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Abstract. M.Radulescu proved the following result: Let X be a compact Hausdorff
topological space and π : C(X)→ C(X) a supra-additive and supra-multiplicative operator.
Then π is linear and multiplicative. We generalize this result to arbitrary topological spaces.
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1. The result

We follow the terminology of [1]. As usual for a topological space X , the space of

real valued continuous (bounded) functions on K is denoted by C(X) (Cb(X)). For
each x ∈ X , δx : C(X) → �

is defined by δx(f) = f(x). For B ⊂ X , χB denotes the

characteristic function of B. For each n ∈ �
, n denotes the constant function with

value n. A map π : C(X) → C(Y ) is called

(i) supra-additive if π(f + g) > π(f) + π(g) for each f, g ∈ C(X),

(ii) supra-multiplicative if π(fg) > π(f)π(g) for each f, g ∈ C(X).

The following theorem is the main result of [4].

Theorem 1. Let X be a compact Hausdorff space and π : C(X) → C(X) a
supra-additive and supra-multiplicative map. Then π is multiplicative and linear.

The main result of this note is to generalize the above theorem as follows.
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Theorem 2. Let X and Y be topological spaces and π : C(X) → C(Y ) a supra-
additive and supra-multiplicative map. Then the following statements are equivalent.

(i) π(f+ ∧ n− f− ∧ n)(y) → π(f)(y) for each f ∈ C(X) and y ∈ Y .

(ii) π is linear and multiplicative.
���������

. (ii) =⇒ (i): For each y ∈ T , δy ◦ π is a Riesz homomorphism, so

π(f ∧ n)(y) = δy ◦ π(f ∧ n) = δy ◦ π(f) ∧ n → δy ◦ π(f) = π(f)(y)

(i) =⇒ (ii):
	�
�����

1. Let K be a compact Hausdorff space and let T : C(K) → �
be supra-

additive and supra-multiplicative. Then T is linear and multiplicative.

Indeed, let T∼ : C(K) → C(K) be defined by T∼(f) = T (f)1. Then T∼ is supra-
additive and supra-multiplicative, so by Theorem 1, T∼ is linear and multiplicative,

so T is linear and multiplicative.
	�
�����

2. For each topological space M there exists a compact Hausdorff space

KM such that C(KM ) and Cb(M) are Riesz and algebraic isomorphic spaces.
As Cb(M) is an AM-space with order unit 1, this follows from the Kakutani-Krein

Representation Theorem (see [1]).
	�
�����

3. Let π∼ = π|Cb(X). Then for each y ∈ Y , δy ◦π∼ : Cb(X) → �
is linear

and multiplicative.
This follows from Theorem 1 and from the above claims.
	�
�����

4. π is linear.

To see this we use the linearity of δy ◦ π∼ as follows. Let f, g > 0 be given. Then

π(f + g)(y) = lim δy ◦ π∼((f + g) ∧ n) 6 lim δy ◦ π∼(f ∧ n + g ∧ n).

Since δy ◦ π∼ is linear and π is supra-additive we have

π(f + g) 6 π(f) + π(g) 6 π(f + g),

so π is additive on C(X)+. Now by the Kantorovic Theorem (see Theorem 1.7. [1]),
ϕ : C(X) → C(Y ) defined by ϕ(f) = π(f+) − π(f−) is linear and from the second
assumption it is clear that ϕ = π, so π is linear.
	�
�����

5. π is multiplicative.

Indeed, let 0 6 f ∈ C(X) be given. As for each y ∈ Y , δy ◦ π∼ is multiplicative,
we have

π(f2)(y) = δy ◦ π(f2) = lim δy ◦ π∼(f2 ∧ n) = lim δy ◦ π∼((f ∧ n
1
2 )2)

= (lim δy ◦ π∼(f ∧ n
1
2 ))2 = π(f)2(y),
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so π(f2) = π(f)2. Let f ∈ C(X) be given. As π(f+)π(f−) = 0, due to the linearity
of π we have π(f2) = π(f)2. Now the multiplicativity follows from the equality

fg = 1
4 ((f + g)2 − (f − g)2).

�

Recall that a topological space X is called pseudocompact if C(X) = Cb(X) ([3]).
It is clear that any countable compact space is pseudocompact. Now the following
corollary immediately follows from the above theorem.

Corollary 3. Let X be a pseudocompact space and Y a topological space. A

map π : C(X) → C(Y ) is supra-additive and supra-multiplicative if and only if it is
linear and multiplicative.

Recall that a topological space is called realcompact if it is homeomorphic to a
closed subspace of the product space of

�
. It is well known that a Hausdorff space

is compact if and only if it is realcompact and pseudocompact (see [3]). If K is a
realcomapct space and T : C(K) → �

is nonzero linear and multiplicative then there

exists k ∈ K such that T (f) = f(k) for each f ∈ C(K) (see [2] for a simple proof).
By using this fact we have the following theorem.

Theorem 4. Let X be a realcompact space and let Y be an arbitrary topological

space. Let π : C(X) → C(Y ) be a supra-additive and supra-multiplicative map.
Then the following assertions are equivalent.

(i) π(f+ ∧ n− f− ∧ n)(y) → π(f)(y) for each f ∈ C(X) and y ∈ Y

(ii) There exists a clopen subset B ⊂ Y and a continuous function σ : Y → X such

that

π(f)(y) = χB(y)f(σ(y))

for each y ∈ Y , f ∈ C(X).
���������

. It is clear that (ii) =⇒ (i). Suppose that (i) holds. Then from The-
orem 2, π is linear and multiplicative. The fact that π(1)2 = π(1) for each y ∈ Y

implies that either π(1)(y) = 0 or π(1)(y) = 1, so B = {y ∈ Y : π(1)(y) = 1} is
clopen in Y . Let y ∈ Y be given. As X is realcompact and δy ◦ π : C(X) → �

is

linear and multiplicative there exists α(y) such that

π(f)(y) = π(1)(y)f(α(y)) = χB(y)f(α(y)).

Since X is completely regular Hausdorff space, α(y) must be unique for each y ∈ B.
Let x0 ∈ Y be fixed and let σ : Y → X be defined by σ(y) = α(y) when y ∈ B and

σ(y) = x0 otherwise. It is clear that σ|B : B → X is continuous. Since B is clopen,
actually σ itself is continuous. This completes the proof. �
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