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Abstract. We derive expressions for the asymptotic approximation of the bias of the
least squares estimators in nonlinear regression models with parameters which are subject
to nonlinear equality constraints.
The approach suggested modifies the normal equations of the estimator, and approxi-

mates them up to op(N−1), where N is the number of observations. The “bias equations”
so obtained are solved under different assumptions on constraints and on the model. For
functions of the parameters the invariance of the approximate bias with respect to repara-
metrisations is demonstrated. Singular models are considered as well, in which case the
constraints may serve either to identify the parameters, or eventually to restrict the para-
meter space.

Keywords: nonlinear least squares, maximum likelihood, asymptotic bias, nonlinear con-
straints, transformation of parameters
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1. Introduction

Approximate bias formulae for least squares estimators in nonlinear regression

models were first derived by Cox and Snell [2] and Box [1] for regular models with-
out constraints. Here we generalize these formulæ to the case where parameters are

subject to nonlinear constraints. To do so we use some classical results on the first
order asymptotics of maximum likelihood estimation with constraints, as presented

in Silvey [8, 9], in combination with the methods of bias approximation in models
without constraints (cf. Chapter 6 of Pázman [5]). This can be done only when the

LS and the ML estimators coincide, e.g. when the errors are normally distributed.

This work was supported by INRA (France) and by the Slovak Grant Agency (grant
N◦1/4196/97).
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In Appendix we show how these results can be extended to the LS estimation under

non-normal errors under supplementary assumptions. Of course, in classical nonlin-
ear models with a few parameters it is always possible to reparametrize the model to
obtain a full rank model without constraints. This is not the case for some bilinear

analysis of variance type models (cf. Denis and Pázman [4]), where a large num-
ber of parameters and constraints considered would imply big numerical difficulties,

due also to the loss of symmetry produced by the reparametrization. Indeed, this
was the first motivation for this work. Nevertheless, we believe that in many situa-

tions, the possibility of constraints in defining models is important because a proper
interpretation can be given to the parameters, allowing easier interpretations.

The paper is organized in the following manner. After presenting the model in
Section 2, in Section 3 we modify the normal equations of the constrained least

squares and approximate them up to the order op(N−1). Without changing the order
of approximation we substitute the estimators by their first order approximations at

some places. This leads to linear equations for the approximate bias, called bias
equations. The way to solve these equations is discussed in Section 4, first for the

case where constraints are restrictive in a regular (i.e. full rank) model, then where
they are identifying in a singular model, and finally, where they are restrictive and

identifying in a singular model. In the first two cases an explicit expression for the
bias is obtained, while in the last case the existence and uniqueness of the solution

of the bias equation is proved. We also show that the general formulae proposed
here for the approximate bias are consistent with the formulae already well known in

non-constrained models. In Section 5 the approximate bias of an arbitrary function
of the parameters is obtained, and it is shown that this bias is invariant with respect

to reparametrization of the model.

2. The model

Let us observe a vector y∗ = (y∗1 , y
∗
2 , . . . , y

∗
n)

T of n observations modelled by

y∗ = η(θ) + ε∗(1)

E[ε∗] = 0n; Var[ε∗] = σ2In

where the p-vector of parameters θ is subject to q independent constraints

(2) ϕ(θ) = 0q,

which ensures that the parameters θ can be locally identified. Usual regularity
conditions are supposed: the parameter space Θ is convex and compact, θ, the true
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value of θ, is an interior point of Θ, η(θ) and ϕ(θ) are twice continuously differentiable

in θ. 0r denotes the null r-vector and In is the identity matrix of size n.

The errors ε∗ are supposed to be normally distributed. (See Appendix for a more
general case.) To evaluate the accuracy of approximations below we consider N

independent replications of observation vectors: y∗(1), y∗(2), . . . , y∗(N). Let us denote
by ε∗(i) the error vector associated with the ith replication. As is well known, the

arithmetic mean

y =
1
N

N∑

i=1

y∗(i)

is a sufficient statistics for the parameter vector θ. So instead of N replications, we

have the model

y = η(θ) + ε(3)

E[ε] = 0n; Var[ε] =
σ2

N
In

ε is normally distributed

where ε = 1
N

N∑
i=1

ε∗(i), and the p-vector of parameters θ is still subject to the same q

independent constraints ϕ(θ) = 0. We see from (3) that N →∞ has the same effect
on the estimators as σ → 0. In particular, the bias approximation considered holds
either for a large N or for a small σ.

3. Modification and approximation of the normal equations

The normal equations for the estimator

(4) θ̂ ∈ arg min
θ : ϕ(θ)=0

[y − η(θ)]T [y − η(θ)]

are (cf. also Silvey [8], p. 390)

(5) JT
(
θ̂
)[
η
(
θ̂
)
− y
]
+ LT

(
θ̂
)
λ̂ = 0

ϕ
(
θ̂
)
= 0

where J(θ) = ∂η(θ)
∂θT , L(θ) =

∂ϕ(θ)
∂θT are the Jacobians of the response and constraint

functions, and λ̂ is the estimated q-vectorial Lagrangian multiplicator. We suppose
that the constraints are independent, that means that L(θ) is of full rank q. On
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the other hand the model itself may be singular, and in that case J(θ) is of rank r

smaller than p. However, it is supposed that the total rank satisfies

rk

(
J(θ)

L(θ)

)
= p

at every interior point of Θ.
Let us denote by M(θ) = JT (θ)J(θ) the Fisher information matrix when σ = 1,

and by
P (θ) = J(θ)M−(θ)JT (θ)

an orthogonal projector. HereM−(θ) is any g-inverse ofM(θ), and it will be specified
later. Let us denote P⊥(θ) = I− P (θ).

Premultiply the first equation of (5) by J
(
θ̂
)
M−(θ̂

)
. We obtain

P
(
θ̂
)[
η
(
θ̂
)
− y
]
+ U

(
θ̂
)
λ̂ = 0n

where U(θ) = J(θ)M−(θ)LT (θ). It follows that

P
(
θ̂
)
y = P

(
θ̂
)[
η
(
θ̂
)
+ U

(
θ̂
)
λ̂
]
.

Using this we obtain

ε = P
(
θ̂
)
ε+ P⊥

(
θ̂
)
ε

= P
(
θ̂
)[
y − η

(
θ
)]
+ P⊥

(
θ̂
)
ε

= P
(
θ̂
)[
η(θ̂)− η(θ) + U

(
θ̂
)
λ̂
]
+ P⊥

(
θ̂
)
ε

=
[
η
(
θ̂
)
− η
(
θ
)
+ U

(
θ̂
)
λ̂
]
+ P⊥(θ̂)

[
ε− η

(
θ̂
)
+ η
(
θ
)]

since P⊥
(
θ̂
)
U
(
θ̂
)
= 0n×q. Now we can write P⊥

(
θ̂
)
= Ω

(
θ̂
)
ΩT
(
θ̂
)
where the columns

of Ω
(
θ̂
)
form an orthonormal basis of the projection space of P⊥

(
θ̂
)
. So we obtain

(6) ε = [η
(
θ̂
)
− η
(
θ
)
+ U

(
θ̂
)
λ̂] + Ω

(
θ̂
)
ΩT
(
θ̂
)[
ε− η

(
θ̂
)
+ η
(
θ
)]
.

For sake of brevity, let us denote

∆ = θ̂ − θ.

and denote by H(θ) the Hessian operator with components Hk
r,s(θ) =

∂2ηk(θ)
∂θr∂θs

. We

consider the Taylor expansions

ηk

(
θ̂
)
− ηk

(
θ
)
= Jk.(θ)∆ +

1
2
∆THk

..(θ)∆ + op

( 1
N

)
(7)

Uk.

(
θ̂
)
λ̂ = Uk.(θ)λ̂+

∑

i

∆i
∂Uk.(θ)
∂θi

λ̂+ op

( 1
N

)

Ωkl

(
θ̂
)
= Ωkl

(
θ
)
+
∑

i

∆i
∂Ωkl(θ)
∂θi

+ op

( 1√
N

)
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which hold since
√
N∆ and

√
Nλ̂ are asymptotically normally distributed with zero

expectations (i.e. they converge in distribution to some normal variables, cf. Silvey
[8], p. 401). Obviously the same holds also for the components of the vector

√
Nε.

Notice that ∆, ε and λ̂ depend onN , and that a sequence of random variables {ζN}∞N0
is called op(N−k) when the sequence {NkζN}∞N0 converges to zero in probability. As
is well known, a sequence converging in the distribution function to zero converges

also in probability to zero, and a product of two sequences converging in probability
to zero converges in probability as well (theorem of Slutsky, cf. Cramér [3] p. 255).

The last expression in (7) allows us to write

(8) Ω
(
θ̂
)
ΩT
(
θ̂
)
=

[
Ω
(
θ
)
ΩT
(
θ
)
+
∑

i

∆i

(
Ω
(
θ
)∂ΩT (θ)

∂θi
+
∂Ω
(
θ
)

∂θi
ΩT (θ)

)]
+op

( 1√
N

)
.

Now let us put the expressions from (7) and (8) into (6) and premultiply the result

by JT
(
θ
)
. We obtain

JT
(
θ
)
ε =M

(
θ
)
∆+

1
2

∑

i

JT
(
θ
)[
∆THi

..

(
θ
)
∆
]

(9)

+ JT
(
θ
)
U
(
θ
)
λ̂+

∑

i

JT
(
θ
)[
∆i

∂U
(
θ
)

∂θi
λ̂
]

+
∑

i

∆iJ
T
(
θ
)∂Ω

(
θ
)

∂θi
ΩT
(
θ
)
ε+ op

( 1
N

)

where we have used the definition ofM(θ) and the fact that JT (θ)Ω(θ) = 0 for every

interior point of Θ. This implies further that JT (θ)∂Ω(θ)∂θi
= −∂JT (θ)

∂θi
Ω(θ). We use

this in (9), as well as the evident equality JT (θ)U(θ) =M(θ)M−(θ)LT (θ). The term

op( 1N ) is not modified if we replace λ̂ and ∆ in the terms of (9), which are quadratic
in λ̂, ∆, ε, by their first order asymptotic approximations; they will be denoted by

λ̂(1) and ∆(1). So finally we obtain

JT (θ)ε =M(θ)∆ +
1
2
JT (θ)[[∆(1)]TH(θ)∆(1)](10)

+M
(
θ
)
M−(θ

)
LT
(
θ
)
λ̂+

∑

i

JT (θ)
[
∆(1)i

∂U
(
θ
)

∂θi
λ̂(1)

]

+
∑

i

∆(1)i

∂JT
(
θ
)

∂θi
P⊥
(
θ
)
ε+ op

( 1
N

)

Denote by K(θ) the Hessian operator with components Kk
r,s(θ) =

∂2ϕk(θ)
∂θr∂θs

.
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Proposition 1. The bias of θ̂ and of λ̂, E[∆] and E[λ̂], satisfy the equation

(
M(θ) M(θ)M−(θ)LT (θ)
L(θ) 0q×q

)(
E[∆]
E
[
λ̂
]
)

= −1
2

(
JT (θ)Tr{H(θ)Var[∆(1)]}
Tr{K(θ)Var[∆(1)]}

)
+ E

[
op

( 1
N

)]

where Tr{H(θ)Var[∆(1)]} is an n-vector whose kth component is
∑
r,s
Hk

r,s(θ)×

Cov[∆(1)r ,∆(1)s ] and similarly Tr{K(θ)Var[∆(1)]} is a q-vector whose ith component
is equal to {∑

r,s
Ki

r,s(θ)Cov[∆
(1)
r ,∆(1)s ]}.

�����. Let us take the expectation on both sides of Equation (10). We use the
fact that λ̂(1) and ∆(1) are independent random vectors (Silvey [8], p. 401) as are
∆(1) and the vector of residuals P⊥

(
θ̂
)
ε. We obtain

0p =M(θ)E[∆] +
1
2
JT (θ)Tr{H(θ)Var[∆(1)]}(11)

+M(θ)M−(θ)LT (θ)E
[
λ̂
]
+ E

[
op

( 1
N
)
]
.

From the second equality in (5), after using the Taylor formula we obtain

0q = ϕ
(
θ̂
)
= ϕ

(
θ
)
+ L

(
θ
)
∆+

1
2
∆TK(θ)∆ + op

( 1
N

)
.

We have ϕ(θ) = 0 and we can replace again ∆ by ∆(1) in the quadratic term. So by
taking the expectation, we obtain

(12) L(θ)E[∆] +
1
2
Tr{K(θ)Var[∆(1)]}+ E

[
op

( 1
N

)]
= 0q.

Combining both (11) and (12) one obtains the required equation. �

Denote by b(θ̂) and b(λ̂) the approximate bias of θ̂ and λ̂. They are solutions of
the bias equations, which are obtained from the above proposition by neglecting the

op( 1N ) terms, and by substituting b(θ̂) and b(λ̂) instead of E[∆] and of E
[
λ̂
]
:

(13)

(
M(θ) M(θ)M−(θ)LT (θ)
L(θ) 0q×q

)(
b(θ̂)
b(λ̂)

)
= −1
2

(
JT (θ)Tr{H(θ)Var[∆(1)]}
Tr{K(θ)Var[∆(1)]}

)
.
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4. Solution of the bias equations

As indicated in the introduction, three cases are distinguished.

4.1. Restricting constraints in regular models
WhenM(θ) is regular, the parameters θ have estimators also in the model without

constraints, which means that the constraints just restrict somehow the parametric

space Θ. In this case we have M(θ)−1 = M−(θ), and the first matrix on the left
hand side of (13) can be inverted (cf. Silvey [9], p. 177), so b(θ̂) can be expressed
explicitly:

b(θ̂) = − 1
2
M(θ)−1(Ip − LT (θ)T (θ)L(θ)M(θ)−1)(14)

× JT (θ)Tr{H(θ)Var[∆(1)]}

− 1
2
M(θ)−1LT (θ)T (θ)Tr{K(θ)Var[∆(1)]}

where T (θ) = (L(θ)M(θ)−1LT (θ))−1. Notice that in the regular model Var[∆(1)] =

σ2M(θ)−1(Ip −LT (θ)T (θ)L(θ)M(θ)−1) (cf. Silvey [9], p. 177). Hence the first addi-
tive term in (14) corresponds to the known formula of Box [1] which has been derived

for the regular model without constraints (cf. also Cox and Snell, [2]).

4.2. Identifying constraints in singular models
In some cases, when M(θ) is singular of a constant rank r < p, one introduces

p − r constraints, which serves just to identify the parameters. So let us suppose

that q = p− r. We recall that rk

(
J(θ)

L(θ)

)
= p. One can find r linearly independent

rows of M(θ) which are linearly independent of the rows of the matrix L(θ). Let

us denote by ψ(θ) the matrix formed from these rows. Because of independence,
one can always find a positive definite matrix C such that we have the orthogonality

relation

ψ(θ)CLT (θ) = 0r×q.

This means that there exists a g-inverseM−(θ) such thatM(θ)M−(θ)LT (θ) = 0p×q

sinceM(θ)M−(θ) is a projector ontoM[M(θ)], the column space ofM(θ), and since
one can find a g-inverse such thatM(θ)M−(θ) is an C-orthogonal projector (cf. Rao
and Mitra [10], lemma 5.3.1).

From Equation (13) we obtain

(
M(θ)
L(θ)

)
b(θ̂) = −1

2

(
JT (θ)Tr{H(θ)Var[∆(1)]}
Tr{K(θ)Var[∆(1)]}

)
.
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Premultiplying it by (M(θ) + LT (θ)L(θ))−1 ( Ip, LT (θ) ) we obtain

Proposition 2. When rk(J(θ)) + rk(L(θ)) = p and L(θ) is of full rank, then

b(θ̂) = − 1
2
(M(θ) + LT (θ)L(θ))−1(15)

(JT (θ)Tr{H(θ)Var[∆(1)]}+ LT (θ)Tr{K(θ)Var[∆(1)]}).

Here (cf. Silvey [9])

Var[∆(1)] = σ2{Q(θ)−1 −Q(θ)−1L(θ)T [L(θ)Q(θ)−1L(θ)T ]−1L(θ)Q(θ)−1}

with Q(θ) =M(θ) + L(θ)TL(θ).

We note that the bias in singular models without constraints has been considered
in Pázman [6].

4.3. Restricting and identifying constraints in singular models
This is a more general case, which encompasses the two previous ones. Nevertheless

it was worthwhile considering them because they give simpler solutions.
Again, the matrix M(θ) is supposed to be singular with a constant rank r. Equa-

tion (13) can be written in the form

(
M(θ)M−(θ) 0p×q

0q×p Iq

)(
M(θ) LT (θ)
L(θ) 0q×q

)(
b
(
θ̂
)

b
(
λ̂
)
)

(16)

= − 1
2

(
JT
(
θ
)
Tr{H

(
θ
)
Var[∆(1)]}

Tr{K
(
θ
)
Var[∆(1)]}

)
.

The first of these matrices is singular. Hence it is not possible to identify all compo-

nents of b(θ̂) and b
(
λ̂
)
. We will show, however, that the vector b

(
θ̂
)
will be obtained

in a unique way. To this purpose we modify (16). We use geometrical arguments.

Since rk (M(θ), LT (θ) ) = p and rk(M(θ)) = r, rk(LT (θ)) = q, we obtain that
the dimension of the linear spaceM[LT (θ)] ∩M[M(θ)] is equal to (q + r)− p := s.

Denote by LT
re(θ) the s × p matrix with rows equal to a linear basis of this space.

Denote further by Lid(θ) arbitrary p− r rows of L(θ) which are linearly independent
of the rows of M(θ), and let L∗(θ) := (LT

id(θ), L
T
re(θ))

T .
We put L∗(θ) instead of L(θ) into the bias equation. This substitution can be in-

terpreted as a change of the original constraints ϕ(θ) = 0q to equivalent constraints
Ψ(θ) = 0q such that

∂Ψ(θ)
∂θT = L∗(θ). The relation between the two sets of constraints

is linear: Ψ(θ) = L∗(θ)LT (θ)[L(θ)LT (θ)]−1ϕ(θ). Further, we have a freedom in the
choice of the g-inverse M−(θ). Since the columns of LT

id(θ) and of M(θ) are linearly
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independent, one can choose M−(θ) such that M(θ)M−(θ)LT
id(θ) = 0p×(p−r). Fi-

nally, since M(θ)M−(θ) is a projector ontoM[M(θ)], one has M(θ)M−(θ)LT
re(θ) =

LT
re(θ), according to the definition of L

T
re(θ). Consequently, from Equation (13) we

obtain

(
M(θ) 0p×(p−r) LT

re(θ)

L∗(θ) 0q×(p−r) 0q×(q+r−p)

)


b
(
θ̂
)

b
(
λ̂∗id
)

b
(
λ̂∗re
)


 = −1

2

(
JT (θ)Tr{H(θ)Var[∆(1)]}
Tr{K∗(θ)Var[∆(1)]}

)
,

which gives

(17)

(
M(θ) LT

re(θ)
L∗(θ) 0q×(q+r−p)

)(
b
(
θ̂
)

b
(
λ̂∗re

)
)
= −1
2

(
JT (θ)Tr{H(θ)Var[∆(1)]}
Tr{K∗(θ)Var[∆(1)]}

)

where K∗(θ) = ∂L∗(θ)
∂θ and λ∗id and λ

∗
re are the modified Lagrangian multipliers

resulting from the modification of L(θ) to L∗(θ).

Lemma 3.
a) The matrix M(θ) + L∗T (θ)L∗(θ) is nonsingular.

b) The matrix (
M(θ) L∗T (θ)
L∗(θ) 0q×q

)

is nonsingular.

c) The matrix

D :=

(
M(θ) L∗Tre (θ)
L∗(θ) 0q×(q+r−p)

)

is of the full rank.

�����. a) If we have xT (M(θ) + L∗T (θ)L∗(θ))x = 0 for some x �= 0p, then
xTM(θ)x = xTL∗T (θ)L∗(θ)x = 0. This implies that M(θ)x = 0p and L∗(θ)x = 0q

and consequently

(
M(θ)
L∗(θ)

)
x =

(
M(θ)x
L∗(θ)x

)
= 0p+q, which is not possible since the

matrix

(
M(θ)

L∗(θ)

)
is of the full rank.

b) We can verify that the inverse of the matrix has the form
(
A BT

B C

)

where

B = (L∗(θ)(M(θ) + L∗T (θ)L∗(θ))−1L∗T (θ))−1L∗(θ)(M(θ) + L∗T (θ)L∗(θ))−1

A = (M(θ) + L∗T (θ)L∗(θ))−1(Ip − L∗T (θ)B)

C = Iq − (L∗(θ)L∗T (θ))−1L∗(θ)(M(θ) + L∗T (θ)L∗(θ))BT .
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These three matrices exist due to the statement a).

c) Columns of the matrix D are columns of the matrix considered in b), so they
are linearly independent. �

Note that further details on the matrices involved are in Pázman and Denis [7].

Theorem 4. Equation (17) has a unique solution.

�����. Due to Proposition (3) we can premultiply both sides of the equation
by (DTD)−1DT and obtain the solution of (17). The solution is unique, since the

matrix D is of the full rank. �

5. Bias of functions of parameters

Proposition 5. Let h(θ) be any twice differentiable parameter function. The
approximate bias of h

(
θ̂
)
is given by

(18) b(h) =
∂h(θ)
∂θT

b(θ̂) +
1
2
tr
(∂2h(θ)
∂θ∂θT

Var(∆(1))
)
.

�����. Consider the Taylor formula

h
(
θ̂
)
− h(θ) =

∂h(θ)
∂θT

∆+
1
2
∆T ∂

2h(θ)
∂θ∂θT

∆+ op

( 1
N

)
,

substitute ∆(1) for ∆ in the quadratic term, neglect op( 1N ) and take the expectation.

�

Let β = β(θ) be a regular one-to-one reparametrization of the model considered,

and denote by θ = θ(β) its inverse. The reparametrized model with constraints has
the form

(19) y = ν(β) + ε, κ(β) = 0

where by definition ν(β) := η[θ(β)], κ(β) := ϕ[θ(β)]. Let h(θ) be a given parametric
function. Let l(β) := h[θ(β)], and denote by bβ(l) the approximative bias of l

(
β̂
)
in

Model (19).

Theorem 6. The approximate bias is parametrically invariant, i.e.

bθ̄(h) = bβ(l).
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�����. Denote by bθ̄ and bβ the solutions of the bias equations in Model (1) and

Model (19), respectively. First of all it is necessary to verify that the solutions of the
two bias equations are related by (18), i.e. to prove that

(20) (bβ)i =
∂βi

∂θ
bθ̄ +

1
2
tr
( ∂2βi

∂θ∂θT
V (θ̄)

)

where V (θ̄) = Var[∆(1)]. Similarly we define V (β) in Model (19). For the sake of

brevity we write ∂β
∂θ and

∂θ
∂β instead of

∂β(θ)
∂θ |θ=θ and

∂θ(β)
∂β |β=β , etc. We have the

following evident rules:

∂θ

∂βT

∂β

∂θT
= Ip, J(β) = J(θ)

∂θ

∂βT
, V (β) =

∂β

∂θT
V (θ̄)

∂βT

∂θ
,

H(β) =
∂θT

∂β
H(θ)

∂θ

∂βT
+ J(θ)

∂2θ

∂β∂βT
, M−(β) =

∂β

∂θT
M−(θ)

∂βT

∂θ
,

etc.

We put (20) into the bias equation of Model (19), apply the transformation rules
presented and as a result we obtain the bias equation of Model (1). This proves that

(20) is correct. According to (18)

(21) bθ̄(h) =
∂h

∂θT
bθ̄ +

1
2
tr
( ∂2h

∂θ∂θT

)
V (θ̄)

and

(22) bβ(l) =
∂l

∂βT
bβ +

1
2
tr
( ∂2l

∂β∂βT

)
V (β).

From l(β) = h[θ(β)] we obtain the derivatives of l(β) in a standard way. Inserting
them together with (20) into (22) we obtain the right-hand side of (21). Hence

bθ̄(h) = bβ(l). �

Appendix

We show here that the bias equations can be obtained without assuming normal

errors. We prefered to present the case with normal errors in the main text because
of having the possibility to refer to well established results by Silvey [8, 9]. Since

now the LS estimators are no more equal to the ML estimators, one cannot use the
results of Silvey [8, 9], and one has to proceed differently.

Moreover, instead of considering approximations for large N , we consider them
for small σ, which is equivalent in our case.
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Let us restart our investigation with Model (1) but writing y and ε instead of y∗

and ε∗, i.e.

y = η(θ) + ε

E[ε] = 0n; Var[ε] = σ
2In

ϕ(θ) = 0q.

We make a supplementary assumption on the parameter space Θ and on η(θ), namely
we suppose that η(θ) is differentiable also on the boundary of the compact set Θ,

and that the errors are sufficiently small to neglect the probability that the estimator
θ̂ is on the boundary of Θ. (In fact it also means that η(θ) is defined on an open

neighborhood of Θ). The LS estimator θ̂ is still defined by Equation (4), hence the
normal equations for θ̂ are still given by (5).

Lemma 7. We have

λ̂ =
[
L
(
θ̂
)
LT (θ̂)

]−1
L
(
θ̂
)
JT
(
θ̂
)[
y − η

(
θ̂
)]
= Op(σ)

y − η
(
θ̂
)
= Op(σ).

�����. Multiply (5) from the left by L
(
θ̂
)
to obtain

λ̂ = A
(
θ̂
)[
y − η

(
θ̂
)]

with A(θ) := [L(θ)LT (θ)]−1L(θ)JT (θ). Since A(θ) is continuous in θ and Θ is com-

pact, we have that A(θ) is bounded. Consequently,

‖λ̂‖2 � c21‖y − η
(
θ̂
)
‖2 � c21‖ε‖2

for some c1 ∈ �. The last inequality follows from (4). From the Markov inequalities
from probability theory, for any c2 ∈ � we have

P
{∥∥∥ λ̂

σ

∥∥∥
2
> c22

}
� P{‖ε‖2 > c22σ

2

c21
} � n

c21
c22
.

Hence for any δ > 0 there is C ∈ R such that P
{∥∥∥ λ̂

σ

∥∥∥ > C
}
< δ. In symbols

λ̂ = Op(σ). We proceed similarly for y − η
(
θ̂
)
. �

Corollary 8.
θ̂
[
η
(
θ
)]
= θ; λ̂

[
η
(
θ
)]
= 0.
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The left hand side of (5) can be regarded as a function of θ̂, λ̂, y, and will be

denoted briefly by F
(
θ̂, λ̂, y

)
. So λ̂(y), θ̂(y) are implicitly defined by the equation

.F (θ, λ, y)|θ=θ̂(y)
λ=λ̂(y)

= 0.

This holds in a neighborhood U of the point η(θ̄), since evidently F (θ̄, 0, η(θ̄)) = 0.
By the implicit function theorem we can write for any y ∈ U

(23)

(
∂θ̂

∂yT

∂λ̂
∂yT

)
= −

{(∂F (θ, λ, y)
∂θT

,
∂F (θ, λ, y)

∂λT

)−1 ∂F (θ, λ, y)
∂yT

}
θ=θ̂(y)
λ=λ̂(y)

.

When we derive this with respect to y, we obtain expressions for ∂2θ̂/∂yi∂yj,
∂2λ̂/∂yi∂yj, etc. One can obtain in a straightforward way that

( ∂F
∂θT

,
∂F

∂λT

)
=

(
M(θ) + ∂JT (θ)

∂θT [η(θ) − y] + ∂LT (θ)
∂θT λ, LT (θ)

L(θ) 0

)

:= G(θ, λ, y),

∂F

∂yT
=

(−JT (θ)

0

)
:= −Z(θ).

Hence
(

∂2θ̂
∂yi∂yj

∂2λ̂
∂yi∂yj

)
= G−1i. (θ, λ, y)×(24)

{
−
[ ∂G
∂θT

∂θ̂

∂yj
+

∂G

∂λT

∂λ̂

∂yj
+
∂G

∂yj

]
G−1(θ, λ, y)Z(θ) +

∂Z(θ)
∂θT

∂θ̂

∂yj

}

θ=θ̂(y)
λ=λ̂(y)

.

Evidently

G(θ, 0, η(θ)) =

(
M(θ) LT (θ)

L(θ) 0

)
.

Since Θ is compact and the matrix functions used are continuous, we obtain from
Lemma 7

(25) G
(
θ̂, λ̂, y

)
=

(
M
(
θ̂
)
+Op(σ), LT

(
θ̂
)

L
(
θ̂
)

0

)
.

Lemma 9. We have
θ̂ − θ = Op(σ).

�����. By the Taylor formula we have

θ̂i − θi =
(
∂θ̂i/∂y

T
)
y=y∗

ε
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with ε = y − η(θ̄), where y(∗) is a point between y and η(θ̄). Hence from (23) and

(25) we obtain

(26) θ̂ − θ = Sσ

(
θ̂, y(∗)

)
ε

where

Sσ

(
θ̂, y(∗)

)
:= (M

(
θ̂
)
+Op(σ), LT

(
θ̂
)
)

(
JT
(
θ̂
)

0

)
.

Since Θ is compact and the matrix functions considered are continuous, we see that

for every δ > 0 there is a σ0 such that for σ < σ0

P{y : Sσ

(
θ̂(y), y

)
is bounded} > 1− δ.

Consequently (26) implies that ‖θ̂−θ‖2/σ2 is bounded for any given probability < 1,
if σ is sufficiently small. Hence θ̂ − θ = Op(σ). �

Now, let us define

θ̂(2) = θ +
∂θ̂

∂yT
|y=η(θ)[y − η(θ̄)],

λ̂(2) =
∂λ̂

∂yT
|y=η(θ)[y − η(θ̄)].

Evidently Eθ

[
θ̂(2)
]
= 0, Eθ

[
λ̂(2)

]
= 0. We shall show that also other properties are

similar to those of the asymptotic approximations θ̂(1), λ̂(1) considered in the main
text.

Lemma 10. We have

θ̂ − θ̂(2) = op(σ)(a)

λ̂− λ̂(2) = op(σ)(b)

Cov
[
θ̂(2), λ̂(2)

]
= 0(c)

Var
[
θ̂(2)
]
= Var

[
∆̂(1)

]
as considered in the main text.(d)

�����. From the Taylor formula we have

θ̂k(y) = θ̂
(2)
k (y) + ε

T ∂2θ̂k

∂y∂yT
|y(�)ε

λ̂l(y) = λ̂
(2)
l (y) + ε

T ∂2λ̂l

∂y∂yT
|z(�)ε
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for some points y(�), z(�) ∈ �n which are between y and η(θ). Hence to prove (a) and

(b), it is sufficient to prove that ∂2θ̂k/∂yi∂yj, ∂2θ̂l/∂yi∂yj given by (24) are bounded
with a given probability when σ is sufficiently small. This is done essentially in the
same way as in the proof of (9): we use (24), express ∂G/∂θT , ∂G/∂λT , and bound

with a required probability the terms of order Op(σ).

To prove (c) and (d) we write according to (23)

(
θ̂(2) − θ

λ̂(2)

)
=

(
M LT

L 0

)−1(
JT

0

)
ε

where we omit θ in terms like M(θ), etc. Hence

(
Var
[
θ̂(2)
]

Cov
[
θ̂(2), λ̂(2)

]

Cov
[
θ̂(2), λ̂(2)

]
Var
[
λ̂(2)

]
)
=

(
M LT

L 0

)−1(
M 0
0 0

)(
M LT

L 0

)−1

=

(
RMR RMQ

QTMR QTMQ

)

where (
R Q

QT S

)
:=

(
M LT

L 0

)−1
=

(
M + LTL LT

L 0

)−1
.

From Silvey [9], p. 178 we have

R = U−1 − U−1LT [LU−1LT ]−1LU−1

QT = [LU−1LT ]−1LU−1

where U := [M + LTL]. Evidently RLT = U , hence RMQ = R(M + LTL)Q =
RUQ = RLT [LU−1LT ]−1 = 0. Further, Var

[
θ̂(2)
]
= RMR, which is equal to

Var
[
θ̂(1)
]
in the asymptotic investigation of Silvey [8]. �

Proposition 11. Under the assumptions of Appendix the statement in Proposi-
tion 1 holds.

�����. We use Lemmas 7 and 9 to obtain (7) without refering to Silvey [8]. We
set θ̂(2) and λ̂(2) instead of θ̂(1) and λ̂(1) and apply Lemma 10 to obtain (10). Then

we proceed in the same way as in the main part of the paper. �
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