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Abstract. We study axisymmetric solutions to the Navier-Stokes equations in the whole
three-dimensional space. We find conditions on the radial and angular components of the
velocity field which are sufficient for proving the regularity of weak solutions.

Keywords: axisymmetric flow, Navier-Stokes equations, regularity of systems of PDE’s

MSC 2000 : 35Q35, 35J35

1. Introduction

Let the incompressible fluid fill up the whole three-dimensional space. Then its
flow is described by the Navier-Stokes system

(1.1)
∂u
∂t
+ u · ∇u− ν∆u+∇p = f

divu = 0



 in (0, T )× �

3

with the initial condition

(1.2) u(0,x) = u0(x).

Jiří Neustupa was supported by the Grant Agency of the Czech Republic (grant
No. 201/99/0267) and by the Council of the Czech Government (project No. J04/98
/210000010); M.Pokorný was supported by the Grant Agency of the Czech Repub-
lic (grant No. 201/00/0768) and by the Council of the Czech Government (project
No. J14/98/153100011.)
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The symbols u and p denote the unknown velocity and pressure, f is an external
body force and ν > 0 is the viscosity coefficient.

While the existence of a weak solution to the system (1.1)–(1.2) for the right-hand

side f ∈ L2(0, T ;W−1,2(�3 )) and u0 ∈ L2(�3 ) has been known for a long time (see
J. Leray [7]) its uniqueness and regularity are fundamental open questions.

On the other hand, positive results are known provided additional conditions are
imposed on the regularity of solutions. Thus, for example the uniqueness has been

proved if the weak solution belongs also to the class Lr,s(QT ) with 2
r +

3
s � 1,

r ∈ [2,+∞], s ∈ [3,+∞] (see G.Prodi [11], J. Serrin [12], H. Sohr, W. von Wahl [13],
H.Kozono, H. Sohr [4], H.Kozono [3]). Moreover, if the weak solution is in Lr,s(QT )
with 2r +

3
s � 1, r ∈ [2,+∞], s ∈ (3,+∞] and the input data are “smooth enough”

then it is already a strong solution (see G.P.Galdi [1], Y.Giga [2]). The question
whether the weak solution which is in L∞,3(QT ) is a strong solution is still open.

Let us further note that under a strong solution we understand a weak solu-
tion which has the maximal possible regularity, i.e. for our data the function u
and the corresponding pressure field p are such that u ∈ L2(0, T ;W 3,2(�3 )) ∩
L∞(0, T ;W 2,2(�3 )), ∂u

∂t ,∇p ∈ L2(0, T ;W 1,2(�3 )). It is an easy matter to show

(see e.g. [1]) that such a solution is unique in the class of all weak solutions satisfying
the energy inequality.

The situation is much simpler in the case of planar (i.e. two-dimensional) flows

where the existence of strong solutions and their uniqueness is known. (See J. Leray
[7].) A natural question arises whether the same can also be proved for ax-

isymmetric flows. However, the affirmative answer has up to now been given
only in the case that the data are axisymmetric with zero angular components

(see O.A. Ladyzhenskaya [5], M.R.Uchovskii, B. I. Yudovich [14] and S. Leonardi,
J.Málek, J.Nečas, M.Pokorný [6]).

The question whether the components of velocity are coupled in such a way that
some information about a higher regularity of one of them already implies the higher

regularity of all of them was dealt with in the papers of J. Neustupa, P.Penel [9]
and J.Neustupa, A.Novotný, P.Penel [8]. In [8], the authors proved that if u is a
so called suitable weak solution in the sense of Caffarelli, Kohn, Nirenberg with one
velocity component belonging to Lr,s(D) with 2r +

3
s � 1

2 , r ∈ [4,+∞], s ∈ (6,+∞]
then the solution is, for the right-hand side sufficiently smooth, necessarily a strong
one. Although the results were shown on bounded subdomains of the time-space

cylinder and for suitable weak solutions, the method can also be easily applied to
the Cauchy problem in the case of a weak solution satisfying the energy inequality.

This paper deals with a similar problem as the above mentioned papers [8] and
[9], however, we study an axisymmetric flow (see Definition 1 below.)

470



������ 1. We will often use the so called cylindrical coordinates; the relations

between the cartesian and the cylindrical coordinates of a vector field read as follows:

w� = w1 cos θ + w2 sin θ,

wθ = −w1 sin θ + w2 cos θ,

wz = w3.

Definition 1. A flow is called axisymmetric if the pressure p and the cylindrical
velocity components u�, uθ, uz are independent of the angular variable θ.

The main theorems proved in this paper are

Theorem 1. Let (u, p) be a weak solution to problem (1.1)–(1.2) satisfying
the energy inequality with f ∈ L2(0, T ;W 1,2(�3 )) and u0 ∈ W 2,2(�3 ). Let u0 and
f be axisymmetric. Suppose further that the radial component u� of u belongs1

to Lr,s(QT ) for some r ∈ [2,+∞], s ∈ (3,+∞], 2r + 3
s � 1. Then (u, p) is an

axisymmetric strong solution to problem (1.1)–(1.2) which is unique in the class of
all weak solutions satisfying the energy inequality.

Theorem 2. Let (u, p) be a weak solution to problem (1.1)–(1.2) satisfying the
energy inequality with f ∈ L2(0, T ;W 1,2(�3 )) and u0 ∈ W 2,2(�3 ). Let u0 and f be
axisymmetric.

(i) Suppose further that the angular component uθ of u belongs to Lr,s(QT ) for
some r ∈ [207 ,+∞], s ∈ [6,+∞], 2r + 3s � 7

10 . Then (u, p) is an axisymmetric strong
solution to problem (1.1)–(1.2).
(ii) Let �u0θ ∈ L∞(�3 ) and fθ� ∈ L1,∞(QT ). Suppose further that the angular

component uθ of u belongs to Lr,s(QT ) for some r ∈ (10,+∞], s ∈ (245 , 6), 2r +
3
s �

1− 9
5s . Then (u, p) is an axisymmetric strong solution to problem (1.1)–(1.2).
In both cases the solution is unique in the class of all weak solutions satisfying the

energy inequality.

Note that our conditions on the radial and the angular velocity component, respec-

tively, are less restrictive than the conditions required for one velocity component in
the case of the whole Navier-Stokes system (cf. [8]), but (for the angular component)

more restrictive than the Prodi-Serrin condition which, on the contrary, has to be
fulfilled by all velocity components. The condition on the radial component is then

exactly the same as the Prodi-Serrin condition.

1 See also Remark 2.
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2. Auxiliary results

We use the standard notation for the Lebesgue spaces Lp(�3 ) equipped with the

standard norm ‖ · ‖p,�3, the Sobolev spaces W k,p(�3 ) equipped with the standard
norm ‖ · ‖k,p,�3, W−1,2(�3 ) for the dual space to W 1,2(�3 ). By Lr,s(QT ), QT =

(0, T )×�3 we denote the anisotropic Lebesgue space Lr(0, T ;Ls(�3 )). If no confusion
can arise then we skip writing �3 and QT , respectively.
Vector-valued functions are printed boldfaced. Nonetheless, we do not distinguish

between Lq(�3 )3 and Lq(�3 ).
In order to keep a simple notation, all generic constants will be denoted by C;

thus C can have different values from term to term, even in the same formula.
We will need the following result about the existence of local-in-time regular so-

lutions.

Lemma 1. Let f ∈ L2loc(0, T ;W
1,2), u0 ∈ W 2,2. Then there exists t0 > 0 and

(u, p), a weak solution to system (1.1)–(1.2), which is a strong solution on the time
interval (0, t0). Moreover, if f and u0 are axisymmetric then also the strong solution
is axisymmetric.

�����. The lemma is classical and it is based on the Banach fixed point theorem
and regularity properties of the non-stationary Stokes system. Moreover, if the data

to the Stokes system are axisymmetric then the solution is also axisymmetric and
thus the same holds for the fixed point. �

Now let f and u0 be as in Lemma 1. We define

t∗ = sup
{
t > 0; there exists an axisymmetric strong solution

to (1.1)–(1.2) on (0, t)
}
.

It follows from Lemma 1 that t∗ > 0. Now, let (u, p) be a weak solution to the
Navier-Stokes system as in Theorem 1 and Theorem 2. Due to the uniqueness prop-

erty, it coincides with the strong solution from Lemma 1 on any compact subinterval
of [0, t∗). There are two possibilities. Either t∗ = T (T may also be equal to ∞)
and we have the global-in-time regular solution, or t∗ < T . In the latter case, after
redefining u on a set of zero measure, we necessarily have

‖u(t)‖1,2 →∞ for t → t∗.

(Note that u ∈ C([0, t];W 2,2) for t < t∗.)

However, we will exclude this possibility by showing that

‖u‖L∞(0,t;W 1,2) � C,
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where C remains bounded for t → t∗. To this aim we will essentially use both the

information about the better regularity of one velocity component and the fact that
the solution is axisymmetric.

Now, let 0 < t < t∗. Then on (0, t), (u, p) is in fact a strong solution to the Navier-
Stokes system. It is convenient to write the Navier-Stokes system in the cylindrical
coordinates for our purpose.

Thus, u�, uθ, uz and p satisfy a.e. in (0, t)× �
3 the system

(2.1)

∂u�

∂t
+ u�

∂u�

∂�
+ uz

∂u�

∂z
− 1

�
u2θ +

∂p

∂�
− ν

[1
�

∂

∂�
(�

∂u�

∂�
) +

∂2u�

∂z2
− u�

r2

]
= f�,

∂uθ

∂t
+ u�

∂uθ

∂�
+ uz

∂uθ

∂z
+
1
�
uθu� − ν

[1
�

∂

∂�
(�

∂uθ

∂�
) +

∂2uθ

∂z2
− uθ

�2

]
= fθ,

∂uz

∂t
+ u�

∂uz

∂�
+ uz

∂uz

∂z
+

∂p

∂z
− ν

[1
�

∂

∂�
(�

∂uz

∂�
) +

∂2uz

∂z2

]
= fz,

∂u�

∂�
+

u�

�
+

∂uz

∂z
= 0 .

Moreover, if we put ω� = −∂uθ

∂z , ωθ =
∂u�

∂z − ∂uz

∂� , ωz = 1
�

∂
∂� (�uθ) (ω�, ωθ and ωz

are the cylindrical components of curlu), then we also have a.e. in (0, t)× �
3

(2.2)

∂ω�

∂t
+ u�

∂ω�

∂�
+ uz

∂ω�

∂z
− ∂u�

∂�
ω� −

∂u�

∂z
ωz

− ν
[1
�

∂

∂�

(
�
∂ω�

∂�

)
+

∂2ω�

∂z2
− ω�

�2

]
= g�

∂ωθ

∂t
+ u�

∂ωθ

∂�
+ uz

∂ωθ

∂z
− u�

�
ωθ +

2
�
uθω�

− ν
[1
�

∂

∂�

(
�
∂ωθ

∂�

)
+

∂2ωθ

∂z2
− ωθ

�2

]
= gθ

∂ωz

∂t
+ u�

∂ωz

∂�
+ uz

∂ωz

∂z
− ∂uz

∂z
ωz −

∂uz

∂�
ω�

− ν
[1
�

∂

∂�

(
�
∂ωz

∂�

)
+

∂2ωz

∂z2

]
= gz,

where g�, gθ and gz denote the components of curl f in the cylindrical coordinates.

We close this section by showing several properties of axisymmetric functions
which will be used later. In what follows, Dg denotes the cartesian components of

the gradient of g while ∇g denotes (∂g
∂� , ∂g

∂z ). Moreover, by w we denote curlv while
ω�, ωθ and ωz will be the cylindrical components of w.
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Lemma 2. Let v be a sufficiently smooth vector field. Then there exists C(p) >

0, independent of v, such that for 1 < p < ∞

‖Dv‖p � C(p)(‖w‖p + ‖ divv‖p).

�����. This is a classical result based on the Fourier transform and the
Marcinkiewicz multiplier theorem. �

Lemma 3. Let v be a sufficiently smooth divergence-free axisymmetric vector
field. Then there exist constants C1(p) > 0 and C2 > 0, independent of v, such that
for 1 < p < ∞ we have

‖∇v�‖p +
∥∥∥v�

�

∥∥∥
p

� C1(p)‖ωθ‖p,

∥∥∥ ∂

∂�

(v�

�

)∥∥∥
p

� C2‖D2v‖p.

�����. Since both divv and (curlv)θ are independent of vθ (because v is
axisymmetric), we can assume without loss of generality that vθ = 0. The result

now follows from the direct calculation of each term. �

Lemma 4. Let v be a sufficiently smooth axisymmetric vector field. Then there
exists C > 0, independent of v, such that for 1 � p � ∞

‖∇vθ‖p +
∥∥∥vθ

�

∥∥∥
p

� C‖Dv‖p,

∥∥∥ ∂

∂�

(vθ

�

)∥∥∥
p

� C‖D2v‖p.

�����. These estimates can be obtained by direct calculation of all terms on

the left-hand sides. �

Lemma 5. Let v be a sufficiently smooth divergence-free axisymmetric vector
field. Then there exist C1(p), C2, independent of v, such that for 1 < p < ∞

C1(p)‖D2v‖p �
∥∥∥ω�

�

∥∥∥
p
+

∥∥∥ωθ

�

∥∥∥
p
+ ‖∇ω�‖p + ‖∇ωθ‖p + ‖∇ωz‖p � C2‖D2v‖p.

�����. We can proceed as above and use Lemma 2. �
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Lemma 6. Let v be a sufficiently smooth axisymmetric vector field. Then there
exists C > 0, independent of v, such that for 1 � p � ∞ we have

∥∥∥ ∂

∂�

(ωθ

�

)∥∥∥
p

� C‖D2w‖p.

�����. It can be done by analogy with Lemma 4. �

Lemma 7. Let v be a sufficiently smooth axisymmetric vector function. Then
for every ε ∈ (0, 1] there exists C(ε) > 0, independent of v, such that

∥∥∥ ωθ

�2−ε

∥∥∥
2
+

∥∥∥ 1
�1−ε

∂ωθ

∂�

∥∥∥
2

� C(ε)‖Dw‖1,2.

Moreover,

lim
�0→0+

∫ ∞

−∞

(∂ωθ

∂�

ωθ

�1−ε
0

)
(�0, z) dz = 0.

�����. It can be done in the same way as the proof of an analogous result in

[6] where vθ is assumed to be zero. �

Lemma 8. Let v be a sufficiently smooth divergence-free axisymmetric vector
field. Let VR = {(x1, x2, x3) ∈ �

3 ;x21 + x22 < R2}. Then for any p ∈ (1,∞) there
exists C(p), independent of v, such that

∥∥∥v�

�

∥∥∥
p,V1

� C(p)
(
‖ωθ‖p,V2 + ‖v�‖p,V2 + ‖vz‖p,V2

)
.

�����. Using an appropriate cut-off function, we can show the inequality by
combining Lemmas 2 and 4. �

3. Proof of Theorem 1

In what follows, Lp,q will denote Lp(0, t;Lq) with t < t∗. Our aim is to get an

estimate of curlu in L∞,2 independent of t for t → t∗ which, due to Lemma 2, implies
the desired estimate of u in L∞(0, t;W 1,2). We proceed in three steps.

	
�� �
 Take q > 2, multiply (2.1)2 by |uθ|q−2uθ and integrate over �3 . In what

follows
∫

. . . will denote
∫∞
0

∫∞
−∞

∫ 2�
0 . . . � dθ dz d�. Then, using the divergence-free

condition (2.1)4 we obtain
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(3.1)

d
dt
‖uθ‖q

q +
4(q − 1)

q
ν

∫ (∣∣∣ ∂

∂�
(|uθ|

q
2 )

∣∣∣
2
+

∣∣∣ ∂

∂z
(|uθ|

q
2 )

∣∣∣
2)
+ νq

∫ |uθ|q
�2

= −q

∫
u�

�
|uθ|q + q

∫
|uθ|q−2uθfθ.

Note that in order to treat the convective term we have integrated by parts and

the boundary integrals have vanished—at � = 0 due to the boundedness of uθ

� while
near � =∞ due to the standard density argument.
We can estimate the first term on the right-hand side of (3.1):

∫ |u�|
�
|uθ|q � ν

2

∫ |uθ|q
�2
+

ν

q

∫ (∣∣∣ ∂

∂�
(|uθ|

q
2 )

∣∣∣
2
+

∣∣∣ ∂

∂z
(|uθ|

q
2 )

∣∣∣
2)

+ C(ν)q
3

s−3 ‖u�‖
2s

s−3
s ‖uθ‖q

q.

������ 2. Note that in order to estimate the first term on the right-hand side

of (3.1) it is enough to assume that only the negative part of u� belongs to Lr,s; the
positive part has good sign and can be put to the left-hand side of (3.1).

The other term can be estimated in a standard way. So, using the Gronwall

inequality, we get

‖uθ‖q
L∞,q + C

∫ t

0

∫ (
|∇(|uθ|

q
2 )|2 + |uθ|q

�2

)
� C(q, ‖u�‖

L
2s

s−3 ,s , ‖u0θ‖q, ‖fθ‖L2,6).

Unfortunately, the constant on the right-hand side depends exponentially on qa for

some a > 1 and thus we cannot pass with q to infinity.

	
�� �
 We multiply equation (2.2)2 by
ωθ

�2−ε for some ε > 0 and integrate over
�
3 . In fact we would like to take ε = 0, but it is impossible because we could not

control the convergence of several integrals. The situation is exactly the same as in
[6].

Now, with ε > 0, we can apply the Green identity and the “boundary” terms

vanish (the most delicate term due to Lemma 7) and we get

1
2
d
dt

∥∥∥ ωθ

�1−
ε
2

∥∥∥
2

2
+ ν

∫ (∣∣∣∇
( ωθ

�1−
ε
2

)∣∣∣
2
+

(
ε− ε2

4

)∣∣∣ ωθ

�2−
ε
2

∣∣∣
2)

=
∫

gθ
ωθ

�2−ε
+

ε

2

∫
u�

�

ω2θ
�2−ε

+ 2
∫

ω�

�
uθ

ωθ

�2−ε
.

We estimate the first and the second term exactly as in [6].
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Recalling that ω� = −∂uθ

∂z , after having integrated by parts and having used the

Hölder inequality we estimate the last term by

ν

4

∫ ∣∣∣ ∂

∂z

ωθ

�1−
ε
2

∣∣∣
2
+ C(ν)

∫ ∣∣∣ uθ

�1−
ε
4

∣∣∣
4
.

Thus, applying the Gronwall inequality (0 < τ < t) and passing with ε to 0 we get

(3.2)
∥∥∥ωθ

�

∥∥∥
2

2
(τ)+ ν

∫ τ

0

∫ ∣∣∣∇
(ωθ

�

)∣∣∣
2

� C(‖f‖L2(0,τ ;W 1,2), ‖u0‖2,2)+C

∫ τ

0

∫ ∣∣∣uθ

�

∣∣∣
4
.

In order to estimate the last term on the right-hand side we use the equation for
uθ; namely, we multiply it by

u3θ
�2 and we get

1
4
d
dt

∫
u4θ
�2
+ ν

∫ (∣∣∣∂uθ

∂�

∣∣∣
2
+ 3

∣∣∣∂uθ

∂z

∣∣∣
2)u2θ

�2
+ 2ν

∫
u2θ
�

∣∣∣ ∂

∂�

( uθ

�
1
2

)∣∣∣
2
+

ν

2

∫
u4θ
�4

=
∫

fθ
u3θ
�2
− 3
2

∫
u�

�

u4θ
�2

.

(Note that all terms are finite.) The first term on the right-hand side can be easily es-

timated. Further, we apply the Gronwall inequality, multiply the resulting inequality
by a sufficiently large constant and sum it up with estimate (3.2). So we get

(3.3)

∥∥∥ωθ

�

∥∥∥
2

2
(τ) +

∥∥∥ uθ

�
1
2

∥∥∥
4

4
(τ) + C(ν)

∫ τ

0

(∥∥∥uθ

�

∥∥∥
4

4
+

∥∥∥∇
(ωθ

�

)∥∥∥
2

2

)

� C(u0, f) + C

∫ τ

0

∫ |u�|
�

u4θ
�2

.

We divide the last integral into two parts; the integral over V1 = {(x1, x2, x3) ∈
�
3 ;x21+x22 < 1} and over �3 \V1. In the latter one we use that � � 1, while to V1 we
apply Lemma 8 and use the boundedness of uθ in L∞,36. The Gronwall inequality

then yields the desired estimate

∥∥∥ωθ

�

∥∥∥
L∞,2

+
∥∥∥ uθ

�
1
2

∥∥∥
L∞,4

+
∫ t

0

∫ (∣∣∣∇
( uθ

�
1
2

)2∣∣∣
2
+

∣∣∣∇
(ωθ

�

)∣∣∣
2)

� C(u0, f).

	
�� �
 First we derive an estimate of ωθ in L∞,2. We multiply (2.2)2 by ωθ

and integrate over �3 . We have

1
2
d
dt
‖ωθ‖22 + ν

∫ (
|∇ωθ|2 +

∣∣∣ωθ

�

∣∣∣
2)
=

∫
u�

�
ω2θ + 2

∫
uθ

�
ω�ωθ +

∫
gθωθ.
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Due to the boundedness of ωθ

� in L∞,2, we can easily estimate each term on the

right-hand side obtaining

‖ωθ‖2L∞,2 +
∥∥∥ωθ

�

∥∥∥
2

L2,2
+ ‖∇ωθ‖2L2,2 � C(u0, f).

Before starting to estimate the other vorticity components, let us recall that due
to the divergence-free condition, we have for 1 < p < ∞

‖∇uz‖p � C‖ωθ‖p.

Thus, multiplying equation (2.2)1 by ω�, equation (2.2)3 by ωz and integrating over

�
3 , we get

1
2
d
dt
(‖ω�‖22 + ‖ωz‖22) + ν

∫ (
|∇ω�|2 + |∇ωz|2 +

∣∣∣ω�

�

∣∣∣
2)

=
∫

g�ω� +
∫

gzωz +
∫ [∂u�

∂�
ω2� +

(∂u�

∂z
+

∂uz

∂�

)
ω�ωz +

∂uz

∂z
ω2z

]
.

Using the estimate of ωθ, we can again easily control all terms on the right-hand side
and we end up with

‖ω�‖2L∞,2 + ‖ωz‖2L∞,2 + ‖∇ω�‖2L2,2 + ‖∇ωz‖2L2,2 +
∥∥∥ω�

�

∥∥∥
L2,2

� C(u0, f).

The theorem is proved.

4. Proof of Theorem 2

We have to proceed slightly differently because, unlike the previous case, we cannot

get the same estimate of uθ.
	
�� �
 We can derive inequality (3.3) in the same way as in the previous

section.
	
�� �
 We multiply equation (2.2)2 by |ωθ| 25ωθ and integrate over �3 . We have

(4.1)

5
12
d
dt
‖ωθ‖

12
5
12
5
+
35
36

ν

∫ ∣∣∣∇(|ωθ|
6
5 )|2 + ν

∫ |ωθ| 125
�2

=
∫

u�

�
|ωθ|

12
5 + 2

∫
uθ

�
|ωθ|

2
5ω�ωθ +

∫
gθ|ωθ|

2
5ωθ.

The first term on the right-hand side can be easily estimated. The second term
can be treated as follows:

∣∣∣
∫

uθ

�
|ωθ|

2
5ωθω�

∣∣∣ � C

∫
u2θ
�
|ωθ|

1
5

∣∣∣∂|ωθ|
6
5

∂z

∣∣∣

� ν

4
‖∇(|ωθ|

6
5 )‖22 +

∥∥∥ uθ

�
1
2

∥∥∥
4

12
+ C(ν)

∥∥∥ uθ

�
1
2

∥∥∥
4

4
‖ωθ‖

4
7
2 .
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Since ∥∥∥ uθ

�
1
2

∥∥∥
4

12
� C

∫ [
∇

(∣∣∣ uθ

�
1
2

∣∣∣
2)]2

due to the Sobolev imbedding theorem, we can also estimate the second term. Thus

we are left with the last, the most delicate term:

I1 ≡
∫ |u�|

�
|ωθ|

12
5 �

∥∥∥ωθ

�

∥∥∥
2
‖u�‖∞‖ωθ‖

7
5
14
5

.

In order to estimate the two norms on the right-hand side, we use the following
three interpolation inequalities; the last two can be found in Nirenberg [10]:

‖ωθ‖
7
5
14
5

� ‖ωθ‖
11
13
2 ‖ωθ‖

36
65
36
5

,(4.2)

‖u�‖∞ � C‖u�‖
7
10
12 ‖∇u�‖

3
10
36
5

� C‖ωθ‖
7
10
12
5
‖ωθ‖

3
10
36
5

,(4.3)

‖u�‖∞ � C‖u�‖
7
13
6 ‖∇u�‖

6
13
36
5

� C‖ωθ‖
7
13
2 ‖ωθ‖

6
13
36
5

.(4.4)

We raise inequality (4.3) to the power 1235 , inequality (4.4) to the power
23
35 , we also

apply the Young inequality and we get

I1 � δ‖ωθ‖
12
5
36
5
+ C(δ)

(∥∥∥ωθ

�

∥∥∥
2

2
+ ‖ωθ‖

12
5
12
5

)
‖ωθ‖22,

δ being a sufficiently small positive number. Thus summing all these estimates up

with (3.3) and employing the Gronwall inequality we get

∫ (ω2θ
�2
+

u4θ
�2
+ |ωθ|

12
5

)
(τ) + ν

∫ τ

0

∫ (
|∇uθ|2

u2θ
�2
+

u2θ
�

∣∣∣ ∂

∂�

( uθ

�
1
2

)∣∣∣
2
+

u4θ
�4

)

+ ν

∫ τ

0

∫ (
|∇(|ωθ|

6
5 )|2 + |ωθ|

12
5

�2
+

∣∣∣∇
(ωθ

�

)∣∣∣
2)

� C(u0, f) + C

∫ τ

0

∫ |u�|
�

u4θ
�2

.

	
�� �
 Let s � 6. Then

I2 =
∫ |u�|

�

u4θ
�2

�
∥∥∥u�

�

∥∥∥
q

∥∥∥uθ

�

∥∥∥
α

4

∥∥∥ uθ

�
1
2

∥∥∥
β

4
‖uθ‖γ

s ,

where α+β+ γ = 4, α+ β
2 = 2,

1
q +

α
4 +

β
4 +

γ
s = 1. Now, interpolating the Lq norm

between L
12
5 and L

36
5 , we get

I2 � δ1‖ωθ‖
12
5
36
5
+ δ2

∥∥∥uθ

�

∥∥∥
4

4
+ C(δ1, δ2)‖uθ‖

8γq
3q+12−2qα
s

(∥∥∥u�

�

∥∥∥
12
5

12
5

+
∥∥∥ uθ

�
1
2

∥∥∥
12β
7−3α

4

)
.
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Thus, we require 12β
7−3α = 4, i.e.α+ β = 7

3 .

Now γ = 5
3 , α = 5

3 , β = 2
3 , q = 12s

5(s−4) . So
12
5 � 12s

5(s−4) � 36
5 ⇐⇒ s � 6,

8γq
3q+12−2qα =

20s
7s−30 and under the assumptions that uθ ∈ Lr,s, 2r +

3
s =

7
10 and s � 6

we get the desired estimate

(4.5)
∥∥∥ωθ

�

∥∥∥
L∞,2

+
∥∥∥ uθ

�
1
2

∥∥∥
L∞,4

+ ‖ωθ‖
L∞,125

� C(u0, f).

	
�� �
 If s < 6 then we have to modify our method. First, let us make the

following observation. If we formally multiply the equation for uθ by |uθ|q−2uθ�
q,

integrate over �3 and formally use the integration by parts, we finally get

1
q

d
dt
‖uθ�‖q

q + ν(q − 1)
∫
|∇(uθ�)|2|uθ�|q−2 �

∫
|fθ�||uθ�|q−1.

Thus, using the Hölder and Gronwall inequalities and passing with q to infinity we
obtain

(4.6) ‖uθ�‖L∞,∞ � C(f ,u0).

Although this result holds generally in every axisymmetric case, its application in

previous situations does not lead to better results; this only illustrates the fact that
the only possible singularities must be concentrated on the z-axis.

As mentioned above, the proof of (4.6) was only formal because it was not clear
whether during the integration by parts some boundary terms vanish when approach-

ing infinity. However, the proof can be done rigorously by means of the standard
cut-off technique. We leave this straightforward but slightly technical calculations

to the kind reader.
Let us now estimate I2 for s < 6. Having in mind the boundedness of uθ� in

L∞,∞, we get

I2 �
∥∥∥u�

�

∥∥∥
36
5

∥∥∥uθ

�

∥∥∥
α

4

∥∥∥ uθ

�
1
2

∥∥∥
β

4
‖uθ‖γ

s‖uθ�‖δ
∞

with α+ β + γ + δ = 4, α+ β
2 − δ = 2, α

4 +
β
4 +

γ
s =

31
36 .

Further we proceed as above obtaining

I2 � δ1‖ωθ‖
12
5
36
5
+ δ2

∥∥∥uθ

�

∥∥∥
4

4
+ C1(δ1, δ2)‖uθ‖

12γ
7−3α
s

∥∥∥ uθ

�
1
2

∥∥∥
12β
7−3α

4
.

Thus, we require again α + β = 7
3 and we obtain α = 5(1 − s

9 ), β = 5s
9 − 8

3

γ = 5s
18 , δ =

5
3 (1 − s

6 ). Since α, β must be non-negative, we get 245 < s � 6. Then
12γ
7−3α =

10s
5s−24 and under the assumptions that s ∈ (245 , 6), uθ ∈ Lr,s, 2r +

3
s = 1− 9

5s

we get estimate (4.5). Let us note that the case s = 24
5 must be excluded.

	
�� �
 The rest of the proof can be done exactly as in the proof of Theorem 1.
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