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Abstract. Orthomodular implication algebras (with or without compatibility condition)
are a natural generalization of Abbott’s implication algebras, an implication reduct of the
classical propositional logic. In the paper deductive systems (= congruence kernels) of such
algebras are described by means of their restrictions to principal filters having the structure
of orthomodular lattices.
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1. Introduction

The classical two-valued propositional logic has its algebraic counterpart in the

Boolean algebra. If one considers the logical connective implication of the classical

logic only then the clone generated by this connective is not the clone of all Boolean

functions. The algebraic counterpart of this case is the so-called implication algebra

introduced and treated by Abbott [1]. Similarly, an algebraic counterpart of the

fragment of intuitionistic logic containing only the intuitionistic implication and the

constant 1 (which serves as a true value) was introduced by Henkin and treated by

Diego under the name Hilbert algebra.

In some considerations concerning quantum mechanics another type of logic turned

out to be suitable. Algebraic counterparts of these logics are either orthomodular

lattices or the so-called ortomodular algebras or certain generalizations of Boolean

rings. These logics are related to the Hilbert space logic of quantum mechanics.

The financial support by the grant of Czech Government MSM 6198959214 is gratefully
acknowledged.
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This motivated the study of their implication reducts. The notion of an orthologic

was introduced by J.C.Abbott [2] by weakening the axioms and rules of inference

of the classical propositional calculus. The resulting Lindenbaum-Tarski algebra

generalized the notion of the implication algebra.

An orthologic consists of a set P of propositions closed under a binary operation

→ satisfying the axioms

O1: ⊢ p → (q → p)

O2: ⊢ ((p → q) → q) → ((q → p) → p)

and the rules of inference

R1: If p and p → q then q

R2: If p → q then (p → (q → r)) → (p → r)

R3: If p → q then (p → r) → (p → (q → r))

R4: If p → q and q → p then (r → p) → (r → q).

It has been shown by Abbott that the operation → satisfies the axioms

1. (p → q) → p = p

2. (p → q) → q = (q → p) → p

3. p → ((q → p) → r) = p → r.

Based on these properties, he introduced orthoimplication algebras as algebras

(A, •) of type (2) satisfying the identities

OI1: (x • y) • x = x

OI2: (x • y) • y = (y • x) • x

OI3: x • ((y • x) • z) = x • z.

Recall that algebras satisfying the axioms OI1, OI2 and the left-distributivity

I3: x • (y • z) = (x • y) • (x • z)

are known as implication algebras [1]. The results of Abbott show that the

Lindenbaum-Tarski algebra associated with an orthologic is an orthoimplication

algebra.

The following lemma is a direct consequence of the axioms of the orthoimplication

algebra [2]:

Lemma 1. If A = (A, •) is an orthoimplication algebra, then A has a constant

1 satisfying

(i) x • x = 1

(ii) 1 • x = x

(iii) x • 1 = 1

(iv) x • y = y • x implies x = y

(v) x • (y • x) = 1

(vi) x • y = 1 implies x • (y • z) = x • z

(vii) x • y = 1 implies (y • z) • (x • z) = 1.
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Hence, every orthoimplication algebra satisfies the identity x • x = y • y(= 1) and

the element 1 is an algebraic constant in the variety O of orthoimplication algebras.

Every orthoimplication algebra (A, •) is a poset with respect to a natural relation 6

defined by

(1) x 6 y iff x • y = 1.

Moreover, orthoimplication algebras are very closely related to orthomodular lat-

tices.

Recall that an ortholattice is an algebra (A,∧,∨, 0, 1,⊥ ) of type (2, 2, 0, 0, 1) where

(A,∧,∨, 0, 1) is a bounded lattice satisfying the identities

OM1: x ∨ x⊥ = 1, x ∧ x⊥ = 0

OM2: (x⊥)⊥ = x

OM3: x 6 y implies y⊥ 6 x⊥.

An element x⊥ is called an orthocomplement of x. Ortholattices satisfying the

orthomodular law

OM4: x 6 y implies x ∨ (x⊥ ∧ y) = y

are called orthomodular lattices (OML). These are closely related to the logic of

quantum mechanics, for details we refer to standard books [3], [10].

The exact connection between orthoimplication algebras and orthomodular lattices

is as follows:

Proposition 1. Let A = (A, •) be an orthoimplication algebra. Then (A, 6) is

a join semilattice and for each p ∈ A the interval [p, 1] is an orthomodular lattice,

where for x, y ∈ [p, 1] we have

x ∨ y = (x • y) • y

x ∧ y = ((x • p) ∨ (y • p)) • p

and the orthocomplement xp = x • p.

Moreover, each interval satisfies the compatibility condition

(CC) p 6 x 6 y implies yx = yp ∨ x.

Conversely, let (A,∨) be a join semilattice where for each p ∈ A the section [p, 1]

is an OML satisfying (CC). Then the operation • on A defined by

x • y = (x ∨ y)y

where (x ∨ y)y is an orthocomplement of x ∨ y in the orthomodular lattice [y, 1]

determines an orthoimplication algebra.
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There is a natural question if there is a similar construction if we do not require

a compatibility condition. The affirmative answer to this question leads us to the

following notion:

an algebra A = (A, •) of type (2) is called an orthomodular implication algebra

(OMIA) if it satisfies the axioms

OMI 1: (x • y) • x = x

OMI 2: (x • y) • y = (y • x) • x

OMI 3: (((x • y) • y) • z) • (x • z) = 1

OMI 4: (((((((x • y) • y) • z) • x) • x) • z) • x) • x = (((x • y) • y) • z) • z.

It is easy to show that every orthomodular implication algebra becomes a poset

with respect to the ordering defined by (1).

Moreover, similarly to Proposition 1, the following description holds:

Proposition 2. If A = (A, •) is an OMIA and one defines

x ∨ y = (x • y) • y

for all x, y ∈ A, then (A,∨) is a join semilattice and for each p ∈ A the interval [p, 1]

is an orthomodular lattice where for x, y ∈ [p, 1] we have

x ∧ y = ((x • p) ∨ (y • p)) • p

xp = x • p.

Conversely, if (A,∨) is a join semilattice where for each p ∈ A the interval [p, 1] is

an OML, then the operation • on A defined by

x • y = (x ∨ y)y

determines an orthomodular implication algebra.

To keep unified terminology, let us call orthoimplication algebras orthomodular

implication algebras with (CC), briefly OMIA’s with (CC).
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2. Congruences on OMIA’s

The aim of this paper is to describe congruences on OMIA’s. We already know that

OMIA’s, both with or without (CC), are join semilattices whose sections (= principal

filters) are orthomodular lattices. It is also well known that in OML’s, congruences

are completely determined by their congruence kernels, i.e. classes of the form [1]θ.

These are in a 1-1 corespondence with the so-called p-filters. More precisely, a lattice

filter D in an OML L is a congruence kernel iff

x⊥ ∨ (i ∧ x) ∈ D

for all x ∈ L and i ∈ D. For details see the standard books [3], [10].

Hence to describe congruence kernels on OMIA’s, we may ask how the congruences

behave on sections. One can expect the following:

Lemma 2. Let A = (A, •, 1) be an OMIA with (CC), let θ ∈ Con A and

D = [1]θ. Then for each p ∈ A, Dp = D ∩ [p, 1] is a p-filter on an OML [p, 1].

P r o o f. If a, b ∈ Dp, we have (a, 1), (b, 1) ∈ θ and a∧ b = ((a • p)∨ (b • p)) • p =

(((a • p) • (b • p)) • (b • p)) • p ≡θ ((p • p) • p) • p = 1, i.e. a ∧ b ∈ Dp.

Further, if x ∈ [p, 1] and i ∈ Dp, then (x∧i)∨x⊥ = (x⊥∨i⊥)⊥∨x⊥ = (((x•p)∨(i•

p))•p)∨(x•p) ≡θ ((x•p)∨p)•p)∨(x•p) = ((x•p)•p)∨(x•p) = x∨(x•p) = x∨x⊥ = 1.

Altogether, Dp is a p-filter on [p, 1]. �

There is a more important question, namely whether also the converse statement

holds:

Theorem 1. Let A = (A, •, 1) be an OMIA with (CC). Let D ⊆ A be a subset

where for each p ∈ A the set Dp = D ∩ [p, 1] is a p-filter on a section [p, 1]. Then the

relation θD on A defined by

(x, y) ∈ θD ⇐⇒ (x ∨ y, y) ∈ θDy
& (x ∨ y, x) ∈ θDx

,

where θDy
or θDx

is the congruence on [y, 1] or [x, 1] induced by the p-filter Dy or

Dx, respectively, is a congruence on A and [1]θD
= D.

P r o o f. The relation θD is evidently reflexive and symmetric. From the theory

of OML’s we know that

(x, y) ∈ θDp
iff (x ∧ y) ∨ ((x • p) ∧ (y • p)) ∈ Dp

iff (x ∧ y) ∨ ((x ∨ y) • p) ∈ Dp.
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We will show that

(∗) p 6 q ⇒ θDq
= θDp

∩ [q, 1]2.

Indeed, let x, y ∈ [q, 1]. By (CC) we have (x ∨ y) • q = ((x ∨ y) • p) ∨ q, thus

(x, y) ∈ θDq
iff (x ∧ y) ∨ ((x ∨ y) • q) ∈ Dq

iff (x ∧ y) ∨ ((x ∨ y) • p) ∨ q ∈ Dq

iff (x ∧ y) ∨ ((x ∨ y) • p) ∈ Dq

iff (x ∧ y) ∨ ((x ∨ y) • p) ∈ Dp

iff (x, y) ∈ θDp
.

Let us prove transitivity of θD. Assume that (x ∨ y, y) ∈ θDy
, (x ∨ y, x) ∈ θDx

,

(y ∨ z, z) ∈ θDz
, (y ∨ z, y) ∈ θDy

.

Let us show that θDx
∩ θDy

= θDx∨y
.

Indeed, since x, y 6 x ∨ y, by (∗) we deduce

θDx∨y
= θDx

∩ [x ∨ y, 1]2,

θDx∨y
= θDy

∩ [x ∨ y, 1]2, hence also

θDx∨y
= θDx

∩ θDy
∩ [x ∨ y, 1]2.

But θDx
∩ θDy

⊆ [x, 1]2 ∩ [y, 1]2 = [x ∨ y, 1]2, thus

θDx
∩ θDy

= θDx∨y
.

Since x∨y ∈ [y, 1] and (y∨z, y) ∈ θDy
, we have also (x∨y∨z, x∨y) ∈ θDy

. Similarly,

x ∨ z ∈ [x, 1] and (x ∨ y, x) ∈ θDx
yield (x ∨ y ∨ z, x ∨ z) ∈ θDx

.

Moreover, x ∨ y ∨ z, x ∨ y ∈ [x ∨ y ∨ z, 1], hence also

(x ∨ y ∨ z, x ∨ y) ∈ θDy
∩ [x ∨ y, 1]2 = θDx∨y

= θDx
∩ θDy

,

thus (x ∨ y ∨ z, x ∨ y) ∈ θDx
. This and (x ∨ y ∨ z, x ∨ z) ∈ θDx

due to transitivity

of θDx
imply (x ∨ y, x ∨ z) ∈ θDx

, and in view of (x ∨ y, x) ∈ θDx
we finally get

(x ∨ z, x) ∈ θDx
.

Analogously, (x ∨ y, y) ∈ θDy
gives (x ∨ y ∨ z, y ∨ z) ∈ θDy

, which due to x ∨ y ∨

z, y ∨ z ∈ [y ∨ z, 1] yields also (x∨ y ∨ z, y ∨ z) ∈ θDz
. Further, (y ∨ z, z) ∈ θDz

, thus

(x ∨ y ∨ z, x ∨ z) ∈ θDz
and hence (y ∨ z, x ∨ z) ∈ θDz

.

Finally, (x ∨ z, z) ∈ θDz
and thus θD is transitive.
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Now let us prove compatibility of θD. Assume (x, y) ∈ θD, i.e. (x ∨ y, y) ∈ θDy

and (x ∨ y, x) ∈ θDx
. Since z ∨ x ∈ [x, 1], z ∨ y ∈ [y, 1], we obtain

(z ∨ x ∨ y, z ∨ x) ∈ θDx
and (z ∨ x ∨ y, z ∨ y) ∈ θDy

.

Further, θDx∨z
= θDx

∩ [x ∨ z, 1]2 yields (x ∨ y ∨ z, x ∨ z) ∈ θDx∨z
= θDx

∩ θDz
and

(x ∨ y ∨ z, x ∨ z) ∈ θDz
.

Similarly one can prove (x ∨ y ∨ z, y ∨ z) ∈ θDz
which together with the previous

property gives (x ∨ z, y ∨ z) ∈ θDz
. Now

(x • z, y • z) = ((x ∨ z)z, (y ∨ z)z) ∈ θDz
and ((x • z) ∨ y • z, y • z) ∈ θDz

.

Since (x • z) ∨ (y • z) > y • z > z, we have also

((x • z) ∨ (y • z), y • z) ∈ θDy•z
.

Analogously one can prove ((x•z)∨(y•z), x•z) ∈ θDx•z
and hence (x•z, y•z) ∈ θD.

Let us prove (z • x, z • y) ∈ θD. We already know that (x∨ z, y ∨ z) = ((x • z) • z,

(y•z)•z) ∈ θD. We have to prove ((z∨x)x, (z∨y)y) ∈ θD. From (x, y) ∈ θD we deduce

(x∨y, x) ∈ θDx
and (x∨y∨z, x∨z) ∈ θDx

, thus also ((x∨y∨z)x, (x∨z)x) ∈ θDx
. Now

(z∨x)x∨(z∨x∨y)x = (z∨x)x, hence trivially ((z∨x)x∨(z∨x∨y)x , (z∨x)x) ∈ θD(z∨x)x
.

We know that θD(x∨y∨z)x
= θDx

∩[(x∨y∨z)x, 1]2, (x∨z)x, (x∨y∨z)x ∈ [(x∨y∨z)x, 1]

and ((x ∨ y ∨ z)x, (x ∨ z)x) ∈ θDx
, thus ((z ∨ x)x, (x ∨ y ∨ z)x) ∈ θD(x∨y∨z)x

.

Altogether, we have proved ((x ∨ y ∨ z)x, (y ∨ z)x) ∈ θD.

Analogously one can prove ((z ∨ y)y, (x ∨ y ∨ z)y) ∈ θD.

Since (x ∨ y ∨ z)x∨y = (x ∨ y ∨ z)y ∨ x by (CC), we obtain

(x ∨ y ∨ z)y = (x ∨ y ∨ z)y ∨ y ≡θD
(x ∨ y ∨ z)y ∨ x = (x ∨ y ∨ z)x∨y.

Similarly,

(x ∨ y ∨ z)x = (x ∨ y ∨ z)x ∨ x ≡θD
(x ∨ y ∨ z)x ∨ y = (x ∨ y ∨ z)x∨y,

thus ((x∨y∨z)x, (x∨y∨z)y) ∈ θD, which, with respect to ((z∨y)y, (x∨y∨z)y) ∈ θD

and ((z ∨x)x, (x∨y ∨ z)x) ∈ θD, gives ((z∨y)y , (z∨x)x) ∈ θD, and we are done. �

Theorem 1 allows us to show that for an OMIA with (CC) A , the lattice ConA

is relatively pseudocomplemented (and hence distributive):
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Corollary 1. Let A = (A, •) be an OMIA with (CC), let I, J be the congruence

kernels of A . Then

〈I, J〉 := {x ∈ A | x ∨ i ∈ J for each i ∈ I}

is the relative pseudocomplement of I with respect to J in the lattice CkA of

congruence kernels of A .

P r o o f. It is immediate that I ∩ 〈I, J〉 ⊆ J and that for each K ∈ CkA , if

I ∩ K ⊆ J , then K ⊆ 〈I, J〉.

It is enough to show that 〈I, J〉 ∈ Ck(A ). By the previous theorem it is sufficient

to prove that for each p ∈ A, 〈I, J〉p = 〈I, J〉 ∩ [p, 1] is a p-filter on an OML [p, 1].

We already know that both Ip = I ∩ [p, 1] and Jp = J ∩ [p, 1] are p-filters on [p, 1].

From the theory of OML’s we also know that for each p ∈ A, 〈Ip, Jp〉 = {x ∈ [p, 1] |

x∨ i ∈ Jp for each i ∈ Ip} is the relative pseudocomplement of Ip with respect to Jp

on [p, 1], hence a p-filter. We will show that 〈Ip, Jp〉 = 〈I, J〉p.

Evidently, 〈Ip, Jp〉 ⊆ 〈I, J〉p, i.e. x ∨ y ∈ Jp for each y ∈ Ip. Now for each

i ∈ I, x ∨ i ∈ Ip, hence also x ∨ i = x ∨ (x ∨ i) ∈ Jp ⊆ J , x ∈ 〈I, J〉p, completing the

proof. �

The situation for OMIA’s without (CC) is more complicated.

Theorem 2. Let A = (A, •, 1) be an OMIA without (CC), let θ ∈ Con A , D ∈

[1]θ. Then for each p ∈ A, Dp = D ∩ [p, 1] is a p-filter on an OML [p, 1] and the

following implications hold:

(∗) for each x, p, q ∈ A :

x > q > p ⇒ (q • p ∈ Dp ⇒ ((x • q) ∧ (x • p)) ∨ (((x • q) • p) ∧ x) ∈ Dp)

(∗∗) for each x, y, p, q ∈ A :

x > y > q > p ⇒ ((((x • q) ∨ (y • q) • q) ∨ ((x ∨ y) • q) ∈ Dq

⇔ (((x • p) ∨ (y • p) • p) ∨ ((x ∨ y) • p) ∈ Dp)

P r o o f. It is almost evident that Dp is a p-filter on [p, 1]. To prove (∗), assume

q • p ∈ Dp = [1]θ, i.e. (1, q • p) ∈ θ. From this we deduce

(p, q) = (p, p ∨ q) = (1 • p, (q • p) • p) ∈ θ
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and

((x • q) ∧ (x • p) ∨ (((x • q) • p) ∧ x) ≡θ (x • p) ∨ (((x • p) • p) ∧ x) = (x • p) ∨ x = 1,

hence also ((x • q) ∧ (x • p) ∨ (((x • q) • p) ∧ x) ∈ Dp.

Let us prove (∗∗). Since Dp is a p-filter on [p, 1], it generates a congruence θDp
on

[p, 1] by

(x, y) ∈ θDp
⇔ (((x • p) ∨ (y • p)) • p) ∨ ((x ∨ y) • p) ∈ Dp.

Thus (∗∗) is equivalent to

x > y > q > p ⇒ ((x, y) ∈ θDp
iff (x, y) ∈ θDq

).

But this easily follows from the facts

θDp
= θ ∩ [p, 1] and θDq

= θ ∩ [q, 1].

�

We are able to show that also the converse holds:

Theorem 3. Let A = (A, •) be an OMIA without (CC) and let D ⊆ A be a

subset where for each p ∈ A the set Dp = D ∩ [p, 1] is a p-filter on an OML [p, 1].

Let the following conditions be satisfied:

(∗) ∀x, q ∈ A :

x > q > p ⇒ (qp ∈ Dp ⇒ (xq ∧ xp) ∨ ((xq)p ∧ x) ∈ Dp)

(∗∗) ∀x, y, p, q ∈ A :

x > y > q > p ⇒ ((x, y) ∈ θDp
⇔ (x, y) ∈ θDq

),

where θDp
or θDq

are the congruences on [p, 1] or [q, 1] induced by the p-filters Dp

or Dq, respectively. Then the relation θD on A defined by

(x, y) ∈ θD ⇐⇒ (x ∨ y, x) ∈ θDx
& (x ∨ y, y) ∈ θDy

is a congruence on A with D = [1]θD
.

P r o o f. The condition (∗∗) immediately yields that for p 6 q we have θDq
=

θDp
∩ [q, 1]2. The relation θD is evidently reflexive and symmetric.
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Further, θDx∨y
= θDx

∩ [x ∨ y, 1]2,

θDx∨y
= θDy

∩ [x ∨ y, 1]2,

hence θDx∨y
= θDx

∩ θDy
.

To prove transitivity of θD, assume (x, y), (y, z) ∈ θD, i.e.

(x ∨ y, y) ∈ θDy
, (x ∨ y, x) ∈ θDx

, (y ∨ z, y) ∈ θDy
, (y ∨ z, z) ∈ θDz

.

From x ∨ y ∈ [y, 1] and (y ∨ z, y) ∈ θDy
we deduce (x ∨ y ∨ z, y ∨ x) ∈ θDy

, similarly

x ∨ z ∈ [x, 1] and (x ∨ y, x) ∈ θDx
yield (x ∨ y ∨ z, x ∨ z) ∈ θDx

.

Since x∨ y ∨ z, x∨ y ∈ [x∨ y, 1], we have also (x∨ y ∨ z, x∨ y) ∈ θDy
∩ [x∨ y, 1]2 =

θDx∨y
= θDx

∩ θDy
, hence also (x∨ y∨ z, x∨ y) ∈ θDx

and due to transitivity of θDx
,

(x ∨ y, x ∨ z) ∈ θDx
.

This and (x ∨ y, x) ∈ θDx
give (x ∨ z, x) ∈ θDx

.

Analogously we can show that (x ∨ z, z) ∈ θDz
verifying that θD is transitive.

Assume further that (x, y) ∈ θD and let us prove that (x•z, y •z) ∈ θD. Using the

same arguments as in the proof of transitivity of θD we obtain (x∨y∨z, x∨z) ∈ θDx
,

(x ∨ y ∨ z, y ∨ z) ∈ θDy
, thus

(x ∨ y ∨ z, x ∨ z) ∈ θDx
∩ [x ∨ z, 1]2 = θDx∨z

= θDx
∩ θDz

,

(x ∨ y ∨ z, y ∨ z) ∈ θDy
∩ [y ∨ z, 1]2 = θDy∨z

= θDy
∩ θDz

,

hence (x ∨ y ∨ z, x ∨ z) ∈ θDz
, (x ∨ y ∨ z, y ∨ z) ∈ θDz

and (x ∨ z, y ∨ z) ∈ θDz
.

Further, due to the compatibility of orthocomplementation in [z, 1] we derive ((x∨

z)z, (y ∨ z)z) = (x • z, y • z) ∈ θDz
, and

((x • z) ∨ (y • z), y • z) ∈ θDz
.

Since (x • z) ∨ (y • z) > y • z > z, also

((x • z) ∨ (y • z), y • z) ∈ θDy•z
.

Analogously we prove ((x • z) ∨ (y • z), y • z) ∈ θDx•z
, and finally

(x • z, y • z) ∈ θD.

Let us prove that (z • x, z • y) ∈ θD, i.e. ((z ∨ x)x, (z ∨ y)y) ∈ θD.

First, (x, y) ∈ θD implies (x ∨ z, y ∨ z) = ((x • z) • z, (y • z) • z) ∈ θD. Further,

(x ∨ y, x) ∈ θDx
yields (x ∨ y ∨ z, x ∨ z) ∈ θDx

and ((x ∨ y ∨ z)x, (x ∨ z)x) ∈ θDx
.
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We have (z∨x)x = (z∨x)x∨(z∨x∨y)x, (x∨y∨z)x > x, thus ((z∨x)x, (x∨y∨z)x) ∈

θDx
gives also ((z∨x)x, (x∨y∨z)x) = ((z∨x)x∨(x∨y∨z)x, (x∨y∨z)x) ∈ θD(x∨y∨z)x

.

Further, ((z ∨x)x ∨ (z ∨x∨ y)x, (z ∨x)x) = ((z ∨x)x, (z ∨x)x) ∈ θD(x∨x)x
, proving

that ((z ∨ x)x, (x ∨ y ∨ z)x) ∈ θD.

Analogously we can prove ((x ∨ y ∨ z)y, (z ∨ y)y) ∈ θD. Hence to prove ((z ∨

x)x, (z ∨ y)y) ∈ θD, due to transitivity of θD it is enough to show

((x ∨ y ∨ z)x, (x ∨ y ∨ z)y) ∈ θD.

Due to (x, y) ∈ θD, it suffices to show

(x ∨ y ∨ z)x ∨ y ≡θD
(x ∨ y ∨ z)y.

Let us denote a = x ∨ y ∨ z and prove

ax ∨ x ∨ y ≡θD
ay ∨ x ∨ y.

This is equivalent with

(ax ∨ x ∨ y, ax ∨ ay ∨ x ∨ y) ∈ θDax∨y∨x
,

(ay ∨ x ∨ y, ax ∨ ay ∨ x ∨ y) ∈ θDay∨x∨y
.

Since ay ∨ x ∨ y, ax ∨ x ∨ y, ax ∨ ay ∨ x ∨ y > x, y, we have by (∗∗)

(ax ∨ x ∨ y, ax ∨ ay ∨ x ∨ y) ∈ θDax∨x∨y
⇔ (ax ∨ x ∨ y, ax ∨ ay ∨ x ∨ y) ∈ θDx∨y

,

and the same when interchanging the elements x, y.

Hence it suffices to show

ax ∨ x ∨ y ≡θDx∨y
ay ∨ x ∨ y.

The condition (∗) for Dp says that if x > q > p, then qp ∈ Dp (i.e. (p, q) ∈ θDp
)

implies (xq, xp) ∈ θDp
. Let us apply this condition to the configuration

x ∨ y

x y

a

Evidently, (x, x ∨ y) ∈ θDx
, (y, x ∨ y) ∈ θDy

, thus by (∗)

(ax, ax∨y) ∈ θDx
,

(ay, ax∨y) ∈ θDy
,
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and

(ax ∨ x ∨ y, ax∨y) ∈ θDx
,

(ay ∨ x ∨ y, ax∨y) ∈ θDy
.

Since ax ∨ x ∨ y, ax∨y > x ∨ y, by (∗∗) also

(ax ∨ x ∨ y, ax∨y) ∈ θDx∨y
,

(ay ∨ x ∨ y, ax∨y) ∈ θDx∨y
,

which due to transitivity of θDx∨y
gives (ax ∨ x ∨ y, ay ∨ x ∨ y) ∈ θDx∨y

, as desired.

This completes the proof of θD ∈ ConA . �

E x am p l e . The following example shows that the condition (∗) in the previous

theorem is not superfluous. Let A = (A, •, 1) be an OMIA with the Hasse diagram

in Fig. 1.

0

a b c d e

x y u v w

1

Fig. 1

All sections here are OML’s; only two of them, [0, 1] and [c, 1] are not Boolean

algebras. Let the involutions on Boolean sections be defined as usual on Boolean

algebras, and for the section [0, 1] we have x0 = a, a0 = x, y0 = b, b0 = y, v0 = d,

d0 = v, w0 = e, e0 = w, u0 = c, c0 = u.

For the section [c, 1] put

x • c = xc = w, w • c = wc = x, y • c = yc = v, v • c = vc = y.

Then the operation • on A is defined by

x • y = (x ∨ y)y,

and (A, •, 1) is an OMIA (without (CC)).
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Consider the equivalence θ on A as visualized in Fig.1. One can easily verify that

for D = [1]θ = {1, u}, the filters Dp = D ∩ [p, 1] satisfy the condition (∗∗), but not

the condition (∗): we have y > c > 0, c0 = c • 0 = u ∈ D0 but

(yc ∧ y0) ∨ ((yc)0 ∧ y) = (v ∧ b) ∨ (v0 ∧ y) = 0 ∨ (d ∧ y) = 0 6∈ D0.

Thus θ 6∈ Con(A ).
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