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Abstract. We prove identities involving sums of Legendre and Jacobi polynomials. The
identities are related to Green’s functions for powers of the invariant Laplacian and to the
Minakshisundaram-Pleijel zeta function.
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1. INTRODUCTION

In [1] some new identities involving Legendre polynomials are given as applications
of results for Green’s functions for powers of the invariant Laplacian. We intend to
give other proofs.

In Remark 4.3 in [1] a bilinear formula analogous to (4) below is indicated-but not
proved. We give a closed form for

> o P @ Pa)

Furthermore, we calulate

Z 2n+1 n(l‘)

n:1 n(n+1))
(cf. Remark 4.3 in [1]).
For m > 4 the sums
o0
2 1
3 "t p )
— (n(n+1))™

seem to be rather complicated and it seems unlikely that they can be expressed with
the help of polylogarithms.
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2. PRELIMARIES

The sums in [1] for which we will give alternative proofs are

o0
2n+1
(1) n+1 P,(z) =log2 —1—log(l — ),
n:l
v+1
2n+v+1 1 1—=z
2 Or) ()= -3 "2 1 ,
(2) nzln(nJrl/Jrl) w (@) ;] R
i 2n+1 (@)
=1 TRl
1— 2 ) 1—x
—1 2 Clog? 2 4 Li (7 ) 1,
811, %1, g el )T
= n+1
> < Pu(2)Paly)
(4) s+ 1)

=2log2—-1-log(l—z)(1+y) if —l<z<y<l.

For some simplifications we will need Landau’s functional equation

(5) Li2(z)+LiQ<— liz) :—%log2(1—z)

and an equation by Euler

2
(6) Lis(2) + Lia(1 — 2) = % —log z - log(1 — 2),

see [2].
If we use (5) and (6) with z = 15 we get

1— 2 1 2 1—z
] log —— — Zlog? —=— | Li
R g1+ 7 log’ Lk
1+x 2 1 9 2 o 1—z
=11 L ).1 — 21 _L
(Og 2 %65 B1rr 2% 152 2T
1. ,14=x 1—=xz 2 1—x 2 14+

_ 21 1=1 1 L 1=1-2 41
508 —p— Tl=leg g log g — My o g TH2

)+1

Thus we have simplified the right hand side of (3).
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From [3] we have some basic facts for Jacobi polynomials. The defining equation
is

(@5) (. (@) (.
M (- LD 4 a0 LD ) PO ) = 0

where A =a+ 3+ 1.
Suppose formally that

flz) = i cn P9 ().
n=0

Then
1
(®) o= [ F@PEO@ -2 1+ 2) da
n J—1
where
() L 2 T(n+a+ 1)I(n+B+1)
" (2n+ A)n!T(n+ )
We will also need
a, (a+D(a+2)-...- (a+n)
(10) P (1) = g .

3. SOME SUMS

Proof of (1) and (2). Combining (7) and (8) yields

1 (@) (.
—n(n+ ANeph, = /71 (% ((1 — xz)dpndix())f(w)(l —2)*(1+2)% da
1 (@,B) (.
(11) +[1 (B—a—(A— 1)x)dPnd7x()f(x)(l—x)a(1+x)ﬁdx.

Integration by parts transforms the first integral to

(@.5) (. 1
- D faya ]
- /1 7(”37&:5)(@ (f’(x)(l — )1+ x)'BH) dx
(v, 3)
- /_11 dPndix(x)(f(a:)(ﬁ - (- D)1 - 2)*(1 + 2)?) da.
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Combining the two integrals in (11) yields

1 Pr(LOé’B)
—n(n+ Neph, = 7/ dbn (@)

/ o a+1 B+1
@ 1)

(12) = — [P (@) f (2)(1 — 2)* T (14 2)" ]

" pla, d, ., )
+[1P£ ﬁ)(x)a(f (z)(1 — ) +1(1+$)'B+1)dx,

To prove (1) we specify

1—
f(z) =log2—1—1log(l —x) = —1—log 21:’ and a=p=0.

Then d
S (@0 - 1)) =1

and the second integral in (12) vanishes for n > 1. Since

[PA (@) f(@)(1 - 2)° (1 + )" = P,1) - 2=2

and 5
h, =
2n+1
we have
2n+1 51
Cph=———, n=
" nm+1)

(see (9) and (10)). It remains to determine ¢y. However,

/11 f(z)dz =0.

Thus ¢y = 0 and we have proved (1).
In order to prove (2) we start with a redefinition of

Furthermore, put « = 0 and 8 = v. Then—see (12)—

(@0 - 1+ = < (F@0 - D)+ = 4 )+ )
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and the second integral in (12) vanishes for n > 1. Since
[P (@) f (@)1 =)™ (1 4+ 2) "L = POV(1) 274t =2

and

2u+1
hy, = ———
2n+v+1
we have ot vl
v
en= TV s
nn+v+1)

To complete the proof of (2) we evaluate

1 pian i any B gy
13 1 Ydr = — - — 1 1 Ydax.
(13) [1f(x)( +z)’dz I/+1]Z=;j [1 g —5 (14 x)"dz

In the last integral in (13) we make the substitution z = 1=£. Then

1+t
1
1—
/ log
-1

x o t ovtl
l+z)de= [ 1 : dt
(1+2)" dz /0 BTt Troe

> logt > log(1 +1t)
:2y+1 _ _Z
([ arima | @)

1 K1 1 ov+l K
14 :zvﬂ(f L ):, 1
(14) u+1;j (v+1)2 y—l—l;j

where we have used the fact that

1 logt o 1
— ——— +logt —log(1 t)
y+1( (1+t)”+1+2j(1+t)ﬂ+og og(l+1)

is a primitive function to . Combining (13) and (14) we get

1
coho = / f()(1+2z)"dz = 0.
-1

We have proved (2).

Remark 1. The technique is also applicable to sums involving other Jacobi

polynomials, e.g.

o (2n+3)(n +2) 7 1, 1-z 1
—p(l,l) — - _ 2] )
2 nn+3) Tn o @W=—gogle Tt aaTy

n=1
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Proof of (3). To simplify the notation we define—or redefine—some functions:

@)= -1-log 22,

Fla)=(1—2)log ",
_ F(2)
g<x)_$2*1’

2 1+

G(a )71—%+L12 2x

Then F'(z) = f(x) and G'(z) = g(z). According to (1) we have

ntl, / fa — [F)Pa(@)]", - / F(2)P, () da

n+1 . J_1

_ / 9(2)(@? — 1) Pl(x)dz = — [ G()(@® — 1) PL(x)] ",
-t —0 as z—=+1

+/ G(z) di((x2 —1)P/(z)) de = n(n+ 1)/ G(z) P, (z)dz.

1 x 1
n(n+1)P,(z)
We have proved that
—/ dx*ﬂ if n=1,2,...
(n(n +1))?
After integration by parts we can complete the proof with
1
/ G(z)dz = 0.
-1

An extension of (3). We intend to prove that

n=1

(
1 1 1 1-
%—2+2C()+10g S PRI P ) P

(15) - 2 2 2 2

We use the same technique as above.
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Redefine

n2 1+
—1- 2 4L

f(z) g TLz——,
F($):7E(1+x)+(1+x)L12 —(1—2)log ,

F(z)
g(‘x)*xg_l,

2 1— 1— 1 1—
G(x):%_2+2g(3)+1og 2“”.L12 2”["—Li2 ;x—QLig, x

Then F'(z) = f(x) and G'(z) = g(z). According to (3) we have

2n+1 ) 1 /
( (n+1)) / f(@)Pu( = [F(JJ)P7L(J,‘)]71 —[1F(x)P (x)dx
= _/ g(x)(@? = 1)PL(x)dz = —[G(x)(a® — 1) Po(x)]

—1 ~ ,

—0 as x—=£1
1

+/ G(z) di(($2 —1)P)(z)) dz = n(n + 1)/ G(z) P, (z)dz.

1 X 1

n(n+1)P,(z)

Since

-1 1x+1
2 1 2
1 1-— 1-—
:“_f4f/ <J_+L12 +a g x)dx
3 . 6 2 1+x 2
2 2 2 2
I s s
g5 G- (-549)-
3 +3 3 + +

we get ¢o = 0. We have proved (15).
Proof of (4). Now we redefine f as

—1—10g(1_T$1+Ty) if —1<z<y
f(w){llog(HTwlgy) if y<o<l.
If .
f(z) = Z cn P ()
n=0
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then cg = %fil f(z)dz =0 and for n > 1

Y 1—al+y

hncn = 1+1 —))Pn(x) da
1+1

1 2

-/ 2

/yl ;x%))ﬂl(w) dz
ot [ (e (SR @ - v as
*ﬁ/ (14108 (5552 4

x(($2 —1)P!(z))dx.
Thus integration by parts yields

n(n+ 1)hyc, = — [(1 + log (1 ; xl—;—_y))@cQ B 1)P’:L('/Ij):|:i
o[ e np@ e (1o (LY )6 - vpe)

Y

+/ (x = 1)Py(z)dz = [(z + D) Pu(2)]Y, + [(z — 1) Pu()],
- /_1 P, (z)dx = 2P, (y).

We have proved that
(2n +1)P(y)

= nn+1) ~’

which completes the proof of (4).
An extension of (4). We intend to prove that

3 Lf»gmxm(y)

—log 55t log (155 451) + Lip B2 — Lip ¥ if —1<u
1—log1+“ log (45* _)+L121+y*L121+T$ it —l<y

A formula like this is wanted in Remark 4.3 in [1].
In this proof we will recognize the pattern of the above proofs. However, first we
need the notation
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1(z)=1—= og—fx+ og it —1<x<y
) F 1—2)l Dlog 2 if -1
) =
Fz(:r):7(1+x)log%f(xfl)log7y if y<z<l,
. Al i —1<a<y
g(x) =
Bl i y<a<l,
o) = 1—log it log (L5255%) + Lip 42 — Li, % if —1<a<y
) =
1—log 42 log (5245%) + L ¥ ~Lib 142 if y<a< L.

Then the functions f, F,g and G are continuous at z = y and furthermore F’ = f
and G' = g.
Again integration by parts is useful. We get

/_11 G(z)dx =

Finally, (4) yields

2n+1 1
F(x)P,
e = [ 1t frnel,
=0 because Fy(—1)=F>(1)=0

- / g(2)(@? — )Pl(x) dz = — [ G(a)(@® — 1) Pha)] -,
-1 —0 as z—=+1

+/ G(z) di((x2 —1)P/(z)) da.

1 x

n(n+1)P,(z)

We complete the proof with

2n+1
—/ Glo)Pulw) de = Cr Ty P @)
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