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Abstract. It is shown that if g is of bounded variation in the sense of Hardy-Krause on
m∏

i=1

[ai, bi], then gχ m∏
i=1

(ai,bi)

is of bounded variation there. As a result, we obtain a simple

proof of Kurzweil’s multidimensional integration by parts formula.
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1. Introduction

It is well known that if f is Henstock-Kurzweil integrable on a compact interval

[a, b] ⊂ R and g is of bounded variation there, then fg is Henstock-Kurzweil inte-

grable there and the integration by parts formula holds; see, for example, [12] and

references therein. Although higher-dimensional analogues of the above-mentioned

result have been studied by various authors ([1], [2], [3], [6], [7], [10], [14], [17], [18]),

a simpler proof of Kurzweil’s mutidimensional integration by parts formula for the

Henstock-Kurzweil integral [1, Theorem 2.10] remained elusive. The purpose of this

paper is to give a simpler proof of this result.

2. Functions of bounded variation

Let m > 1 be an integer and let Rm be the m-dimensional Euclidean space

equipped with the maximum norm. An interval in Rm is a set of the form
m∏

i=1

[ui, vi],
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where ui, vi ∈ R and ui 6 vi for i = 1, . . . , m. Let [a,b] :=
m∏

i=1

[ai, bi] be a fixed non-

degenerate compact interval in Rm , where a = (a1, . . . , am) and b = (b1, . . . , bm),

and let Im([a,b]) denote the family of all non-degenerate subintervals of [a,b]. For

each
m∏

i=1

[ui, vi] ∈ Im([a,b]), we set [u,v] :=
m∏

i=1

[ui, vi] and (u,v) :=
m∏

i=1

(ui, vi), where

u = (u1, . . . , um) and v = (v1, . . . , vm).

A division of [a,b] is a finite collection {I1, . . . , Ip} of non-overlapping intervals

such that
p⋃

i=1

Ii = [a,b]. For any given real-valued function g defined on [a,b], the

total variation of g over [a,b] is defined by

Var(g, [a,b]) := sup

{ ∑

[u,v]∈P

|∆g([u,v])| : P is a division of [a,b]

}
,

where

∆g([u,v]) :=
∑

t∈[u,v]
ti∈{ui,vi} ∀ i∈{1,...,m}

g(t)
m∏

i=1

sgn
(
ti −

ui + vi

2

)

for each [u,v] ∈ Im([a,b]).

Definition 2.1. A function g : [a,b] −→ R is said to be of bounded variation
(in the sense of Vitali) on [a,b] if Var(g, [a,b]) is finite.

The space of functions of bounded variation (in the sense of Vitali) on [a,b] is

denoted by BV[a,b]. Set

BV0[a,b] := {g ∈ BV[a,b] : g(x) = 0 whenever x ∈ [a,b] \ (a,b]},

where (a,b] :=
m∏

i=1

(ai, bi]. The next theorem is an m-dimensional analogue of [16,

Theorem 1].

Theorem 2.2. Let g : [a,b] −→ R. Then g ∈ BV0[a,b] if and only if there

exists a sequence {ϕn}∞n=1 in L1[a,b] such that sup
n∈N ‖ϕn‖L1[a,b] is finite and

lim
n→∞

∫
[a,x] ϕn(t) dt = g(x) for each x ∈ [a,b].

The following result of Young [20] is also useful.
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Theorem 2.3. Let x ∈ [a,b] and let {xn}∞n=1 be a sequence in [a,b] such that

sgn(xk,i − xk) = sgn(xk,j − xk) for all i, j ∈ N and k ∈ {1, . . . , m}. If g ∈ BV0[a,b]

and lim
n→∞

xn = x, then the limit lim
n→∞

g(xn) exists. In particular, g is continuous

everywhere on [a,b] except for a countable number of hyperplanes parallel to the

coordinate axes.

New proofs of Theorems 2.2 and 2.3 are given in [13].

3. The m-dimensional Riemann-Stieltjes integral

The purpose of this section is to recall some useful facts concerning the m-

dimensional Riemann-Stieltjes integral. In particular, we obtain a useful result (The-

orem 3.4) which plays an important role in the proof of Theorem 4.10.

Definition 3.1. Let F and H be two real-valued functions defined on [a,b]. F

is said to be Riemann-Stieltjes integrable with respect to H on [a,b] if there exists

A ∈ R with the following property: for each ε > 0 there exists δ > 0 such that

∣∣∣∣
p∑

i=1

F (xi)∆H(Ii) − A

∣∣∣∣ < ε

for each division {I1, . . . , Ip} of [a,b] such that xi ∈ Ii and the diameter of Ii is less

than δ for i = 1, . . . , p. In this case, the value of A is uniquely determined and we

write A as
∫
[a,b] F (x) dH(x).

It is well known that if F ∈ C[a,b] and H ∈ BV[a,b], then the Riemann-Stieltjes

integral
∫
[a,b]

F (x) dH(x) exists; in particular, we have the following result.

Theorem 3.2. If F ∈ C[a,b], h ∈ L1[a,b] and H(x) =
∫
[a,x]

h(t) dt for each

x ∈ [a,b], then the Riemann-Stieltjes integral
∫
[a,b] F (x) dH(x) exists, Fh ∈ L1[a,b]

and ∫

[a,b]

F (x) dH(x) =

∫

[a,b]

F (x)h(x) dx.

The following convergence theorem is also well known.

Theorem 3.3. Let F ∈ C[a,b] and suppose that the following assertions hold:

(i) {gn}∞n=1 ⊂ BV[a,b] so that sup
n∈NVar(gn, [a,b]) is finite.

(ii) gn → g pointwise on [a,b].
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Then the Riemann-Stieltjes integral
∫
[a,b]

F (x) dg(x) exists. Moreover, the limit

lim
n→∞

∫
[a,b] F (x) dgn(x) exists and

lim
n→∞

∫

[a,b]

F (x) dgn(x) =

∫

[a,b]

F (x) dg(x).

Using Theorems 2.2, 3.2 and 3.3, we obtain the following result.

Theorem 3.4. Let F ∈ C[a,b] and let g ∈ BV[a,b]. If g(x) = 0 for all x ∈

[a,b] \ (a,b) and there exists k ∈ {1, . . . , m} such that F is independent of xk, then

∫

[a,b]

F (x) dg(x) = 0.

P r o o f. We may assume that k = 1 and m > 2. According to Theorem 2.2,

there exists a sequence {ϕn}∞n=1 in L1[a,b] such that

(1) sup
n∈N ‖ϕn‖L1[a,b] < ∞

and

(2) lim
n→∞

∫

[a,x]

ϕn(t) dt = g(x) for each x ∈ [a,b].

As a consequence of (1), (2), Theorems 3.3 and 3.2, we conclude that

(3)

∫

[a,b]

F (x) dg(x) = lim
n→∞

∫

[a,b]

F (x)ϕn(x) dx.

Moreover, it follows from Fubini’s theorem and our assumptions that

(4)

∫

[a,b]

F (x)ϕn(x) dx =

∫
m∏

i=2

[ai,bi]

F (x)

{ ∫

[a1,b1]

ϕn(x) dx1

}
d(x2, . . . , xm)

for n = 1, 2, . . .. In view of (3) and (4), it suffices to prove that

(5) lim
n→∞

∫
m∏

i=2

[ai,bi]

F (x)

{ ∫

[a1,b1]

ϕn(x) dx1

}
d(x2, . . . , xm) = 0.

From (1), we get

(6) sup
n∈N∫

m∏
i=2

[ai,bi]

∣∣∣∣
∫

[a1,b1]

ϕn(x) dx1

∣∣∣∣ d(x2, . . . , xm) 6 sup
n∈N∫

[a,b]

|ϕn(x)| dx < ∞.
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For each (b1, x2, . . . , xm) ∈ [a,b], Fubini’s theorem, (2) and our choice of g yield

(7) lim
n→∞

∫
m∏

i=2

[ai,xi]

{∫

[a1,b1]

ϕn(t) dt1

}
d(t2, . . . , tm) = g(b1, x2, . . . , xm) = 0.

Using an (m − 1)-dimensional analogue of Theorem 3.2, (6), (7) and an (m − 1)-

dimensional analogue of Theorem 3.3, we get (5). The proof is complete.

4. A new proof of Kurzweil’s multidimensional

integration by parts formula

The aim of this section is to give a new proof of the multidimensional integration

by parts formula for the Henstock-Kurzweil integral; see Theorem 4.10 for details.

Unlike the original proof of [1, Theorem 2.10], our method of proof depends on

our simple Theorems 4.8 and 4.5. For the definition, properties and recent results

concerning the Henstock-Kurzweil integral, consult for instance [4], [5], [6], [7], [8], [9].

Set Φ[a,b],k(Xk) :=
m∏

i=1

Wi whereWk = Xk andWi = [ai, bi] for all i ∈ {1, . . . , m}\

{k}.

Definition 4.1. A function g : [a,b] −→ R is said to be of bounded variation
(in the sense of Hardy-Krause) on [a,b] if g ∈ BV[a,b] and, for each non-empty set

Γ ⊂ {1, . . . , m},

g
∣∣ m⋂

k=1
k 6∈Γ

Φ[a,b],k({ak})
∈ BV

( m∏

k=1
k∈Γ

[ak, bk]

)
.

The class of functions of bounded variation (in the sense of Hardy-Krause) on [a,b]

will be denoted by BVHK[a,b]. As an immediate consequence of Definition 4.1, we

have

Theorem 4.2. BV0[a,b] ⊂ BVHK[a,b].

Let χY denote the characteristic function of a set Y . In order to prove a crucial

result for BVHK functions (cf. Theorem 4.5), we need the following lemmas.

Lemma 4.3. Let g ∈ BVHK[a,b]. If T ⊂ {1, . . . , m} is non-empty and ck ∈

{ak, bk} for all k ∈ {1, . . . , m} \ T , then

g
∣∣

m⋂
k=1
k 6∈T

Φ[a,b],k({ck})
∈ BV

( m∏

k=1
k∈T

[ak, bk]

)
.
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P r o o f. This is an immediate consequence of Definition 4.1.

Let

Pm :=

{ m∏

k=1

Yk : Yk ∈ {{ak}, {bk}, [ak, bk]} for each k ∈ {1, . . . , m}

}

and for
m∏

k=1

Yk ∈ Pm, let

Γ

( m∏

k=1

Yk

)
= {i ∈ {1, . . . , m} : Yi = [ai, bi]}.

Lemma 4.4. If g ∈ BVHK[a,b] and Y ∈ Pm, then gχY ∈ BV[a,b].

P r o o f. Let g ∈ BVHK[a,b]. If Y ∈ Pm and Γ(Y ) is empty, then it is clear that

gχY ∈ BV[a,b]. On the other hand, for any Y ∈ Pm satisfying Γ(Y ) 6= ∅, it follows

from Lemma 4.3 that gχY ∈ BV[a,b]. �

Let µ0 denote the counting measure.

Theorem 4.5. If g ∈ BVHK[a,b], then gχ(a,b) ∈ BV0[a,b] and

(8) gχ(a,b) =
∑

Y ∈ Pm

(−1)m−µ0(Γ(Y ))gχY .

P r o o f. It is clear that (8) holds for any real-valued function g defined on [a,b].

It remains to prove that gχ
(a,b)

∈ BV0[a,b] whenever g ∈ BVHK[a,b]. But this is

an immediate consequence of (8) and Lemma 4.4. The proof is complete. �

Our next step is to prove Theorem 4.8, which is a special case of Theorem 4.10.

We need the following theorems.

Theorem 4.6. If f ∈ L1[a,b] and g ∈ BV0[a,b], then fg ∈ L1[a,b] and

∫

[a,b]

f(x)g(x) dx =

∫

[a,b]

{∫

[x,b]

f(t) dt

}
dg(x).

P r o o f. Let {ϕn}
∞
n=1 be given as in Theorem 2.2. For each n ∈ N we have, by

Fubini’s theorem and Theorem 3.2,

∫

[a,b]

f(x)

{ ∫

[a,x]

ϕn(t) dt

}
dx =

∫

[a,b]

{∫

[t,b]

f(x) dx

}
ϕn(t) dt

=

∫

[a,b]

{∫

[t,b]

f(x) dx

}
dgn(t),
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where gn(t) :=
∫
[a,t]

ϕn(x) dx. Therefore Lebesgue’s dominated convergence theorem

and Theorem 3.3 yield the desired result.

Let |I| := µm(I) (I ∈ Im([a,b]), where µm denotes the m-dimensional Lebesgue

measure.

Theorem 4.7. If f ∈ HK[a,b] and g ∈ BV0[a,b], then

∣∣∣∣
p∑

i=1

{
f(ξi)g(ξi) |Ii| −

∫

[a,b]

(
(HK)

∫

[x,b]

f(t)χ
Ii

(t) dt

)
dg(x)

}∣∣∣∣

6

p∑

i=1

|f(ξi)|

∫

Ii

|g(ξi) − g(t)| dt

+ sup
x∈[a,b]

∣∣∣∣(HK)

∫

[x,b]

p∑

i=1

{
f(ξi)χIi

(t) − f(t)χIi
(t)

}
dt

∣∣∣∣(Var(g, [a,b]))

for each partial partition {(Ii, ξ1), . . . , (Ip, ξp)} of [a,b].

P r o o f. By the triangle inequality,
∣∣∣∣

p∑

i=1

{
f(ξi)g(ξi) |Ii| −

∫

[a,b]

(
(HK)

∫

[x,b]

f(t)χIi
(t) dt

)
dg(x)

}∣∣∣∣

6

p∑

i=1

|f(ξi)|

∣∣∣∣g(ξi) |Ii| −

∫

Ii

g(t) dt

∣∣∣∣

+

∣∣∣∣
p∑

i=1

{
f(ξi)

∫

Ii

g(t) dt −

∫

[a,b]

(
(HK)

∫

[x,b]

f(t)χIi
(t) dt

)
dg(x)

}∣∣∣∣.

It is evident that
p∑

i=1

|f(ξi)|

∣∣∣∣g(ξi) |Ii| −

∫

Ii

g(t) dt

∣∣∣∣ 6

p∑

i=1

|f(ξi)|

∫

Ii

|g(ξi) − g(t)| dt

and, by Theorem 4.6,
∫

Ii

g(t) dt =

∫

[a,b]

( ∫

[x,b]

χ
Ii

(t) dt

)
dg(x),

so that
∣∣∣∣

p∑

i=1

{
f(ξi)

∫

Ii

g(t) dt −

∫

[a,b]

(
(HK)

∫

[x,b]

f(t)χIi
(t) dt

)
dg(x)

}∣∣∣∣

=

∣∣∣∣
∫

[a,b]

(
(HK)

∫

[x,b]

p∑

i=1

{
f(ξi)χIi

(t) − f(t)χIi
(t)

}
dt

)
dg(x)

∣∣∣∣

6 sup
x∈ [a,b]

∣∣∣∣(HK)

∫

[x,b]

p∑

i=1

{
f(ξi)χIi

(t) − f(t)χIi
(t)

}
dt

∣∣∣∣(Var(g, [a,b])).

69



Combining the above estimates proves the theorem.

Theorem 4.8. If f ∈ HK[a,b] and g ∈ BV0[a,b], then fg ∈ HK[a,b] and

(9) (HK)

∫

[a,b]

f(x)g(x) dx =

∫

[a,b]

{
(HK)

∫

[x,b]

f(t) dt

}
dg(x).

P r o o f. We may assume that Var(g, [a,b]) < 1. According to the Saks-Henstock

Lemma, given ε > 0 there exists a gauge δ1 on [a,b] such that

(10)

q∑

i=1

∣∣∣∣f(ζi) |Ji| − (HK)

∫

Ji

f(x) dx

∣∣∣∣ <
ε

2m + 2

for each δ1-fine partial partition {(J1, ζ1), . . . , (Jq, ζq)} of [a,b]. For each x ∈ [a,b],

it follows from (10) that

(11)

∣∣∣∣
q∑

i=1

{
f(ζi)µm([x,b] ∩ Ji) − (HK)

∫

[a,b]

f(t)χ[x,b] ∩ Ji
(t) dt

}∣∣∣∣ <
2mε

2m + 2

for each δ1-fine partial partition {(J1, ζ1), . . . , (Jq, ζq)} of [a,b].

As f ∈ BV0[a,b], it follows from Theorem 2.3 that there exists a gauge δ2 on

[a,b] such that
r∑

j=1

|f(zj)|

∫

Ki

|g(zj) − g(t)| dt <
ε

2m + 2

for each δ2-fine McShane partial partition {(K1, z1), . . . , (Kr, zr)} of [a,b].

Define a gauge δ on [a,b] by δ(x) = min{δ1(x), δ2(x)}. For each δ-fine partition

{(I1, ξ1), . . . , (Ip, ξp)} of [a,b], we infer from Theorem 4.7 and the above estimates

that

∣∣∣∣
p∑

i=1

f(ξi)g(ξi) |Ii| −

∫

[a,b]

(
(HK)

∫

[x,b]

f(t) dt

)
dg(x)

∣∣∣∣

=

∣∣∣∣
p∑

i=1

{
f(ξi)g(ξi) |Ii| −

∫

[a,b]

(
(HK)

∫

[x,b]

f(t)χ
Ii

(t) dt

)
dg(x)

}∣∣∣∣

6

p∑

i=1

|f(ξi)|

∫

Ii

| g(ξi) − g(t)| dt

+ sup
x∈[a,b]

∣∣∣∣(HK)

∫

[x,b]

p∑

i=1

{
f(ξi)χIi

(t) − f(t)χ
Ii

(t)

}
dt

∣∣∣∣(Var(g, [a,b]))

< ε,

thereby completing the proof of the theorem.
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Our next aim is to deduce Kurzweil’s multidimensional integration by parts for-

mula [1, Theorem 2.10]. For s, t ∈ [a,b], we set

〈s, t〉 := {(x1, . . . , xm) : min{si, ti} 6 xi 6 max{si, ti} for each i = 1, . . . , m}.

For each f ∈ HK[a,b] and α ∈ [a,b], we define a function F̃α on [a,b] by

F̃α(x) =

{
(HK)

∫

〈α,x〉

f(t) dt

} m∏

i=1

sgn(xi − αi).

It is well known that F̃α ∈ C[a,b]. The next theorem gives our multidimensional

integration by parts formula.

Theorem 4.9. If f ∈ HK[a,b], α ∈ [a,b] and g ∈ BVHK[a,b], then fg ∈ HK[a,b]

and

(12) (HK)

∫

[a,b]

f(x)g(x) dx =
∑

Y ∈ Pm

(−1)µ0(Γ(Y ))

{∫

[a,b]

F̃α d(gχY )

}
.

P r o o f. Let g0 = gχ(a,b). By Theorems 4.5 and 4.8, fg0 ∈ HK[a,b]. As g = g0

µm-almost everywhere on [a,b], we see that fg ∈ HK[a,b] and

(HK)

∫

[a,b]

f(x)g(x) dx = (HK)

∫

[a,b]

f(x)g0(x) dx.

By Theorem 4.8 again,

(HK)

∫

[a,b]

f(x)g0(x) dx =

∫

[a,b]

{
(HK)

∫

[x,b]

f(t) dt

}
dg0(x).

Using the additivity of the indefinite HK-integral of f over [a,b] and [1, Lem-

ma 1.3], we see that

(HK)

∫

[x,b]

f(t) dt = ∆
F̃α

([x,b])

for each x ∈ [a,b]. Thus it follows from [1, (1.9), (1.8)], the linearity of the Riemann-

Stieltjes integral and Theorem 3.4 that

∫

[a,b]

∆
F̃α

([x,b]) dg0(x) =

∫

[a,b]

(−1)mF̃α(x) dg0(x).
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Now the linearity of the Riemann-Stieltjes integral and Theorem 4.5 imply that

∫

[a,b]

(−1)mF̃α(x) dg0(x) =
∑

Y ∈ Pm

(−1)µ0(Γ(Y ))

{∫

[a,b]

F̃α d(gχY )

}
.

Combining the above equalities yields (12). The proof is complete.

Let σ
( m∏

k=1

Yk

)
:= {i ∈ {1, . . . , m} : Yi = {ai}}. It remains to show that The-

orem 4.9 is equivalent to the following Kurzweil’s multidimensional integration by

parts formula [1, Theorem 2.10].

Theorem 4.10. If f ∈ HK[a,b], g ∈ BVHK[a,b] and α ∈ [a,b], then fg ∈

HK[a,b] and

(HK)

∫

[a,b]

f(x)g(x) dx =
∑

{c}∈ Pm
µ0(Γ({c}))=0

(−1)σ({c})F̃α(c)g(c)

+
m∑

k=1

∑

Y ∈ Pm
µ0(Γ(Y ))=k

(−1)k

∫
m∏

j=1
j∈Γ(Y )

[aj,bj ]

(−1)σ(Y )F̃α

∣∣
Y

d(g
∣∣
Y

).

P r o o f. If Y ∈ Pm and µ0(Γ(Y )) = 0, then there exists a vertex c of [a,b] such

that ∫

[a,b]

F̃α d(gχ
Y
) = (−1)σ({c})F̃α(c)g(c).

A similar argument shows that if Y ∈ Pm and µ0(Γ(Y )) > 0, then

∫

[a,b]

F̃α d(gχ
Y
) =

∫
m∏

j=1
j∈Γ(Y )

[aj,bj ]

(−1)σ(Y )F̃α

∣∣
Y

d(g
∣∣
Y

).

Hence, as a consequence of Theorem 4.9, we get the desired result:

(HK)

∫

[a,b]

f(x)g(x) dx =
∑

Y ∈Pm

(−1)µ0(Γ(Y ))

{∫

[a,b]

F̃α d(gχY )

}

=
∑

Y ∈Pm
Γ(Y )=∅

(−1)µ0(Γ(Y ))

{ ∫

[a,b]

F̃α d(gχY )

}
+

m∑

k=1

∑

Y ∈Pm
µ0(Γ(Y ))=k

(−1)k

{∫

[a,b]

F̃α d(gχY )

}

=
∑

{c}∈ Pm
µ0(Γ({c}))=0

(−1)σ({c})F̃α(c)g(c)

+

m∑

k=1

∑

Y ∈ Pm
µ0(Γ(Y ))=k

(−1)k

∫
m∏

j=1
j∈Γ(Y )

[aj,bj ]

(−1)σ(Y )F̃α

∣∣
Y

d(g
∣∣
Y

).
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The proof of Theorem 4.10 depends heavily on (11), which is also true for some

other generalized Riemann integrals; more precisely, we have

R em a r k 4.11. Theorem 4.10 also holds if the Henstock-Kurzweil integral is

replaced by any of the following generalized Riemann integrals:

(i) the Lebesgue integral (see also [19], [21]);

(ii) the Cauchy-Lebesgue integral;

(iii) the strong ̺-integral in [6];

(iv) the R-integral in [10].
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