
Applications of Mathematics

Josef Malík
Mathematical modelling of rock bolt systems. II

Applications of Mathematics, Vol. 45 (2000), No. 3, 177–203

Persistent URL: http://dml.cz/dmlcz/133890

Terms of use:
© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/133890
http://dml.cz


45 (2000) APPLICATIONS OF MATHEMATICS No. 3, 177–203

MATHEMATICAL MODELLING OF ROCK BOLT SYSTEMS II*

Josef Malík, Ostrava

(Received June 1, 1998)

Abstract. The main goal of the paper is to describe a reinforcement consisting of fully
grouted bolts, which is applied to stabilizing underground openings and tunnels. After
a variational formulation is given, the existence and uniqueness is proved. Some asymptotic
results that make it possible to replace the real system with a continuous one more suitable
for discretization are presented. Some other types of reinforcements and properties are
studied.
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1. Introduction

Stabilizing of underground openings such as tunnels excavated in rock masses

remains a major concern of geotechnical engineers dealing with this kind of struc-
tures. It is mainly focused on limiting the consequences of a pressure relief of the

surrounding ground due to the excavation process and more specifically on maintain-
ing the tunnel closure within an admissible value compatible with the appropriate

subsequent conditions of the structure.

A new support system based on the use of metallic inclusions (bolts) seems to be

a very good way how to maintain such a pressure relief within reasonable limits. In
this article we will continue the mathematical modelling of rock bolt systems begun

in the paper [1] where we dealt with special bolts fixed to the rock mass at their end
points. Now we are going to deal with bolts which are fully grouted (Fig. 1).

*This work was supported by Grant 105/99/1651 of the Grant Agency of the Czech
Republic.
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In this case after bore holes are made bolts (steel bars) are inserted and glued up

with a special cement.

The bolting process described for different bolts in [1] remains the same in the case
of fully grouted bolts and we refer the reader to this paper to familiarize oneself with

it. After describing a variational formulation of the model with isolated bolts we will
deal with the model the bolts of which are described as a “continuous” system.

Figure 1a. The three-dimensional model of a reinforced tunnel.

1

2

3
4

5

Figure 1b. 1 – special cement, 2 – bore hole, 3 – bolt, 4 – tunnel or underground opening,
5 – rock mass.

The existence and uniqueness of those problems will be established and some

assertions showing the model with the “continuous” bolt system to correspond in
an asymptotic way to the one with isolated bolts will be proved. Owing to the

composite nature of the rock bolted mass, numerical simulation of the behaviour of
such structures turns out to be a difficult task, referring for example to the finite

element method, the size of the elements in the reinforced zone should be smaller
than the dimensions of the bolts, which are from two to three metres long and only

from two to three centimetres thick, to say nothing of the number of bolts. Thus
it would lead to a numerical problem of unreasonable size even by the standards of
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modern computer capabilities, so a homogenization method seems to be necessary

for solving it.
In the subsequent chapters this paper is concerned with other so called hybrid

bolts which can be described in the following way. Every bolt is partly grouted and

one end of the bolt is provided with a bearing plate, leaning against the wall of the
underground opening, and a nut. By screwing the nuts the bolts can be prestressed

and the stress-strain field in the reinforced zone can be influenced. A similar ho-
mogenization method making it possible to discretize these problems with a finite

element technique, will be developed.

2. Variational formulation of the problem

with individual bolts

Let us start with a variational formulation of the problem which is essential for

the solution to the whole problem arising in the models of tunnels as it was described
in Chapter 4 of the paper [1]. First of all let us introduce the assumptions which we

are going to deal with in this and the subsequent chapters.
1. Linear elastic behaviour of the rock mass.

2. Linear elastic behaviour of the bolts.
3. The bolts are fully connected with the rock mass and the influence of a special

cement is neglected.
4. The volume of bore holes is small in comparison with the underground opening

dimensions so that it can be neglected.
Let an elastic body occupy a bounded region Ω with a Lipschitz boundary and

let x = (x1, x2, x3) be Cartesian coordinates of the point x. Let us denote the
displacement vector field by u = (u1, u2, u3) and the associated strain tensor field by

(2.1) eij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, 3.

The stress tensor is related to the strain tensor by means of the generalized Hooke
Law

(2.2) τij = cijkl ekl, i, j = 1, 2, 3.

We use the following summation convention: whereas a subscript is repeated in
a term, summation is required to be taken over that subscript from 1 to 3.

Assume that cijkl are bounded and measurable functions in Ω satisfying the con-
ditions

(2.3) cijkl = cjikl = cklij .
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Moreover, let there exist a positive constant K such that the inequality

(2.4) cijkl(x) ξij ξkl � K ξij ξij

holds almost everywhere in Ω for any symmetric ξij . Let us have the following

decomposition of the boundary ∂Ω:

∂Ω = Γu ∪ Γτ ∪ Γ0 ∪R,

where Γu, Γτ , Γ0 are mutually disjoint open parts and the surface measure of R is

zero. Let the body Ω be fixed on Γu:

u(x) = 0, x ∈ Γu

and let the tractions be prescribed on Γτ :

(2.5) Ti(u)(x) = τij(x)νj(x) = Pi(x), i = 1, 2, 3, x ∈ Γτ ,

where ν(x) =
(
ν1(x), ν2(x), ν3(x)

)
is the unit outward normal to ∂Ω at x. Define the

normal and tangential components of the displacement and stress vectors by

(2.6) uν = ujνj , (ut)i = ui − uννi,

Tν = τjkνjνk, (Tt)i = τijνj − Tννi, i = 1, 2, 3

and impose the so called contact conditions on Γ0:

uν = 0, (Tt)i = 0, i = 1, 2, 3.

S1

S2

ξ

Ω

Ω′

Figure 2. The cross section of a tunnel reinforced by a single bolt.
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Let us consider the situation in Fig. 2 which schematically corresponds to the cross

section of the body depicted in Figs. 1a–b. The bolt is described by a one-to-one
transformation ξ : S1 �→ S2, where S1, S2 are Lipschitz two-dimensional surfaces.
Moreover, there exist two positive constants K1, K2 such that the inequalities

(2.7) K1 ‖x1 − x2‖ �
∥∥ξ(x1)− ξ(x2)

∥∥ � K2 ‖x1 − x2‖, x1, x2 ∈ S1

are satisfied, where ‖.‖ is the Euclidean norm in �3 . Let us define other two trans-
formations γ : S1 �→ �

3 , δ : 〈0, 1〉 × S1 �→ Ω by

γ(x) =
ξ(x)− x∥∥ξ(x)− x

∥∥ , δ(t, x) = x+ t
(
ξ(x)− x

)
.

Moreover, let us assume the transformation δ(t, x) is a one-to-one transformation

from 〈0, 1〉 × S1 to Ω′. Let us extend γ(x) from S1 to Ω′ as follows: if y ∈ Ω′ and
y = δ(t, x) then γ(y) = γ(x). From the definition it is clear that the vector field γ(x)

defined in Ω′ is constant on every segment between the points x, ξ(x), x ∈ S1. We
can say that Ω′ corresponds to the area occupied by the bolt and the vector field

γ(x) defined in Ω′ is parallel to the bolt direction. Because we deal with the small
displacements the longitudinal bolt deformation (the deformation in the direction

γ(x)) can be approximated by the term
〈
Dγ(x)u(x), γ(x)

〉
, where the vector u(x) is

the displacement at the point x, x ∈ Ω′, 〈., .〉 is the Euclidean scalar product in �3
and Dγ(x) is the symbol of derivation in the γ(x) direction. In our model transversal
deformations of the bolts are neglected.

Denote by

V =
{
u ∈

[
H1(Ω)

]3 | u = 0 on Γu, uν = 0 on Γ0
}

the space of virtual displacements and assume F ∈
[
L2(Ω)

]3
and P ∈

[
L2(Γτ )

]3
are

the prescribed body forces and the surface loads. Then let us introduce the forms

A(u, v) =
∫

Ω

cijkl eij(u) ekl(v) dx,

a(u, v) =
∫

Ω′

E
〈
Dγ(x)u(x), γ(x)

〉〈
Dγ(x)v(x), γ(x)

〉
dx,

L(v) =
∫

Ω

Fi vi dx+
∫

Γτ

Pi vi dΓ,

where E is Young’s modulus of the bolt material. Let us notice the definitions of
the form A(., .) and a(., .). The first corresponds to the deformation energy of the
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rock mass without the bore hole, which is neglected due to the condition discussed

above. The second form corresponds to the energy of longitudinal bolt deformations
while the energy of transversal bolt deformations is neglected. We can define the
functional of the total potential energy by

L (u) =
1
2
A(u, u) +

1
2

a(u, u)− L(u).

Definition 2.1. An element u ∈ V is called a solution to the given bolt problem

if L (u) � L (v) for all v ∈ V .

Let us consider another subspace R ⊂
[
H1(Ω)

]3
. Define

R =
{
v ∈

[
H1(Ω)

]3 | v(x) = a+ b× x
}
,

where a, b are vectors from �
3 and × is the vector product in �3 . This subspace

corresponds to the rigid-body translations and the rigid-body rotations.

Theorem 2.1. Let F ∈
[
L2(Ω)

]3
, P ∈

[
L2(Γτ )

]3
and Γu 	= ∅ or Γu = ∅ and

R ∩ V = {0}. Moreover, let cijkl and ξ : S1 �→ S2 satisfy the conditions mentioned

above. There exists one and only one solution of the bolt problem and the inequality

(2.8) ‖u‖[H1(Ω)]3 � K
(
‖F‖[L2(Ω)]3 + ‖P‖[L2(Γτ )]3

)

is fulfilled, where K is a positive constant.

�����. Let us assume that a(u, u) � 0 for every u ∈ V . Then there exists

a positive constant K such that the following inequality is fulfilled:

K‖u‖2V � a(u, u) +A(u, u) ∀u ∈ V.

This inequality is a consequence of Korn’s inequality [2] and the existence of a solution
can be established in the same way as in the case of the theory of elasticity [3].

The uniqueness and the validity of the inequality (2.8) are consequences of Korn’s
inequality, too. �

Theorem 2.2. Let F ∈
[
L2(Ω)

]3
, P ∈

[
L2(∂Ω)

]3
, Γu = ∅, Γ0 = ∅ and let the

conditions of total equilibrium
∫

Ω

Fi dx+
∫

∂Ω

Pi dx = 0, i = 1, 2, 3,(2.9)

∫

Ω

(x× F )i dx+
∫

∂Ω

(x× P )i dx = 0, i = 1, 2, 3(2.10)

be fulfilled. Then there exists a solution u of the bolt problem and if u′ is another

solution to that problem then u− u′ ∈ R.
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�����. Let Q be the orthogonal complement of R in
[
H1(Ω)

]3
with respect to

the usual scalar product. As a consequence of Korn’s inequality it is clear that the
functional L (.) is coercive on Q ([2], [3]) and because of the fact that this functional

is convex, the existence of a minimum u is guaranteed [2].

In our case the existence of the minimum u of the bolt problem is equivalent to

the validity of the equality

(2.11) A(u, v) + a(u, v) = L(v), ∀v ∈ V,

which is clear from some results of variational calculus. We refer the reader to [4],
[6]. Now it is sufficient to check the equality (2.11) for all v ∈ R. Because of the

conditions (2.9) and (2.10) we have L(v) = 0 for all v ∈ R and it is enough to prove
that A(u, v) = a(u, v) = 0 for all v ∈ R. The first equality holds because of the very

well known fact that eij(v) = 0 if and only if v ∈ R [2]. The second equality will be
proved if the equality

(2.12)
〈
Dγ(x)v(x), γ(x)

〉
= 0

is fulfilled in Ω′ for all v ∈ R. It is easy to see that v ∈ R if and only if v = Hx+ c,
where H is a 3× 3 skew-symmetric matrix and c is a vector from �

3 . Then

〈
Dγ(x)v(x), γ(x)

〉
=

〈
Hγ(x), γ(x)

〉
=

〈
γ(x), HT γ(x)

〉

= −
〈
γ(x), H γ(x)

〉
= −

〈
γ(x), Dγ(x)v(x)

〉

= −
〈
Dγ(x)v(x), γ(x)

〉
,

which results in the equality (2.12). The equalities eij(v) = 0 and (2.12), which hold
for each v ∈ R, imply that u+ v is another solution of the bolt problem.

Now if u′ is another solution then u, u′ satisfy the equations

A(u, u− u′) + a(u, u− u′) = L(u− u′),

A(u′, u− u′) + a(u′, u− u′) = L(u− u′).

Subtracting them we obtain

A(u− u′, u− u′) + a(u − u′, u− u′) = 0,

which implies eij(u−u′) = 0 and consequently, because of the fact mentioned above,
u− u′ ∈ R. �
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������ 2.1. It is easy to see that there exists a unique solution to the problem

with respect to the subspace Q defined in the proof. For such solutions we have

‖u‖V � K
(
‖F‖[L2(Ω)]3 + ‖P‖[L2(∂Ω)]3

)
,

where K is a positive constant.

3. Continuous approximations of bolt systems

In the previous chapter we have dealt with the single bolt model and it is evident

that this approach can be extended to several bolts. But in real cases the number of
bolts, applied to reinforce the underground opening, obviously reaches a few hundred

so it is very difficult to approximate such a problem by any numerical method in spite
of the standards of modern computer capabilities. The way how to overcome such

difficulties is to replace the system with distinct bolts by a continuous system. The
main goal of this chapter is to suggest such a method and to prove that this model

of bolt systems corresponds to the model with distinct bolts in an asymptotic way.

S1

S2

ξ1

Ω

Ω′

x1
x2

Figure 3a. c1(x1) = E, c1(x2) = 0.

S1

S2

ξ2

Ω

Ω′

Figure 3b. The model of a cross section of a tunnel reinforced by a greater number of
thinner bolts.
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Let us have a look at Figs. 3a–b. There are two different sets of bolts inserted

in the subarea Ω′. The situation depicted in Figs. 3a–b can be viewed as the first
two steps of a more general process, in which the bolts are being spread over the
subarea Ω′. In this case the formulation of the bolt problem differs from the one

used in the previous chapter. The surfaces S1, S2 do not correspond to the surfaces
describing the end points of the bolts but they are wider and remain the same for

the whole process defined below. The position of the bolts is defined by the sequence
of functions cn : Ω′ �→ � which characterize both the position and the mechanical

properties of the bolts. Let us define this process in a more precise way.

Let ξn : S1 �→ S2 be a sequence of one-to-one transformations satisfying the con-
dition

∃K1, K2 > 0, ∀x, y ∈ S1, ∀n :(3.1)

K1‖x− y‖ � ‖ξn(x)− ξn(y)‖ � K2‖x− y‖.

Define other two sequences γn : S1 �→ �
3 , δn : 〈0, 1〉 × S1 �→ Ω′ in a similar way as

in Chapter 2,

γn(x) =
ξn(x) − x∥∥ξn(x) − x

∥∥ ,(3.2)

δn(t, x) = x+ t
(
ξn(x) − x

)
,(3.3)

where the functions δn are one-to-one transformations from 〈0, 1〉×S1 to Ω′ and the

vector field γn defined on S1 can be extended to the whole subarea Ω′ by

(3.4) γn(y) = γn(x),

where y = δn(t, x). It is clear that the vector fields γn(x) are constant on the intervals

〈x, ξn(x)〉.
Let cn : S1 �→ � be another sequence of functions, which equal E (Young’s mod-

ulus of steel from which the bolts are made) at the points of S1 where the bolt runs
through and which vanish in the rest of S1. The functions cn : S1 �→ � can be

extended to the subarea Ω′ by

(3.5) cn(y) = cn(x),

where y = δn(t, x). We can see that these functions correspond to the characteristic

functions of the sets occupied by the bolts. Now let us define the process mentioned
above.
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Definition 3.1. We say the sequences ξn : S1 �→ S2, cn : Ω′ �→ � d-converge

to ξ : S1 �→ S2, c : Ω′ �→ � if the following conditions are fulfilled:

1. The sequence ξn uniformly converges to ξ on S1, which implies that even the
sequence δn uniformly converges to δ on 〈0, 1〉 × S1.

2. The functions cn, c are measurable, c is non-negative and there exists K > 0
such that

‖c(x)‖ < K.

(Due to the definition of cn we have ‖cn(x)‖ � E.)

3. ∀f ∈ C
(
Ω′

)
: ∫

Ω′

cn · fdx →
∫

Ω′

c · fdx.

To demonstrate the substance of this convergence we present a simple example.

	
����� 3.1. Let us define S1, S2, ξn, ξ: S1 = 〈0, 1〉 × 〈0, 1〉 × {0}, S2 =
〈0, 1〉× 〈0, 1〉× {1}, ξn = ξ and ξ(x, y, 0) = (x, y, 1). Let us define Ω′ = 〈0, 1〉× 〈0, 1〉
and cn : Ω′ �→ � by

cn(x, y, t) =





1 on

〈
j + 14

n
,

j + 34
n

)
×

〈
k + 14

n
,

k + 34
n

)
× 〈0, 1),

j = 0, . . . , n− 1, k = 0, . . . , n− 1,

0 on the rest of the surface S1.

(3.6)

By virtue of Definition 3.1 it is evident that ξn, cn d-converge to ξ, c, where c = 1
4

on the whole S1. One step of this process corresponds to Fig. 4a.

S1

S2

Figure 4a. A prism reinforced by bolts.

186



	
����� 3.2. Consider a circular cylindrical tube depicted in Fig. 4b. This

cylinder can be gradually divided in finer regular parts in a similar way as in Exam-
ple 3.1. Then the limit function c in cylindrical coordinates will be

c(r, θ, z) = K
1
r
,

ξ(r1, θ, z) = (r2, θ, z),

where r ∈ 〈r1, r2〉, θ ∈ (0, 2�), z ∈ 〈0, l〉; r1, r2 are the outer and inner radii, l is the
length of the tube.

S1

S2

Figure 4b. A tube reinforced by bolts.

������ 3.3. The above examples encourage us to consider c = E · �, where E

is Young’s modulus of the steel from which the bolts are made and � is the density
of the steel material per unit.

In the examples mentioned above we can see that the limit functions of the con-
vergent process are continuous and that is why it is easier to approximate them nu-

merically. So there is a natural question whether the solutions un which correspond
to ξn, cn converge to the solution u which corresponds to ξ, c. Before formulating

the main result of this chapter, let us prove an auxiliary lemma and let us introduce
the forms

an(u, v) =
∫

Ω′

cn(x)
〈
Dγn(x)u(x), γn(x)

〉〈
Dγn(x)v(x), γn(x)

〉
dx,

a(u, v) =
∫

Ω′

c(x)
〈
Dγ(x)u(x), γ(x)

〉〈
Dγ(x)v(x), γ(x)

〉
dx.

Lemma 3.1. Let ξn, cn d-converge to ξ, c and moreover, let un ∈
[
H1(Ω)

]3
be

a sequence which weakly converges to u ∈ [H1(Ω)]3. Then for each v ∈
[
H1(Ω)

]3
we
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have

(3.7) an(un, v)→ a(u, v).

�����. If we consider the definitions of γn(x), cn(x) and Ω′ (see (3.2)–(3.5))

we can rewrite the classical Green Formula into

(3.8)
∫

Ω′

(
Dγn(x)w(x)

)
cn(x)z(x) dx =

∫

S1∪S2

w(x)cn(x)z(x)〈γn(x), ν〉dΓ

−
∫

Ω′

w(x) cn(x)
(
Dγn(x)z(x)

)
dx,

where ν is the unit outward normal to the boundary of Ω′ and this formula is valid
for all w, z ∈ H1(Ω′). Due to the definition of γn(x) the equality

(3.9)
〈
Dγn(x)u(x), γn(x)

〉
= Dγn(x)

〈
u(x), γn(x)

〉

is true for each u ∈
[
H1(Ω)

]3
.

We first prove the convergence assertion (3.6) for v ∈
[
C2

(
Ω

)]3
. We have

(3.10) an(un, v)− a(u, v)

=
∫

Ω′

〈
Dγn(x)(un − u), γn(x)

〉
cn(x)

〈
Dγn(x)v, γn(x)

〉
dx

+
∫

Ω′

〈
Dγn(x)u−Dγ(x)u, γn(x)

〉
cn(x)

〈
Dγn(x)v, γn(x)

〉
dx

+
∫

Ω′

〈
Dγ(x)u, γn(x)− γ(x)

〉
cn(x)

〈
Dγn(x)v, γn(x)

〉
dx

+
∫

Ω′

〈
Dγ(x)u, γ(x)

〉
cn(x)

〈
Dγn(x)v −Dγ(x)v, γn(x)

〉
dx

+
∫

Ω′

〈
Dγ(x)u, γ(x)

〉
cn(x)

〈
Dγ(x)v, γn(x)− γ(x)

〉
dx

+
∫

Ω′

〈
Dγ(x)u, γ(x)

〉 (
cn(x)− c(x)

)〈
Dγ(x)v, γ(x)

〉
dx.

So we have begun by splitting an(un, v) − a(u, v) into six integrals and now let
us continue with estimating the first integral. Considering the equality (3.8), the
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formula (3.7), and the fact v ∈
[
C2

(
Ω

)]3
, we have

∫

Ω′

〈
Dγn(x)(un − u), γn(x)

〉
cn(x)

〈
Dγn(x)v, γn(x)

〉
dx

= −
∫

Ω′

〈
un − u, γn(x)

〉
cn(x)Dγn(x)

(〈
Dγn(x)v, γn(x)

〉)
dx

+
∫

S1∪S2

〈
un − u, γn(x)

〉
cn(x)

〈
Dγn(x)v, γn(x)

〉〈
γn(x), ν

〉
dΓ.

Due to the fact that the sequence un weakly converges to u in [H1(Ω)]3, the same

sequence converges to u in the norm of the space [L2(Ω)]3 and the traces of un

on S1 ∪ S2 converge to u in the space [L2(S1 ∪ S2)]3. This is a very well known

consequence of the compact embedding theorem and the Kondrachov theorem in
the Sobolev spaces [4], [5]. If we consider condition 2 from Definition 3.1 and the

Cauchy-Schwarz inequality then the first integral converges to zero. Let us estimate
the second integral. Consider the equality

〈
Dγn(x)u−Dγ(x)u, γn(x)

〉
=

∂ui

∂xj
(γn − γ)j (γn)i .

Due to the uniform convergence of γn to γ, the sequence
〈
Dγn(x)u−Dγ(x)u, γn(x)

〉

converges to zero in L2(Ω′).

The Cauchy-Schwarz inequality together with condition 2 of Definition 3.1 guar-
antee the convergence from the second integral to zero. The estimate of the third

integral is similar to the second and is based on the equality

〈
Dγ(x)u, γn(x) − γ(x)

〉
=

∂ui

∂xj
γi (γn − γ)j .

The rest of the proof is the same as the proof of convergence of the second integral.

Due to the same reasons the fourth and the fifth integrals converge to zero, too.
Let us finish by estimating the sixth integral. The convergence of the last integral

is a consequence of conditions 2 and 3 from Definition 3.1 and the fact that C
(
Ω′

)
is

dense in the space L2(Ω′) [4]. Then the Cauchy-Schwarz inequality guarantees the

convergence of the integral in question.
We have proved the convergence of the sequence an(un, v) to a(u, v) for all v ∈[

C2
(
Ω

)]3
. Let us notice that the set

[
C2

(
Ω

)]3
is dense in the space

[
H1(Ω)

]3
, and

let us consider condition 2 from Definition 3.1. Then the convergence of an(un, v) to

a(u, v) for all v ∈
[
H1(Ω)

]3
is a simple consequence of the Cauchy-Schwarz inequality

again. �
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Theorem 3.1. Let the assumptions of Theorem 2.1 be fulfilled and let ξn, cn

d-converge to ξ, c. Then the sequence un of the bolt problem solutions which corre-

sponds to ξn, cn converges to the bolt problem solution which corresponds to ξ, c in

the space
[
H1(Ω)

]3
.

�����. First let us prove that the sequence un of solutions to the bolt problems
which correspond to ξn, cn is bounded in the norm of

[
H1(Ω)

]3
. We have the

following sequence of variational equations in V defined in Chapter 2:

(3.11) A(un, v) + an(un, v) = L(v), ∀v ∈ V.

After replacing v with un and applying Korn’s inequality we have

K‖un‖2[H1(Ω)]3 � A(un, un) � A(un, un) + an(un, un) = L(un)

� ‖L‖V ∗ ‖un‖[H1(Ω)]3 ,

whereK is a positive constant independent of un. Now it is clear that the sequence un

is bounded in
[
H1(Ω)

]3
and so there is a subsequence unk

which weakly converges
to u∗. If we denote this subsequence by un then we can consider (3.10) as the

subsequence of equations which corresponds to the subsequence un. Let us recall the
weak convergence of un to u∗ and Lemma 3.1. Then the equality

A(u∗, v) + a(u∗, v) = L(v)

is fulfilled, which means that u∗ is a solution to the bolt problem corresponding to
ξ, c. Because the problem in question has a unique solution the initial sequence un

weakly converges to u∗ which is a solution to that problem. Denote that solution
by u.

It is sufficient to prove that the sequence un strongly converges to u. Because un,

u are solutions to the above problems we have

A(un, un − u) + an(un, un − u) = L(un − u),

A(u, un − u) + a(u, un − u) = L(un − u).

Subtracting these equations and adding the term −an(u, un−u) to both sides of the
resulting equation we have

A(un − u, un − u) + an(un − u, un − u) = a(u, un − u)− an(u, un − u).
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After applying Korn’s inequality we have

K‖un − u‖2[H1(Ω)]3 � A(un − u, un − u)

� A(un − u, un − u) + an(un − u, un − u)

= a(u, un − u)− an(u, un − u),

where K is a positive constant independent of un. Applying Lemma 3.1 to the term
a(u, un − u)− an(u, un − u) we obtain the convergence of the sequence un to u. �

Theorem 3.2. Let the assumptions of Theorem 2.2 be fulfilled, let ξn, cn

d-converge to ξ, c and let Q ⊂
[
H1(Ω)

]3
be a subspace satisfying Q ∩ R = ∅

where the subspace R corresponds to the rigid-body translations and the rigid-body

rotations. Then the sequence un ∈ Q of the bolt problem solutions which corre-

sponds to ξn, cn converges to the bolt problem solution u ∈ Q which corresponds to

ξ, c in the space
[
H1(Ω)

]3
.

�����. We can prove this result in the same way as we did Theorem 3.1. We

only have to restrict ourselves to the subspace Q where the existence and uniqueness
are guaranteed as they were in Theorem 2.2. �

������ 3.4. The conditions when only the loads and body forces are pre-
scribed are natural in many geomechanical problems.

4. Some other properties of solutions

In this chapter we are going to deal with similar problems to those we did in

Chapter 6 in [1]. So far we have been dealing with the existence, uniqueness, and
continuous dependence on the data (F, P ). Now we are going to pay our attention
to the continuous dependence on the data which characterize the bolt systems.

Theorem 4.1. Let the assumptions of Theorem 2.1 be fulfilled. Let ξ : S1 �→ S2,

c : Ω′ �→ �, c′ : Ω′ �→ � be functions, where c, c′ characterize two different bolt

systems, and let these three functions satisfy the same conditions as the correspond-

ing functions did in Chapter 3. Let u, u′ be the two solutions to the bolt problems

which correspond to the data (F, P, ξ, c) and (F, P, ξ, c′). Then there exists a positive
constant K independent of (F, P, ξ, c, c′) such that the inequality

‖u− u′‖[H1(Ω)]2 � K‖c(x)− c′(x)‖L∞(Ω′)
(
‖F‖[L2(Ω)]3 + ‖P‖[L2(Γτ )]3

)

holds.
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�����. The proof of this theorem is parallel to the one of Theorem 6.1 [1] and

we refer the reader to this source. �

Let V be the subspace of
[
H1(Ω)

]3
defined in Chapter 2 and let Vγ be the subspace

of V defined by

Vγ =
{
u ∈ V |

〈
Dγu, γ

〉
= 0 on Ω′

}
,

where γ is the vector field defined by (3.2), (3.4).

Theorem 4.2. Let all assumptions of Theorem 4.1 be fulfilled and let ξ : S1 �→ S2,

c : Ω′ �→ � be given. Moreover, let c(x) � K, where K is a positive constant. Let

λn be a sequence of positive numbers which converges to infinity and let un be

the sequence of bolt problem solutions which correspond to ξ(x), λnc(x). Then un

converges to u, which is a minimum of the functional

L0 =
1
2

A(u, u)− L(u), u ∈ Vγ .

�����. The proof is similar to that of Theorem 6.2 [1] and we refer the reader

to this source again. �

������ 4.1. The last theorem demonstrates that if we gradually replace the

material of bolts with a harder one the solution to these bolt problems converge to
the solution to the elasticity problem with constrains.

5. Model of the prestressed hybrid bolt reinforcement

In this chapter we are going to deal with bolts which are partially grouted and
which are partially inserted in the surrounded rock mass without any contacts (see

Fig. 5). The bolts are furnished with bearing plates and nuts, which can be pre-
stressed by screwing. The main goal of this chapter is to give a variational formula-

tion of the problems with these hybrid bolts together with the boundary condition
which corresponds to the prestressed bolts.

First of all we formulate the assumptions which are necessary for our formulations.

These assumptions are similar to those in Chapter 2, namely:

1. Linear elastic behaviour of the rock mass.

2. Linear elastic behaviour of the bolts.

3. The bolts are partially grouted into the rock mass and the influence of the
cement is neglected.

4. There are no contacts between some parts of the bolts and the rock mass.
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5. The volume of the bore holes is small in comparison with the dimensions of the

underground opening and can be neglected.

1

2

3
4

56

7

Figure 5. 1 – special cement, 2 – bore hole, 3 – bolt, 4 – bearing plate, 5 – nut, 6 – tunnel
or underground opening, 7 – rock mass.

S1

S2

S3

ξ
η

Ω

Ω′

Figure 6. The cross section of a tunnel reinforced by a single bolt.

Let us formulate the problem for a single bolt and then continue with an asymp-
totic process which is similar to the one formulated in Chapter 3. Let us keep the

notation from the previous chapter and consider the situation in Fig. 6. We have
two one-to-one transformations η : S1 �→ S2, ξ : S2 �→ S3, where S1, S2 are Lipschitz

two-dimensional surfaces. Moreover, there exist two positive constants K1, K2 such
that

K1‖x1 − x2‖ � ‖ξ(x1)− ξ(x2)‖ � K2‖x1 − x2‖, x1, x2 ∈ S2,

K1‖y1 − y2‖ � ‖η(y1)− η(y2)‖ � K2‖y1 − y2‖, y1, y2 ∈ S1.

Let us define

w : S1 �→ �
3 , w(x) =

η(x)− x

‖η(x)− x‖
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and introduce a form b(., .) by

b(u, v) =
∫

S1

d(x)
〈
u
(
η(x)

)
− u(x), w(x)

〉〈
v
(
η(x)

)
− v(x), w(x)

〉
dΓ,

where d(x) = E/‖η(x) − x‖, E is Young’s modulus of the material from which
the bolts are made, the term ‖η(x) − x‖ corresponds to the length of the bolt and
u, v ∈ V . The space V is defined in Chapter 2. The bilinear form b(u, v) corresponds
to the deformation energy of the part of the bolt which is not grouted. This procedure

is studied in detail in [1].
Let us define the functional of the total potential energy by

L =
1
2
A(u, u) +

1
2

a(u, u) +
1
2

b(u, u)− L(x).

This functional is defined in V which is given in Chapter 2, as well as the forms

A(u, u), a(u, u) and L(u). So far we have not considered the fact that the bolt
can be prestressed by screwing the nut. This can be mathematically formulated as

follows: There are connections between the points which correspond to the points on
the wall of the underground opening, and the points which correspond to the points

on the bearing plate after the bolt was prestressed.
Due to the fact that we deal with the theory of small deformations, the stretching

of the ungrouted part of the bolt is given by the term

〈
u
(
η(x)

)
− u(x), w(x)

〉
, x ∈ S1,

where u(x) is the displacement vector in the rock mass. In the case the bolt is

additionally prestressed the term

〈
u
(
η(x)

)
− u(x), w(x)

〉
+ l(x), x ∈ S1,

represents the stretching of the same part of the bolt where the function l(x) corre-
sponds to the length resulting by screwing the nut.

Introduce another bilinear form by

bp(u, v) =
∫

S1

d(x)
(〈

u(η(x)− u(x), w(x)
〉
+ l(x)

)

×
(〈

v(η(x)) − v(x), w(x)
〉
+ l(x)

)
dΓ,

which corresponds to the deformation energy of the above mentioned part of the
bolt after this bolt has been prestressed. Then we have the functional of the whole
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potential energy

L p(u) =
1
2
A(u, u) +

1
2

a(u, u) +
1
2

bp(u, u)− L(u),

where u ∈ V .

Definition 5.1. An element u ∈ V will be called a solution to the prestressed

bolt problem if

L p(u) � L p(v) for all v ∈ V.

It is useful to replace the functional L p(u) by another one denoted by the same
symbol

L p(u) =
1
2
A(u, u) +

1
2

a(u, u) +
1
2

b(u, u)− L(u) + Lp(u),

where Lp(u) is the linear form

Lp(u) =
∫

S1

h(x)
〈
u
(
η(x)

)
− u(x), w(x)

〉
dΓ,

where h(x) = d(x)l(x). It is easy to see that the solution to our initial problem is
equivalent to the minimum of the functional L p in V .

Theorem 5.1. Let the assumptions of Theorem 2.1 be fulfilled together with the
assumptions mentioned above. Moreover, let d ∈ L∞(S1), d(x) � 0, and h(x) ∈
L2(S1). Then there exists a unique solution u ∈ V such that the inequality

‖u‖[H1(Ω))]3 � K
(
‖F‖[L2(Ω)]3 + ‖P‖[L2(Γτ )]3 + ‖h‖L2(S1)

)

is fulfilled, where K is a positive constant independent of u.

�����. This theorem can be proved in the same way as Theorem 2.1. We leave

it to the reader. �

Let us consider an asymptotic process similar to that studied in Chapter 3. We
have the sequences ηn : S1 �→ S2, ξn : S2 �→ S3, dn : S1 �→ �, cn : Ω′ �→ �, such that

ηn, dn b-converge to η : S1 �→ S2, d : S1 �→ � and ηn, cn d-converge to η : S2 �→ S3,
c : Ω′ �→ �. The first step of this process is depicted in Fig. 7. The situation is similar

to that in Chapter 3. In this case the surfaces S1, S2, S3 are not fully occupied
by bolts as they were above in this chapter but they are wider and remain the

same during the whole process. The position and material properties in the subarea
occupied by bolts are described by the functions dn : S1 �→ � and cn : Ω′ �→ �,
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S1

S3

η
ξ

Ω

Ω′S2

Figure 7. The cross section of a tunnel reinforced by hybrid bolts.

respectively. The b-convergence was defined in [1] and we recall this definition for
the reader’s convenience.

Definition 5.2. We say that ηn : S1 �→ S2, dn : S1 �→ � b-converge to η : S1 �→
S2, d : S1 �→ � if the following conditions are fulfilled:

1. ∃K1, K2 > 0, ∀n, ∀x, y ∈ S1:

K1‖x− y‖ � ‖ηn(x) − ηn(y)‖ � K2‖x− y‖;

2. ηn uniformly converges to η on S1;

3. ∃K3 > 0, ∀n: ‖dn‖L∞(S1) < K3, ‖d‖L∞(S1) < K3. L∞(S1) is the space of
measurable functions on S1 with the essential norm;

4. ∀f ∈ C(S1) (the space of continuous functions on S1),
∫

S1

dnf dΓ→
∫

S1

d f dΓ.

Introduce a sequence of bilinear forms

bn(u, v) =
∫

S1

dn(x)
〈
u
(
ηn(x)

)
− u(x), wn(x)

〉〈
v
(
ηn(x)

)
− v(x), wn(x)

〉
dΓ,

where wn(x) =
ηn(x) − x

‖ηn(x) − x‖ .

Lemma 5.1. Let ηn, dn b-converge to η, d and moreover, let un ∈
[
H1(Ω)

]3
be

a sequence which weakly converges to u ∈
[
H1(Ω)

]3
. Then for each v ∈

[
H1(Ω)

]3
,

we have

bn(un, v)→ b(u, v).

�����. This lemma is a simple consequence of Lemma 3.1 in [1], which is a bit
stronger assertion than this one. �
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Let us consider another sequence of functions hn : S1 �→ �, which corresponds

to the prestressed bolts in the asymptotic process. Assume that hn ∈ L2(S1) and
introduce a sequence of forms by

Lp
n(u) =

∫

S1

hn(x)
〈
u
(
ηn(x)

)
− u(x), wn(x)

〉
dΓ,

where u ∈
[
H1(Ω)

]3
.

Definition 5.3. We say that ηn : S1 �→ S2 and hn : S1 �→ � a-converge to η :
S1 �→ S2 and h : S1 �→ �, respectively, if the following conditions are fulfilled:

1. ∃K1, K2 > 0, ∀n, ∀x, y ∈ S1:

K1‖x− y‖ � ‖ηn(x) − ηn(y)‖ � K2‖x− y‖;

2. the sequence ηn uniformly converges to η on S1;

3. the sequence hn weakly converges to h in L2(S1).

Lemma 5.2. Let ηn, hn a-converge to η, h and moreover, let vn be a sequence

in
[
H1(Ω)

]3
which weakly converges to v ∈

[
H1(Ω)

]3
. Then

Lp
n(vn)→ Lp(v).

�����. Due to the first condition of Definition 5.3 there exist two positive
constants K, K ′ independent of n such that ∀u ∈ L2(S1) we have

(5.1) K
∥∥u(x)

∥∥
L2(S2)

�
∥∥u

(
ηn(x)

)∥∥
L2(S1)

� K ′∥∥u(x)
∥∥

L2(S2)
.

Taking into account that the trace operator from
[
H1(Ω)

]3
to

[
L2(S1 ∪ S2)

]3
is

compact [5], we find that vn strongly converges to v in
[
L2(S1 ∪ S2)

]3
. This fact

together with (5.1) implies

(5.2)
∥∥vn

(
ηn(x)

)
− v

(
ηn(x)

)
− vn(x) + v(x)

∥∥
[L2(S1)]3

→ 0.

Moreover, the space [C(S1∪S2)]3 is dense in
[
L2(S1∪S2)

]3
, which together with (5.1)

and (5.2) results in the inequalities ∀ε > 0 ∃u ∈ [C(S1 ∪ S2)]3, ∃n0, ∀n > n0:

(5.3)
∥∥vn

(
ηn(x)

)
− u

(
ηn(x)

)
− vn(x) + u(x)

∥∥
[L2(S1)]3

< ε,
∥∥v

(
η(x)

)
− u

(
η(x)

)
− v(x) + u(x)

∥∥
[L2(S1)]3

< ε.
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Then

(5.4) Lp
n(vn)− Lp(v)

=
∫

S1

hn(x)
〈
vn

(
ηn(x)

)
− u

(
ηn(x)

)
− vn(x) + u(x), wn(x)

〉
dΓ

−
∫

S1

h(x)
〈
v
(
η(x)

)
− u

(
η(x)

)
− v(x) + u(x), w(x)

〉
dΓ

+
∫

S1

hn(x)
〈
u
(
ηn(x)

)
− u

(
η(x)

)
− u(x) + u(x), wn(x)

〉
dΓ

+
∫

S1

hn(x)
〈
u
(
η(x)

)
− u(x), wn(x)− w(x)

〉
dΓ

+
∫

S1

(
hn(x)− h(x)

)〈
u
(
η(x)

)
− u(x), w(x)

〉
dΓ.

Due to the Cauchy-Schwarz inequality, the two estimates (5.3) and the fact that

wn, hn are bounded in [C(S1)]3, L2(S1), both the first and the second integrals are
sufficiently small for all sufficiently large n. Due to the Cauchy-Schwarz inequality

and the fact hn is bounded in L2(S1) and ηn, wn uniformly converge to η, w, both
the third and the forth integrals converge to zero. The convergence to zero of the

last integral is a consequence of the weak convergence of hn to h in L2(S1). �

Theorem 5.2. Let the assumptions of Theorem 2.1 be fulfilled, let ηn, dn

b-converge to η, d, let ξn, cn d-converge to ξ, c and let ηn, hn a-converge to η, h.

Then the sequence un of solutions to the prestressed bolt problems which correspond

to ηn, ξn, dn, cn, hn converges to the solution of the prestressed bolt problem which

corresponds to η, ξ, d, c, h in the space
[
H1(Ω)

]3
.

�����. First let us prove that the sequence un of the solutions is bounded in

the norm of
[
H1(Ω)

]3
. We have the sequence of variational equalities

(5.5) A(un, v) + an(un, v) + bn(un, v) = L(v)− Lp
n(v)

which hold for all v ∈ V . After replacing v with un and applying Korn’s inequality

we have

(5.6) K‖un‖2[H1(Ω)]3 � A(un, un) � A(un, un) + an(un, un) + bn(un, un)

= L(un)− Lp
n(un),
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where K is a positive constant independent of un. Because of the definitions of L(.)

and Lp
n(.) and the second condition of Definition 5.3 it is evident that there exists

a positive constant K1 independent of un such that

L(un)− Lp
n(un) � K1‖un‖[H1(Ω)]3 .

The inequality (5.6) together with this inequality yield the boundedness of un. So
there is a subsequence unk

which weakly converges to u∗. Denote this subsequence by

un again. If we consider the weak convergence of un to u∗, Lemma 3.1, Lemma 5.1,
Lemma 5.2 and the sequence of equalities (5.5), then the equality

A(u∗, v) + a(u∗, v) + b(u∗, v) = L(v)− Lp(v)

is fulfilled and u∗ is the solution to our problem which corresponds to η, ξ, d, c, h.

Because the problem in question has a unique solution the initial sequence un weakly
converges to u∗ which is the solution to the problem and we can denote it by u. It

is sufficient to prove that the sequence un strongly converges to u.
Because un, u are solutions to the above problems we have

A(un, un − u) + an(un, un − u) + bn(un, un − u) = L(un − u)− Lp
n(un − u),

A(u, un − u) + a (u, un − u) + b(u, un − u) = L(un − u) + Lp(un − u).

Subtracting these equations and adding the term

−
(
an(u, un − u) + bn(u, un − u)

)

to both sides of the new equation we obtain

(5.7) A(un − u, un − u) + an(un − u, un − u) + bn(un − u, un − u)

= a(u, un − u)− an(u, un − u) + b(u, un − u)− bn(u, un − u)

−Lp
n(un − u) + Lp(un − u).

Applying Korn’s inequality we have

K ‖un − u‖2[H1(Ω)]3 � A(un − u, un − u) � A(un − u, un − u)

+an(un − u, un − u) + bn(un − u, un − u),

where K is a positive constant independent of an. Combining this inequality
with (5.7) we conclude

K ‖un − u‖2 � a(u, un − u)− an(u, un − u) + b(u, un − u)

−bn(u, un − u)− Lp
n(un − u) + Lp(un − u),

which together with Lemma 3.1, Lemma 5.1, Lemma 5.2 yields that un strongly
converges to u. �
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������ 5.1. Let us consider the process of the convergence in Definition 5.3.

If we assume that we screwed all the bolts by the same value l we can understand
the resulting function h as follows: h(x) = Epl�(x)/‖η(x)− x‖, where E is Young’s
modulus, p is the area of the cross section of a bolt, �(x) is the “bolt density” on S1,

and ‖η(x) − x‖ is the length of the bolt at the point x.

6. Another variational problem

In this chapter we will deal with bolts which are partially grouted and partially
inserted in the surrounding rock mass without any contacts with it as we did in the

previous chapter. There is a stiff plate fixed to the rock mass by the set of prestressed
bolts. Moreover, there are other bolts, which are not connected to the stiff plate and
which are furnished with bearing plates and nuts and which are prestressed, too.

The whole situation is depicted in Figs. 8a–b.

S̄

Figure 8a. The model of a tunnel reinforced by a stiff plate and bolts.

S1

S̄

S3

η ξ

Ω

Ω′S2

Figure 8b. The cross section of a tunnel reinforced by a stiff plate and bolts.
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The main goal of this chapter is to give a variational formulation of the bolt

problem including the presence of the stiff plate and the prestressed bolts. Let the
conditions formulated at the beginning of Chapter 5 remain fulfilled.

Introduce a subspace V0 ⊂ V by

V0 =
{
u ∈ V | u(x) = v(x) on S ∧ v ∈ R

}
,

where S is the subsurface of the surface S1 which corresponds to the stiff plate. The
subspace R is the space introduced in Chapter 2 and corresponds to the rigid-body

translations and the rigid-body rotations, which harmonizes with the fact that this
part of S1 is fully connected with the stiff plate. Let us preserve all the notation

from Chapter 5 and let us define the functional of the total potential energy by

L p(u) =
1
2
A(u, u) +

1
2

a(u, u) +
1
2

b(u, u)− L(u) + Lp(u),

which is the same functional as the one in Chapter 5 with the only exception that
this functional is defined in the subspace V0.

Definition 6.1. An element u ∈ V0 will be called the solution of the modified

prestressed bolt problem if

L p(u) � L p(v) for all v ∈ V0.

Let us formulate the following two theorems.

Theorem 6.1. Let the assumptions of Theorem 5.1 be fulfilled. Then there exists
a unique solution to the modified prestressed bolt problem and the inequality

‖u‖[H1(Ω)]3 � K
(
‖F‖[L2(Ω)]3 + ‖P‖[L2(Γτ )]3 + ‖h‖L2(S1)

)

holds, where K is a positive constant independent of u.

Theorem 6.2. Let the assumptions of Theorem 5.2 be fulfilled and moreover, let
ηn, ξn, dn, cn, hn, η, ξ, d, c, h be defined in the same way as in Chapter 5. Then the
sequence un of solutions to the modified prestressed bolt problems corresponding

to ηn, ξn, dn, cn, hn converges to the solution u to the modified prestressed bolt

problem corresponding to η, ξ, d, c, h in the space
[
H1(Ω)

]3
.

The proofs of these two theorems are completely parallel to the proofs of Theo-
rems 5.1 and 5.2. We only have to restrict ourselves to the subspace V0 when giving
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the proofs. Let us formulate the problem in a bit different way which is more suitable

for numerical approximations. Let us define

V =
{
v ∈ V0 | v(x) = 0 on S

}
,

Ki =
{
v ∈ V0 | v(x) = hi(x) on S

}
,

where hi : Ω �→ �
3 , i = 1, . . . , 6 form a basis of the 6-dimensional space R which

corresponds to the rigid-body translations and the rigid-body rotations. Moreover,

let u1, . . . , u6 be solutions to the problems

(6.1) A(ui, v) + a(ui, v) + b(u i, v) = 0, ∀v ∈ V , ui ∈ Ki, i = 1, . . . , 6.

It is evident that these problems have unique solutions and using the Trace Theorem,

we can show that u1, . . . , u6 are linearly independent. Moreover, the space V0 can
be decomposed into V ⊕ D, where D = span{u1, . . . , u6}. Let u0 be the solution to

the variational problem

(6.2) A(u0, v) + a(u0, v) + b(u0, v)− L(v) + Lp(v) = 0, ∀v ∈ V , u0 ∈ V .

Then the solution to the initial problem can be given as u = u0 +
6∑

i=1
ciui, where

c = (c1, . . . , c6)T is the solution to the system of linear equations

(6.3) Hx = b, H = (Hij), b = (bi), i, j = 1, . . . , 6,

where

Hij = A(uj , ui) + a(uj , ui) + b(uj, ui),

bi = −A(u0, ui)− a(u0, ui)− b(u0, ui) + L(ui)− Lp(ui).

Due to Korn’s inequality it is evident that the matrix H is positive definite, so there

is a unique solution to the problem (6.3). If we insert such u in the variational
equality

A(u, v) + a(u, v) + b(u, v) = L(v)− Lp(v),

then due to (6.2), (6.1) it is evident that this equation holds for all v ∈ V and due
to (6.3) it holds for every v ∈ span{u1, . . . , u6}. Consequently, u is the solution to
our initial problem.

������ 6.1. We have formulated the modified prestressed bolt problem in the

case that there is only one stiff plate. We can formulate such a problem for more
stiff plates. In this case the dimension of the matrix H (6.3) will be 3l, where l

corresponds to the number of separate stiff plates.
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7. Conclusions

We have formulated some variational problems arising in geomechanics. Moreover,

we have developed the asymptotic technique which makes it possible to approximate
numerically some problems described above.

The numerical codes based on the models of rock bolt systems described in this
paper have been developed and inserted in GEM22, which is the numerical code

developed in the Institute of Geonics and applied to solving geomechanical problems.
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