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Abstract. To derive a Baum-Katz type result, a Chover-type law of the iterated logarithm
is established for weighted sums of negatively associated (NA) and identically distributed
random variables with a distribution in the domain of a stable law in this paper.
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1. Introduction

Let {Xj , j > 1} are independently identically distributed (i.i.d.) with symmetric
stable distributions. And let these distributions belong to the domain of normal

attraction and non-degeneration. So, their characteristic functions are of the forms:

E exp(itXj) = exp(−|t|α), t ∈ � , j > 1.

Chover (1966) has obtained that

(1.1) lim sup
n→∞

(
n−1/α

∣∣∣∣
n∑

j=1

Xj

∣∣∣∣
)1/log log n

= e1/α a.s.

We call it Chover-type LIL (Laws of the iterated logarithm). This type of LIL has
been shown by Vasudeva and Divanji [11], Zinchenko [13] for delayed sums, by Chen

and Huang [2] for geometric weighted sums, and by Chen [1] for weighted sums.
Note that Qi and Cheng [9] extended the Chover-type law of the iterated logarithm

for the partial sums to the case when the underlying distribution is in the domain of
attraction of a non-symmetric stable distribution (see below for details).
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Let Lα denote a stable distribution with exponent α ∈ (0, 2). Recall that the
distribution of X is said to be in the domain of attraction of Lα if there exist
constants An ∈

�
and Bn > 0 such that

(1.2)

∑n
j=1 Xj −An

Bn

d−→ Lα.

Assuming (1.2), Qi and Cheng (1996) and Peng and Qi (2003) showed that

lim sup
n→∞

(
B−1

n

∣∣∣∣
n∑

j=1

Xj −An

∣∣∣∣
)1/log log n

= e1/α a.s.

It is well known that (1.2) holds if and only if

(1.3) 1− F (x) =
C1(x)l(x)

xα
, F (−x) =

C2(x)l(x)
xα

, x > 0,

where F (x) denotes a stable distribution with exponent α ∈ (0, 2) for x > 0,
Ci(x) > 0, lim

x→∞
Ci(x) = Ci, i = 1, 2, C1 + C2 > 0, and l(x) > 0 is a slowly varying

in the sense of Karamata function, i.e.,

lim
t→∞

l(tx)
l(t)

= 1 for x > 0.

According to Lin (1999, page 76, Exercise 21), we have Bn = (nl(n))1/α.

As for negatively associated (NA) random variables, Joag (1983) gave the following
definition.

Definition (Joag, 1983). A finite family of random variables {Xi, 1 6 i 6 n} is
said to be negatively associated (NA) if for every pair of disjoint subsets T1 and T2

of {1, 2, . . . , n}, we have

Cov(f1(Xi, i ∈ T1), f2(Xj , j ∈ T2)) 6 0,

whenever f1 and f2 are coordinatewise increasing and the covariance exists. An infi-
nite family is negatively associated if every finite subfamily is negatively associated.

To derive a Baum-Katz type result, the main purpose of this paper is to establish a

Chover-type law of the iterated logarithm for weighted sums of NA and indentically
distributed random variables with a distribution in the domain of a stable law.

Throughout this paper, let h ∈ B[0, 1] denote that a function h is bounded on
[0, 1]. Further, C will represent a positive constant though its value may change

from one appearance to another, and an = O(bn) will mean an 6 Cbn.
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2. Main results

In order to prove our results, we need the following lemma and definition.

Lemma 2.1 (Shao, 2000). Let {Xi, i > 1} be a sequence of NA random variables,
EXi = 0, E|Xi|p < ∞ for some p > 2 and for every i > 1. Then there exists
C = C(p), such that

E max
16k6n

∣∣∣∣
k∑

i=1

Xi

∣∣∣∣
p

6 C

{ n∑

i=1

E |Xi|p +
( n∑

i=1

EX2
i

)p/2}
.

Definition (Lin and Lu, 1997). A function f(x) > 0 (x > 0) is said to be quasi-
monotone non-decreasing, if

lim sup
x→∞

sup
06t6x

f(t)
f(x)

< ∞.

Now we state the main results and their proofs.

Theorem 1. Let {X, Xi, i > 1} be an NA sequence of identically distributed
random variables with distribution F (x), where F (x) denotes a stable distribution

with exponent α ∈ (0, 2). Let h be a bounded function on [0, 1], Sn =
n∑

i=1

h(i/n)Xi.

We have EX = 0, α > 1. Let f(x) > 0 be quasi-monotone non-decreasing and∫∞
1

1/(xf(x)) dx < ∞. l(x) > 0 is a slowly varying in the sense of Karamata
function, sup

n>1
l(an)/l(n) < ∞, where an = (nf(n)l(n))1/α. Then under condition

(1.2), for any ε > 0, we have

(2.1)
∞∑

n=1

n−1P
(

max
16j6n

|Sj | > ε(nf(n)l(n))1/α
)

< ∞.

���������	����
����������� �
. For any i > 1, define X

(n)
i = XiI(|Xi| 6 an),

S
(n)
j =

j∑
i=1

(h(i/n)X(n)
i − E h(i/n)X(n)

i ), where an = (nf(n)l(n))1/α. Then for any

ε > 0, we have

(2.2)

P
(

max
16j6n

|Sj | > εan

)
6 P

(
max

16j6n
|Xj | > an

)

+ P

(
max

16j6n
|S(n)

j | > εan − max
16j6n

∣∣∣∣
j∑

i=1

Eh(i/n)X(n)
i

∣∣∣∣
)

.

29



First we show that

(2.3)
1
an

max
16j6n

∣∣∣∣
j∑

i=1

Eh(i/n)X(n)
i

∣∣∣∣ → 0, as n →∞.

Let us consider two cases, (i) when 0 < α 6 1, notice that h ∈ B[0, 1]. Then for any
positive integers n, N ,

1
an

max
16j6n

∣∣∣∣
j∑

i=1

Eh(i/n)X(n)
i

∣∣∣∣ 6 1
an

n∑

i=1

E |h(i/n)X(n)
i |

6 Cn

an

∫

|x|6an

|x| dF (x) 6 Cn

an
aN +

Cn

an

∫

aN <|x|6an

|x| dF (x)

=: C(A + B).

Notice that f(x) > 0 is quasi-monotone non-decreasing and (1.3) holds. We have for
n > N, N large enough,

B =
n

an

n∑

k=N+1

∫

ak−1<|x|6ak

|x| dF (x) 6 n

an

n∑

k=N+1

akP (ak−1 < |X | 6 ak)

6 C

n∑

k=N+1

kP (ak−1 < |X | 6 ak) 6 CNP (|X | > aN ) + C

∞∑

k=N

P (|X | > ak)

6 C
1

f(N)
+ C

∞∑

k=N

1
kf(k)

6 C
1

f(N)
+ C

∫ ∞

N

dx

kf(k)
<

ε

4
.

It is obvious that for each given N,

A 6 C
aN

(f(n))1/α
→ 0, n →∞.

So, for 0 < α 6 1, we have (2.3).
(ii) When 1 < α < 2, using EXi = 0, h ∈ B[0, 1] and (1.3), when n →∞, then

1
an

max
16j6n

∣∣∣∣
j∑

i=1

Eh(i/n)X(n)
i

∣∣∣∣ =
1
an

max
16j6n

∣∣∣∣
j∑

i=1

Eh(i/n)XiI(|Xi| > an)
∣∣∣∣

6 1
an

n∑

i=1

E |h(i/n)Xi|I(|Xi| > an) 6 Cn

an
E |X |I(|X | > an)

=
Cn

an

∫ ∞

an

P (|X | > x) dx =
Cn

an

∫ ∞

an

Cl(x)
xα

dx

=
n

an
Ca1−α

n l(an) 6 C

f(n)
<

ε

2
.
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So, for 1 < α < 2, we also have (2.3). Further, (i) and (ii) imply (2.3).
By (2.2) and (2.3), we have that

P
(

max
16j6n

|Sj | > εan

)
6

n∑

j=1

P (|Xj | > an) + P
(

max
16j6n

|S(n)
j | > ε

2
an

)
,

for n large enough. Hence we need only to prove

I =:
∞∑

n=1

n−1
n∑

j=1

P (|Xj | > an) < ∞,(2.4)

II =:
∞∑

n=1

n−1P
(

max
16j6n

|S(n)
j | > ε

2
an

)
< ∞.(2.5)

From (1.3), it is easily seen that

(2.6) I =
∞∑

n=1

P (|X | > an) 6
∞∑

n=1

C

nf(n)
6 C

∫ ∞

1

dx

xf(x)
< ∞.

Lemma 2.1 and the fact that h ∈ B[0, 1] imply that

(2.7)

II 6 C

∞∑

n=1

n−1 E max
16j6n

|S(n)
j |2 1

a2
n

6 C

∞∑

n=1

n−1 1
a2

n

( n∑

i=1

E |h(i/n)X(n)
i |2

)

6 C

∞∑

n=1

1
a2

n

E |X |2I(|X | 6 an) = C

∞∑

n=1

1
a2

n

∫

|x|6an

x2 dF (x)

= C
∞∑

n=1

1
a2

n

n∑

k=1

∫

ak−1<|x|6ak

x2 dF (x) 6 C
∞∑

k=1

a2
kP (ak−1 < |X | 6 ak)

∞∑

n=k

1
a2

n

6 C

∞∑

k=1

kP (ak−1 < |X | 6 ak) 6 C

∫ ∞

1

dx

xf(x)
< ∞.

Now we complete the proof of Theorem 1.

Corollary 1. Under the conditions of Theorem 1, we have

(2.8) lim sup
n→∞

( |Sn|
Bn

)1/log log n

6 e1/α a.s.

����������������������������� � �
. Notice that for any positive integer n there exists

a non-negative integer k, such that 2k 6 n < 2k+1. And there exists a t ∈ [0, 1), such
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that n = 2k+t. Using (2.1), we obtain

∞∑

k=0

2k+1−1∑

n=2k

(2k+1 − 1)−1P
(

max
16j62k+t

|Sj | > ε(2k+1f(2k+t)l(2k+t))1/α
)

< ∞.

Then
∞∑

k=0

P
(

max
16j62k+t

|Sj | > ε(2k+1f(2k+t)l(2k+t))1/α
)

< ∞,

and consequently
max

16j62k+t
|Sj |

(2k+1f(2k+t)l(2k+t))1/α
→ 0 a.s.

So

|Sn|
(nf(n)l(n))1/α

6
max

16j62k+t
|Sj |

(2k+1f(2k+t)l(2k+t))1/α

(2k+1f(2k+t)l(2k+t))1/α

(nf(n))1/α

6 21/α

max
16j62k+t

|Sj |

(2k+1f(2k+t))1/α
→ 0 a.s.

Then

(2.9) lim sup
n→∞

|Sn|
(nf(n)l(n))1/α

= 0 a.s.

Given ε > 0, let f(x) = log1+ε x. It is obvious that
∫∞
1

1/(xf(x)) dx < ∞. By (2.9),

we have

lim sup
n→∞

|Sn|
(nl(n) log1+ε n)1/α

= 0 a.s.

Then

lim sup
n→∞

( |Sn|
B(n)

)1/log log n

6 e(1+ε)/α a.s.

Therefore

lim sup
n→∞

( |Sn|
B(n)

)1/log log n

6 e1/α a.s.

Now we complete the proof of (2.8). �
� �"!�# �%$&���%')(��*� #�+-,

. The author would like to thank the anonymous referee
for his/her valuable comments.
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