinates of the reference points and the
parameters that describe trajectories of these points are estimated at the same
time. In the second method the coordinates of the points are estimated first
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58 Lucie EXNEROVÁ

of all and these estimates are used for a calculation of the trajectories. The
corrected coordinates from the second method must be equal to the estimated
coordinates from the first method. The first procedure can be realized after
realization of the 4th epoch measurement only. Since it is necessary to know
preliminary results (shifts of the reference points) during the single epoch, we
must estimate coordinates after each epoch separately. At the end of the 4th
epoch estimations of the coordinates of the all reference points are at our disposal
and the parameters of the trajectories can be estimated by means of second
method. However at the same time both coordinates and trajectories parameters
can be estimated simultaneously in another, however equivalent model (first
method). Both methods should give the same result for the parameters of the
trajectories.

2 Notation and auxiliary statements

Let Y be n×m random matrix ( observation matrix ), Y = (Y1, . . . ,Ym), with
the mean value E(Y) = XB. X is an n× k given design matrix, B is an k×m
matrix of unknown parameters (coordinates of the reference points) and C is
an k× q matrix of unknown parameters (parameters of the trajectories). I⊗Σ
is the covariance matrix of the observation vector vec(Y) = (Y′

1, . . . ,Y
′
m)′ and

the constraints are given in a form BH+CZ+G = 0. Here the matrix H,Z,G
are known.
The model

Y ∼ (XB, I⊗Σ),

is regular if r(Xn,k) = k < n and Σ is positive definite. The constraints
BH+CZ+G = 0 are regular if r(H′

m,r,Z
′
q,r) = r < m+q and r(Zq,r) = q < r.

In the following text it is also assumed r(Hm,r) = r < m.
In the following A+ denotes the Moore–Penrose generalized inverse of the

matrixA (i.e.AA+A = A, A+AA+ = A+, AA+ = (AA+)′, A+A = (A+A)′

cf. [3]).
The symbolMX means the projection matrix I−PX , where I is the identity

matrix and PX is the projection matrix (in the Euclidean norm) on the subspace
M(X) = {Xu : u ∈ Rk}. Here Rk means the k dimensional real vector space.

Lemma 1 Let the model and the constraints

Y ∼nm (XB, I⊗Σ), Bk,mHm,r + Ck,qZq,r + G = 0k,r (1)

be regular. Then the best linear unbiased estimators ( BLUE ) of the matrices
B a C are

̂̂B = −G
[
I− (H′H)−1Z′[Z(H′H)−1Z′]−1Z

]
(H′H)−1H′ +

+ B̂
[
MH + H(H′H)−1Z′[Z(H′H)−1Z′]−1Z(H′H)−1H′

]
, (2)

̂̂C = −G(H′H)−1Z′[Z(H′H)−1Z′]−1 − B̂H(H′H)−1Z′[Z(H′H)−1Z′]−1 (3)
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and

Var[vec( ̂̂B)] =

=
[
MH + H(H′H)−1Z′[Z(H′H)−1Z′]−1Z(H′H)−1H′

]
⊗ (X′Σ−1X)−1,

Var[vec( ̂̂C)] = [Z(H′H)−1Z′]−1 ⊗ (X′Σ−1X)−1.

Here B̂ = (X′Σ−1X)−1X′Σ−1Y.

Proof In the univariate regular model

Y ∼ (Xβ1,Σ), B1β1 + B2β2 + b = 0,

the BLUE of β1 and β2 are

( ˆ̂
β1
ˆ̂
β2

)
= −

(
(X′Σ−1X)−1B′

1Q1,1

Q2,1

)
b +

(
I− (X′Σ−1X)−1B′

1Q1,1B1

−Q2,1B1

)
β̂1

and

var(ˆ̂β1) = (X′Σ−1X)−1 − (X′Σ−1X)−1B′
1Q1,1B1(X′Σ−1X)−1,

var(ˆ̂β2) = −Q2,2,

where β̂1 = (X′Σ−1X)−1X′Σ−1Y and

(
Q1,1, Q1,2

Q2,1, Q2,2

)
=
(

B1(X′Σ−1X)−1B′
1, B2

B′
2, 0

)−1

=

⎛
⎝
{MB2AMB2}+ , (B′

2)
−
m(A)[

(B′
2)
−
m(A)

]′
, −

[
(B′

2)
−
m(A)

]′
A(B′

2)
−
m(A)

⎞
⎠ .

Here A = B1(X′Σ−1X)−1B′
1 and (B′

2)
−
m(A) denotes minimum A-seminorm

generalized inverse of the matrix B′
2. (cf. theory of the Pandora-Box matrix

in [3])

Now it suffices to write the multivariate model in the form

vec(Y) ∼ [(I⊗X)vec(B), I⊗Σ],

(H′ ⊗ I)vec(B) + (Z′ ⊗ I)vec(C) + vec(G) = 0
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and use the equalities

Q1,1 =
{
M(Z′⊗I)[(H′H)⊗ (X′Σ−1X)−1]M(Z′⊗I)

}+

= [(H′H)−1 ⊗ (X′Σ−1X)]− [(H′H)−1 ⊗ (X′Σ−1X)](Z′ ⊗ I)

×
[
(Z ⊗ I)[(H′H)−1 ⊗ (X′Σ−1X)](Z′ ⊗ I)

]−1

× (Z⊗ I)[(H′H)−1 ⊗ (X′Σ−1X)]
= [(H′H)−1 ⊗ (X′Σ−1X)]

{
(I⊗ I)−

[
Z′[Z(H′H)−1Z′]−1Z(H′H)−1

]
⊗ I
}

,

Q2,1 =
[
(Z⊗ I)−m[(H′H)⊗(X′Σ−1X)−1]

]′

=
[
(Z⊗ I)[(H′H)−1 ⊗ (X′Σ−1X)](Z′ ⊗ I)

]−1

× (Z⊗ I)[(H′H)−1 ⊗ (X′Σ−1X)] =
{
[Z(H′H)−1Z′]−1Z(H′H)−1

}
⊗ I,

Q2,2 = −
[
(Z⊗ I)−m[(H′H)⊗(X′Σ−1X)−1]

]′
[(H′H)⊗ (X′Σ−1X)−1]

× (Z⊗ I)−m[(H′H)⊗(X′Σ−1X)−1]

= −
[
(Z⊗ I)[(H′H)−1 ⊗ (X′Σ−1X)](Z′ ⊗ I)

]−1

= −[Z(H′H)−1Z′]−1 ⊗ (X′Σ−1X)−1

and vec(AXB) = (B′ ⊗A)vec(X). �

Lemma 2 The BLUEs of the matrices B and C are the same in the model (1)
and in the model

B̂ ∼km [B, I⊗ (X′Σ−1X)−1], Bk,mHm,r + Ck,qZq,r + G = 0k,r (4)

respectively.

Proof We write the model (4) in the form

vec(B̂) ∼ [(I⊗ I)vec(B), I⊗ (X′Σ−1X)−1],

(H′ ⊗ I)vec(B) + (Z′ ⊗ I)vec(C) + vec(G) = 0

and use the relations from the proof of Lemma 1

(
Q1,1, Q1,2

Q2,1, Q2,2

)
=
(

(H′ ⊗ I){(I⊗ I)[I⊗ (X′Σ−1X)](I⊗ I)}−1(H⊗ I), Z′ ⊗ I
Z⊗ I, 0

)−1

,

Q1,1 =
{
M(Z′⊗I)[(H′H)⊗ (X′Σ−1X)−1]M(Z′⊗I)

}+

= [(H′H)−1 ⊗ (X′Σ−1X)]
{
(I⊗ I)−

[
Z′[Z(H′H)−1Z′]−1Z(H′H)−1

]
⊗ I
}

,

Q2,1 =
[
(Z⊗ I)−m[(H′H)⊗(X′Σ−1X)−1]

]′
=
{
[Z(H′H)−1Z′]−1Z(H′H)−1

}
⊗ I
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and

Q2,2 = −
[
(Z⊗ I)−m[(H′H)⊗(X′Σ−1X)−1]

]′
[(H′H)⊗ (X′Σ−1X)−1]

× (Z⊗ I)−m[(H′H)⊗(X′Σ−1X)−1] = −[Z(H′H)−1Z′]−1 ⊗ (X′Σ−1X)−1.

Thus the corrected estimate ̂̂B of the preliminary estimate B̂ is given by the
relation
(

vec( ̂̂B)

vec( ̂̂C)

)
= −

(
{(I⊗ I)[I⊗ (X′Σ−1X)](I ⊗ I)}−1(H⊗ I)Q1,1

Q2,1

)
vec(G)

+
(

(I⊗ I)− {(I⊗ I)[I⊗ (X′Σ−1X)](I⊗ I)}−1(H⊗ I)Q1,1(H′ ⊗ I)
−Q2,1(H′ ⊗ I)

)

× {I⊗ [(X′Σ−1X)−1X′Σ−1]}vec(Y),

i.e.

̂̂B = −G
[
I− (H′H)−1Z′[Z(H′H)−1Z′]−1Z

]
(H′H)−1H′

+ B̂
[
MH + H(H′H)−1Z′[Z(H′H)−1Z′]−1Z(H′H)−1H′

]
,

̂̂C = −G(H′H)−1Z′[Z(H′H)−1Z′]−1 − B̂H(H′H)−1Z′[Z(H′H)−1Z′]−1.

(cf. the relations (2), (3)). �

Remark 1 The analogous lemma for univariate model without constraints cf.
[2], p. 398, Theorem 9.2.12.

3 Statistical model of experiment
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Fig. 1: Position of the points A, B, C, D and the reference points P1, P2, P3.
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A deformation measurement is realized according the scheme given by Fig. 1.
Here A, B, C, D are points with given coordinates and the reference points are
described as P1, P2, P3. The distances are measured in meters with the standard
deviation σs = 0.01m and the angles are measured with standard deviation
σω = 3

206265 rad. A model of four epochs experiment is considered in the form
(1) and (4), where the ith column of Y is the observation vector of the ith
epoch, i = 1, . . . 4 minus values calculated from approximate coordinates,

Yi =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
(β(i)

11 − θA1)2 + (β(i)
12 − θA2)2

...

arctan β
(i)
12 −θA2

β
(i)
11 −θA1

− arctan θB2−θA2
θB1−θA1

...

⎞
⎟⎟⎟⎟⎟⎟⎠

, f0 = f(β0).

A choice of the approximate coordinates β0 is the same for each epoch. Thus
the design matrix

X =
∂E(Yi)

∂(β(i))′

∣∣∣∣
β(i)

=β0

is common for all epochs.
Estimation of parameter β in each epoch is a base for calculation of param-

eter γ in the relations y = γ1 + γ2x + γ3x 2 that describe trajectories of the
reference points, e.g. in the case of the reference point P1

β
(i)
12 = γ1 + γ2β

(i)
11 + γ3(β

(i)
11 )2, i = 1, 2, 3, 4.

Estimation of parameters γ1, γ2 and γ3 is executed by linearized regressionmodel

with constraint of type II because estimated coordinates β̂
(i)
are result of the

measurement. Therefore the constraint is

BH + CZ + G = 0,

where C is a matrix of the parameter γ and

H =

⎛
⎜⎝

γ0
12 + 2γ0

11β
0
11 −1 0 0 . . .

0 0 γ0
22 + 2γ0

21β
0
21 −1 . . .

...
...

...
...
. . .

⎞
⎟⎠ ,

Z =

⎛
⎜⎝

1 β0
11 (β0

11)
2

1 β0
21 (β0

21)2
...
...

...

⎞
⎟⎠ ,

G =

⎛
⎜⎝

γ0
11 + γ0

12β
0
11 + γ0

13(β0
11)2 − β0

12

γ0
21 + γ0

22β
0
21 + γ0

23(β
0
21)

2 − β0
22

...

⎞
⎟⎠ .
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4 Numerical example

In the experiment the distances of the reference points from the points

A = [θA1, θA2], B = [θB1, θB2], C = [θC1, θC2], D = [θD1, θD2]

and the angles between these points are measured. Approximate coordinates
are

P1 = [1300.0 m, 450.0 m], P2 = [1271.4 m, 498.2 m], P3 = [1250.0 m, 550.0 m].

Σ = σ2
s

⎛
⎜⎜⎜⎜⎜⎜⎝

I4×4 0 0 0 0 0
0 08×8 0 0 0 0
0 0 I4×4 0 0 0
0 0 0 08×8 0 0
0 0 0 0 I4×4 0
0 0 0 0 0 08×8

⎞
⎟⎟⎟⎟⎟⎟⎠

+ σ2
ω

⎛
⎜⎜⎜⎜⎜⎜⎝

04×4 0 0 0 0 0
0 I8×8 0 0 0 0
0 0 04×4 0 0 0
0 0 0 I8×8 0 0
0 0 0 0 04×4 0
0 0 0 0 0 I8×8

⎞
⎟⎟⎟⎟⎟⎟⎠

,

σ2
s = (0.01 m)2 and σ2

ω = ( 3
206265 )2, where ω is an angle measured in radians.

The origin of the system of the coordinates is moved to the coordinates
[1200 m, 400 m].
The structural designer gives these trajectories:

−222172.44 + 4444.4444β11 − 22.2222β2
11 − β12 = 0,

80.35555 + 0.25β21 − β22 = 0,

55705.61 − 2222.2222β31 + 22.2222β2
31 − β32 = 0.

The corrected coordinates ̂̂B given in meters from the model (4) are given in
the following Table 1:

1st epoch 2nd epoch 3th epoch 4th epoch

P1 [99.991,50.005] [100.008,50.003] [100.022,49.989] [100.035,49.979]

P2 [71.413,98.206] [71.431,98.214] [71.444,98.223] [71.464,98.233]

P3 [50.000,150.004] [50.008,150.004] [50.033,150.012] [50.035,150.023]

Table 1
and

−383388.15 + 7668.548048β11 − 38.341665β2
11 − β12 = 0,

60.29 + 0.530932β21 − β22 = 0,

94104.42 − 3757.486631β31 + 37.567967β2
31 − β32 = 0.
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Although in the model (4) the estimations of the parameter γ are different
from the parameter given by the structural designer, the estimated trajectories
are practically the same in the sector in which the movements of the reference
point have been measured.

The figures 2–4 show the specific inconsistence between the theory and the
numerical results. The corrected coordinates should lie exactly on the each
trajectories. The inconsistence evident from the figures seems to be made by
the linearization of the nonlinear model. An influence of the nonlinearity will
be characterized by the bias

E(̂̂δβ)− δβ,

where E(̂̂δβ) is calculated under the assumption that the nonlinear model is
quadratized. The expression

E(̂̂δβ)− δβ

can be obtained in our case from the formula in [1], p. 248, Corollary VI. 2.2.3.5.
For the numerical demonstration we use the relations

E(̂̂δβ)− δβ = PC
C−1H′MZ

[C−1H′(HC−1H′ + ZZ′)−1]δμδγ2

for the point P2 and

E(̂̂δβ)− δβ = PC
C−1H′MZ

[C−1H′(HC−1H′ + ZZ′)−1]

×
(
δγ2δβ

(i)
11 + γ0

3(δβ(i)
11 )2 + 2δγ3δβ

(i)
11 β

0(i)
11

)4

i=1

for the points P1, P3, where C = X′Σ−1X, δγi =
√
var γi, δμ = 4 × 1 matrix

containing arbitrary combination of numbers 0, 1,−1.
Numerical results verify the influence of the nonlinearity.

E(̂̂δβ)− δβ = −0.002
0.004

−0.002
0.008
0.002

−0.006
0.004

−0.020

for the point P2, where δμ = [0; 1; 0; 1] and δγ2 = 0.053.
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Fig. 2: P1: Estimation of the trajectory + confidence region in the model (4).
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Fig. 3: P2: Estimation of the trajectory + confidence region in the model (4).



66 Lucie EXNEROVÁ

49.995 50 50.005 50.01 50.015 50.02 50.025 50.03 50.035 50.04 50.045
149.99

150

150.01

150.02

150.03

150.04

150.05

P31 P32 P33

P34

Fig. 4: P3: Estimation of the trajectory + confidence region in the model (4).
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