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Abstract. We use Brouwer degree to prove existence and multiplicity results for the
solutions of some nonlinear second order difference equations with Dirichlet boundary con-
ditions. We obtain in particular upper and lower solutions theorems, Ambrosetti-Prodi type
results, and sharp existence conditions for nonlinearities which are bounded from below or
from above.
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1. Introduction

Some existence and multiplicity results for periodic solutions of first and second

order nonlinear difference equations have been proved in [1]. They correspond to
Ambrosetti-Prodi and Landesman-Lazer problems for differential equations. The

purpose of this article is to show that the corresponding existence and multiplicity
results for solutions of second order ordinary differential equations with Dirichlet

boundary conditions also hold for second order difference equations.

In Section 2, we extend the classical method of upper and lower solutions to second
order difference equations of the form

D2xm + fm(xm) = 0 (1 6 m 6 n− 1)
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with Dirichlet boundary conditions

(1) x0 = 0 = xn.

The methodology of the proof is inspired by the one introduced in [12].

In Section 3, combining the method of upper and lower solutions and Brouwer
degree theory, we prove an Ambrosetti-Prodi result for solutions of the Dirichlet
problem for second order difference equations of the type

D2xm + λ1xm + fm(xm) = sϕ1
m (1 6 m 6 n− 1), x0 = 0 = xn,

where λ1 = 4 sin2(π/2n) is the first eigenvalue of −D2 with Dirichlet boundary condi-
tions (1), ϕ1

m = sin(mπ/n) (1 6 m 6 n−1) are the components of the corresponding
eigenvector ϕ1 and fm(x) → +∞ or to −∞ if |x| → ∞. We adapt the ideas of [5]

and [13]. One should notice that, in contrast to the results of [5] for the ordinary
differential equation case with g continuous only, where a weaker Ambrosetti-Prodi

conclusion was proved, we obtain here the classical Ambrosetti-Prodi statement.
In Section 4 we prove an existence result for solutions of the Dirichlet problem for

second order difference equations having a nonlinearity bounded from below or from
above. Brouwer degree theory is used, and in particular a special case of a result

in [10]. Landesman-Lazer-type existence conditions are obtained, and an example
shows that the assumptions are sharp.

For other multiplicity results for nonlinear second order difference equations using
upper-lower solutions and/or degree theory, see for example [2], [3], [4], [7], [8], [9],

[16], [17].

2. The method of upper and lower solutions for second order

difference equations

Let n ∈ �
fixed and (x0, . . . , xn) ∈ � n+1 . Define (Dx0, . . . , Dxn−1) ∈ � n and

(D2x1, . . . , D
2xn−1) ∈ � n−1 by

Dxm = xm+1 − xm (0 6 m 6 n− 1),

D2xm = xm+1 − 2xm + xm−1 (1 6 m 6 n− 1).

Let fm : � → � (1 6 m 6 n − 1) be continuous functions. We study the existence
of solutions for the Dirichlet boundary value problem

(2) D2xm + fm(xm) = 0 (1 6 m 6 n− 1), x0 = 0 = xn.

If α, β ∈ � p , we write α 6 β (α < β) if αi 6 βi for all 1 6 i 6 p (αi < βi for all
1 6 i 6 p).
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Definition 1. α = (α0, . . . , αn) (β = (β0, . . . , βn)) is called a lower solution
(upper solution) for (2) if

(3) α0 6 0, αn 6 0 (β0 > 0, βn > 0)

and the inequalities

D2αm + fm(αm) > 0(4)

(D2βm + fm(βm) 6 0, respectively) (1 6 m 6 n− 1)

hold. Such a lower or upper solution will be called strict if the inequalities (4) are
strict.

The proof of the following result is modeled upon the one given in [12] for the case

of second order ordinary differential equations.

Theorem 1. If (2) has a lower solution α = (α0, . . . , αn) and an upper solution
β = (β0, . . . , βn) such that α 6 β, then (2) has a solution x = (x0, . . . , xn) such that
α 6 x 6 β. Moreover, if α and β are strict, then αm < xm < βm (1 6 m 6 n− 1).
�������	�

. I. 
�� ����������������������� � . Let γm : � −→ � (1 6 m 6 n− 1) be
continuous functions defined by

γm(x) =





βm, x > βm,

x, αm 6 x 6 βm,

αm, x < αm,

and define Fm = fm ◦ γm (1 6 m 6 n− 1). We consider the modified problem

(5) D2xm + Fm(xm)− [xm − γm(xm)] = 0 (1 6 m 6 n− 1), x0 = 0 = xn,

and show that if x = (x0, . . . , xn) is a solution of (5) then α 6 x 6 β and hence x is

a solution of (2). Suppose by contradiction that there is some i, 0 6 i 6 n such that
αi − xi > 0 so that αm − xm = max

06j6n
(αj − xj) > 0. Using the inequalities (3), we

obtain that 1 6 m 6 n− 1. Hence

D2(αm − xm) = (αm+1 − xm+1)− 2(αm − xm) + (αm−1 − xm−1) 6 0,

and

D2αm 6 D2xm = −Fm(xm) + (xm − γm(xm))

= −fm(αm) + (xm − αm) < −fm(αm) 6 D2αm,
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a contradiction. Analogously we can show that x 6 β. We remark that if α, β are

strict, then αm < xm < βm (1 6 m 6 n− 1).
II. 
 �������! �"#�$���	� � % �& '�(���	)*�	�+�,���	�,��� � (5). Let us introduce the vector

space

(6) V n−1 = {x ∈ � n+1 : x0 = 0 = xn}

endowed with the orientation of � n+1 . Its elements can be associated with the

coordinates (x1, . . . , xn−1) and correspond to the elements of � n+1 of the form
(0, x1, . . . , xn−1, 0), so that the restriction D2 to V n−1 is well defined in terms of

(x1, . . . , xn−1). We use the norm ‖x‖ := max
16j6n−1

|xj | in V n−1 and max
16j6n−1

|xj | in
� n−1 . We define a continuous mapping G : V n−1 → � n−1 by

(7) Gm(x) = D2xm + Fm(xm)− [xm − γm(xm)] (1 6 m 6 n− 1).

It is clear that the solutions of (5) are the zeros of G in V n−1. In order to use
the Brouwer degree [6], [14] to study those zeros, we introduce the homotopy G :
[0, 1]× V n−1 → � n−1 defined by

Gm(λ, x) = (1− λ)(D2xm − xm) + λGm(x)(8)

= D2xm − xm + λ[Fm(xm) + γm(xm)] (1 6 m 6 n− 1).

Notice that G(1, ·) = G and that G(0, ·) is linear.
III. 
 �,�-�������.�����(� �  '�(���/�0���$�������1�������324�5�����6�	� G. Let R be any num-

ber such that

(9) R > max
16m6n−1

max
x∈ 7 |Fm(x) + γm(x)|

and let (λ, x1, . . . , xn−1) ∈ [0, 1] × V n−1 be a possible zero of G. If 0 6 xm =
max

16j6n−1
xj , then D2xm 6 0. This is clear if 2 6 m 6 n− 2 and if, say, m = 1, then

D2x1 = x2 − 2x1 = x2 − x1 − x1 6 0,

and similarly if m = n− 1. Hence,

0 > D2xm = xm − λ[Fm(xm) + γm(xm)],

which implies
xm 6 max

x∈ 7 |Fm(x) + γm(x)| < R.
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Analogously it can be shown that −R < min
16j6n−1

xj , and hence

(10) ‖x‖ = max
16j6n−1

|xj | < R

for each possible zero (λ, x) of G.

IV. 869 �3�;:��&���(�5)<";�=�	�> ?24�5���@���	� G. Using the results of Parts II, III and
the invariance under homotopy of the Brouwer degree, we see that the Brouwer degree

d[G(λ, ·), BR(0), 0] is well defined and independent of λ ∈ [0, 1]. But G(0, ·) is a linear
mapping whose set of solutions is bounded, and hence equal to {0}. Consequently,
|d[G(0, ·), BR(0), 0]| = 1, so that |d[G, BR(0), 0]| = 1 and the existence property of
the Brouwer degree implies the existence of at least one zero of G.ACB D )�E�F�G� 9 �H�,�����F� . We have proved that there is some x ∈ V n−1 such
that G(x) = 0, so x is a solution of (4), which means that α 6 x 6 β and x is a

solution of (2). Moreover, if α, β are strict, then αm < xm < βm (1 6 m 6 n−1). �
I6� �  F��J 1. Suppose that α, β are respectively strict lower and upper solutions

of (2). As we have already seen, (2) admits at least one solution x such that αm <

xm < βm (1 6 m 6 n− 1). Define an open set

Ωα,β = {(x1, . . . , xn−1) ∈ V n−1 : αm < xm < βm (1 6 m 6 n− 1)}.

If % is large enough, then, using the additivity-excision property of the Brouwer
degree, we have

|d[G, Ωα,β , 0]| = |d[G, B%(0), 0]| = 1.

On the other hand, if we define a continuous mapping G̃ : V n−1 → � n−1 by

(11) G̃m(x) = D2xm + fm(xm) (1 6 m 6 n− 1),

G̃ is equal to G on Ωα,β , and then

(12) |d[G̃, Ωα,β , 0]| = 1.
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3. Some results on the Dirichlet problem for second order

linear difference equations

Consider the Dirichlet eigenvalue problem

(13) D2xm + λxm = 0 (1 6 m 6 n− 1), x0 = 0 = xn.

The following results are classical, but we reproduce them for completion. If we look

for a nontrivial solution of the form (for some θ ∈ � )

(14) xm = A sinmθ (0 6 m 6 n),

then one must have

sin(m− 1)θ + (λ− 2) sin mθ + sin(m + 1)θ = 0 (1 6 m 6 n− 1)

or, equivalently,

(sin mθ)[2 cos θ + λ− 2] = 0 (1 6 m 6 n− 1).

This system of equations is satisfied if we choose

(15) λ = 2− 2 cos θ

and the Dirichlet boundary conditions x0 = 0 = xm hold if and only if sinnθ = 0,
i.e. if and only if

θ = θk :=
kπ
n

(k = 1, 2, . . . , n− 1).

Consequently, the eigenvalues of (13) (in the increasing order) are

(16) λk = 2
(
1− cos

kπ
n

)
= 4 sin2 kπ

2n
(k = 1, 2, . . . , n− 1)

and a corresponding eigenvector ϕk =
(
ϕk

1 , . . . , ϕk
n−1

)
is given by

(17) ϕk =
(

sin
kπ
n

, sin
2kπ
n

, . . . , sin
(n− 1)kπ

n

)
(k = 1, 2, . . . , n− 1).

In particular, the eigenvector ϕ1 associated with the first eigenvalue

(18) λ1 = 2
(
1− cos

π
n

)
= 4 sin2 π

2n
,
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given by

(19) ϕ1 =
(

sin
π
n

, sin
2π
n

, . . . , sin
(n− 1)π

n

)
,

has all its components positive. Furthermore, as the ϕk constitute a system of eigen-
vectors of a symmetric matrix, they satisfy the orthogonality conditions 〈ϕj , ϕk〉 = 0
for j 6= k, where 〈·, ·〉 denotes the inner product in � n−1 .

We need some identities and inequalities for finite sequences satisfying the Dirichlet

boundary conditions. The first is a type of summation by parts.

Lemma 1. If (x0, . . . , xn) ∈ � n+1 and (y0, . . . , yn) ∈ � n+1 are such that x0 =
0 = xn and y0 = 0 = yn, the identity

(20)
n−1∑

m=1

xmD2ym =
n−1∑

m=1

ymD2xm

holds.
�������	�

. We have

n−1∑

m=1

xm(ym+1 − 2ym + ym−1)−
n−1∑

m=1

ym(xm+1 − 2xm + xm−1)

=
n−2∑

m=1

xmym+1 +
n−1∑

m=2

xmym−1 −
n−2∑

m=1

ymxm+1 −
n−1∑

m=2

ymxm−1 = 0.

�

Define

(21) x = (x1, . . . , xn−1), x̄ = 〈x, ϕ1〉 ϕ1

‖ϕ1‖2
, x̃ = x− x̄,

so that

(x̄)m =
( n−1∑

m=1

xm sin
mπ
n

)
ϕ1

m

‖ϕ1‖2
(1 6 m 6 n− 1), 〈x̃, ϕ1〉 = 0.

Notice that

D2xm + λ1xm = D2(x̄)m + λ1(x̄)m + D2(x̃)m + λ1(x̃)m(22)

= D2(x̃)m + λ1(x̃)m.
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Lemma 2. If x = (x1, . . . , xn−1), then there exists a constant cn > 0 which
depends only on n such that

max
16m6n−1

|(x̃)m| 6 cn

n−1∑

m=1

|D2(x̃)m + λ1(x̃)m|ϕ1
m.

�������	�
. The applications

(x1, . . . , xn−1) 7→ max
16m6n−1

|xm|, (x0, . . . , xn) 7→
n−1∑

m=1

|D2xm + λ1xm|ϕ1
m

define two norms on the subspace V = {x ∈ � n−1 : 〈x, ϕ1〉 = 0}. They are equivalent,
and the inequality above holds. �

4. Ambrosetti-Prodi type results for second order

difference equations

In this section we are interested in problems of the type

(23) D2xm + λ1xm + fm(xm) = sϕ1
m (1 6 m 6 n− 1), x0 = 0 = xn,

where n > 2 is fixed, f1, . . . , fn−1 : � → � are continuous, s ∈ � , λ1 is defined in
(18), ϕ1 is defined in (19) and

(24) fm(x) →∞ as |x| → ∞ (1 6 m 6 n− 1).

We prove an Ambrosetti-Prodi type result for (23), which is reminiscent of the mul-

tiplicity theorem for second order differential equations with Dirichlet boundary con-
ditions proved in [5].

The next lemma provides a priori bounds for possible solutions of (23).

Lemma 3. Let a, b ∈ � . Then there is % > 0 such that any possible solution x of

(23) with s ∈ [a, b] belongs to the open ball B%(0).
�������	�

. Let s ∈ [a, b] and let (x0, . . . , xn) ∈ � n+1 be a solution of (23). Multi-
plying each equation by ϕ1

m and adding, we obtain

s

[ n−1∑

m=1

(
ϕ1

m

)2
]

=
n−1∑

m=1

[ϕ1
mD2xm + λ1ϕ

1
mxm] +

n−1∑

m=1

ϕ1
mfm(xm).
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But, using Lemma 1,

n−1∑

m=1

[
ϕ1

mD2xm + λ1ϕ
1
mxm

]
=

n−1∑

m=1

[
xm

(
D2ϕ1

m + λ1ϕ
1
m

)]
= 0,

so that

(25)
n−1∑

m=1

ϕ1
mfm(xm) = s‖ϕ1‖2.

Using (24) we deduce that there exists a constant α > 0 such that

(26) |fm(x)| 6 fm(x) + α (1 6 m 6 n− 1).

Using the equation (23), written in the equivalent form

(27) (D2x̃)m + λ1(x̃)m + fm(xm) = sϕ1
m (1 6 m 6 n− 1),

and the relations (25), (26) we have

n−1∑

m=1

|D2(x̃)m + λ1(x̃)m|ϕ1
m =

n−1∑

m=1

|sϕ1
m − fm(xm)|ϕ1

m

6 |s|‖ϕ1‖2 +
n−1∑

m=1

|fm(xm)|ϕ1
m 6 2|s|‖ϕ1‖2 + α

n−1∑

m=1

ϕ1
m,

which implies that there exists a constant R1 depending only on a, b, n such that

(28)
n−1∑

m=1

|D2(x̃)m + λ1(x̃)m|ϕ1
m 6 R1.

Using the relations (27), (28) and Lemma 2 , we obtain R2 > 0 such that

|fm(xm)| 6 R2 (1 6 m 6 n− 1).

Hence the assumption (24) implies the existence of R3 > 0 such that |xm| < R3 for
all 1 6 m 6 n− 1. �
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Theorem 2. If the functions fm (1 6 m 6 n − 1) satisfy (24), then there is
s1 ∈ � such that (23) has no, at least one or at least two solutions provided s < s1,

s = s1 or s > s1, respectively.
�������	�

. Let

Sj = {s ∈ � : (23) has at least j solutions} (j > 1).

(a) S1 6= ∅.
Take s∗ > max

16m6n−1
(fm(0)/ϕ1

m) and use (24) to find R∗− < 0 such that

fm(R∗−ϕ1
m) > s∗ϕ1

m (1 6 m 6 n− 1).

Then α with α0 = 0 = αn and αj = R∗−ϕ1
j < 0 (1 6 j 6 n − 1) is a strict lower

solution and β with βj = 0 (1 6 j 6 n) is a strict upper solution for (23) with s = s∗.

Hence, using Theorem 1, s∗ ∈ S1.
(b) If s̃ ∈ S1 and s > s̃ then s ∈ S1.

Let x̃ = (x̃1, . . . , x̃n) be a solution of (23) with s = s̃, and let s > s̃. Then
x̃ is a strict upper solution for (23). Take now R− < min

16m6n
(x̃m/ϕ1

m) such that

fm(R−ϕ1
m) > sϕ1

m (1 6 m 6 n − 1). It follows that α with α0 = 0 = αn and αj =
R−ϕ1

j (1 6 j 6 n) is a strict lower solution for (23), and hence, using Theorem 1,
s ∈ S1.

(c) s1 = inf S1 is finite and S1 ⊃ ]s1,∞[.
Let s ∈ � and suppose that (23) has a solution (x1, . . . , xn). Then (25) holds,

where from we deduce that s > c :=
n−1∑
m=1

ϕ1
m min7 fm. To obtain the second part of

claim (c) S1 ⊃ ]s1,∞[ we apply (b).
(d) S2 ⊃ ]s1,∞[.
We reformulate (23) to apply Brouwer degree theory. Consider the space V n−1

defined in (6) and the continuous mapping G : � × V n−1 → � n−1 defined by

Gm(s, x) = D2xm + λ1xm + fm(xm)− sϕ1
m (1 6 m 6 n− 1).

Then (x0, . . . , xn) is a solution of (23) if and only if (x1, . . . , xn−1) ∈ V n−1 is a

zero of G(s, ·). Let s3 < s1 < s2. Using Lemma 3 we find % > 0 such that each
possible zero of G(s, ·) with s ∈ [s3, s2] is such that max

16m6n−1
|xm| < %. Consequently,

the Brouwer degree d[G(s, ·), B%(0), 0] is well defined and does not depend upon s ∈
[s3, s2]. However, using (c), we see that G(s3, x) 6= 0 for all x ∈ V n−1. This implies

that d[G(s3, ·), B%(0), 0] = 0, so that d[G(s2, ·), B%(0), 0] = 0 and, by the excision
property, d[G(s2, ·), B%′ (0), 0] = 0 if %′ > %. Let s ∈ ]s1, s2[ and let x̂ = (x̂1, . . . , x̂n)
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be a solution of (23) (using (c)). Then x̂ is a strict upper solution of (23) with

s = s2. Let R < min
16m6n

(x̂m/ϕ1
m) be such that fm(Rϕ1

m) > s2ϕ
1
m (1 6 m 6 n − 1).

Then (0, Rϕ1
1, . . . , Rϕ1

n−1, 0) ∈ � n+1 is a strict lower solution of (23) with s = s2.
Consequently, using Remark 1, (23) with s = s2 has a solution in ΩRϕ1,x̂ and

|d[G(s2, ·), ΩRϕ1,x̂, 0]| = 1.

Taking %′ sufficiently large, we deduce from the additivity property of the Brouwer
degree that

|d[G(s2, ·), B%′(0) \ ΩRϕ1,x̂, 0]| = |d[G(s2, ·), B%′(0), 0]− d[G(s2, ·), ΩRϕ1,x̂, 0]|
= |d[G(s2, ·), ΩRϕ1,x̂, 0]| = 1,

and (23) with s = s2 has a second solution in B%′(0) \ ΩRϕ1,x̂.

(e) s1 ∈ S1.

Taking a decreasing sequence (σk)k∈ K in ]s1,∞[ converging to s1, a corresponding
sequence (xk

1 , . . . , xk
n) of solutions of (23) with s = σk and using Lemma 3, we obtain

a subsequence (xjk

1 , . . . , xjk
n ) which converges to a solution (x1, . . . , xn) of (23) with

s = s1. �

Similar arguments allow to prove the following result.

Theorem 3. If the functions fm satisfy the condition

(29) fm(x) → −∞ as |x| → ∞ (1 6 m 6 n− 1),

then there is s1 ∈ � such that (23) has no, at least one or at least two solutions
provided s > s1, s = s1 or s < s1, respectively.
D :� � �,��� 1. There exists s1 ∈ � such that the problem

D2xm + λ1xm + |xm|1/2 = sϕ1
m (1 6 m 6 n− 1), x0 = 0 = xn

has no solution if s < s1, at least one solution if s = s1 and at least two solutions if

s > s1.
D :� � �,��� 2. There exists s1 ∈ � such that the problem

D2xm + λ1xm − expx2
m = sϕ1

m (1 6 m 6 n− 1), x0 = 0 = xn

has no solution if s > s1, at least one solution if s = s1 and at least two solutions if
s < s1.
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5. Second order difference equations with a nonlinearity

bounded from below or from above

Let n ∈ �
and let fm be continuous functions (1 6 m 6 n − 1). Consider the

problem

(30) D2xm + λ1xm + fm(xm) = 0 (1 6 m 6 n− 1), x0 = 0 = xn.

Using the notation of Section 2, we define a continuous mapping G : V n−1 → � n−1

by

(31) Gm(x) = D2(xm) + λ1xm + fm(xm) (1 6 m 6 n− 1),

so that (0, x1, . . . , xn−1, 0) is a solution of (30) if and only if (x1, . . . , xn−1) ∈ V n−1

is a zero of G. We also define F : V n−1 → � n−1 by

F (x) = (f1(x1), . . . , fn−1(xn−1)),

and call L : V n−1 → � n−1 the restriction of D2 + λ1I to V n−1. We have

kerL = {cϕ1 : c ∈ � }

and, by the properties of symmetric matrices,

Im L = {y ∈ � n−1 : 〈y, ϕ1〉 = 0}.

Consider projectors P : V n−1 → V n−1 and Q : � n−1 → � n−1 defined by

P (x) = 〈x, ϕ1〉 ϕ1

‖ϕ1‖2
, Q(y) = 〈y, ϕ1〉 ϕ1

‖ϕ1‖2
,

so that kerQ = ImL, ImP = kerL.

In order to study the existence of zeros ofG using the Brouwer degree, we introduce
a homotopy G : [0, 1]× V n−1 → � n−1 defined by

G(λ, x) = (1− λ)(L + QF )(x) + λG(x) = Lx + (1− λ)QF (x) + λF (x),

which, for λ = 1, reduces to G. We first obtain a priori estimates for possible zeros

of G.
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Lemma 4. If each function fm (1 6 m 6 n− 1) is bounded from below or from
above, and if, for some R > 0, one has

(32)
n−1∑

m=1

fm(xm)ϕ1
m 6= 0 whenever min

16j6n−1
xj > R or max

16j6n−1
xj 6 −R

then there exists % > R such that each possible zero (λ, x) of G is such that ‖x‖ < %.

�������	�
. Assume first that each fm is bounded from below. Let (λ, x) ∈ [0, 1]×

V n−1 be a possible zero of G. Applying Q and (I −Q) to the equation, we obtain

QF (x) = 0, Lx + λ(I −Q)F (x) = 0

or, equivalently,

n−1∑

m=1

fm(xm)ϕ1
m = 0,(33)

(D2x̃)m + λ1(x̃)m + λfm(xm) = 0 (1 6 m 6 n− 1).(34)

We can then repeat the reasoning of the proof of Lemma 3 to obtain that

max
16m6n−1

|(x̃)m| 6 R2.

Then, by (32) and (33), there exists 1 6 k 6 n−1 and 1 6 l 6 n−1 such that xk < R

and xl > −R. Consequently, (x̄)k = xk − (x̃)k < R + R2 and (x̄)l = xl − (x̃)k >

−R−R2. Therefore, for each 1 6 m 6 n− 1,

(x̄)m =
(x̄)k

ϕ1
k

ϕ1
m < (R + R2) max

16m6n−1

ϕ1
m

ϕ1
k

:= R3,

(x̄)m =
(x̄)l

ϕ1
l

ϕ1
m > −(R + R2) max

16m6n−1

ϕ1
m

ϕ1
k

:= −R3.

Consequently, ‖x‖ < % for some % > 0.

In the case when the fm are bounded from above, if suffices to write the problem

L̃x + F̃ (x) = 0

with L̃ = −L and F̃ = −F to reduce it to a problem with F̃ bounded from below,

noticing that L and L̃ have the same kernel and the same range. �
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Lemma 5. Let ϕ : � → � be the continuous function defined by

(35) ϕ(u) =
n−2∑

m=1

fm(uϕ1
m)ϕ1

m.

Then, under the assumptions from Lemma 4, we have

(36) |d[L + QF, B%(0), 0]| = |d[ϕ, ]−%, %[, 0]|.

�������	�
. It is a special case of Proposition II.12 in [10]. We prove it for com-

pleteness. If J : kerL → Im Q is any isomorphism, then it is easy to check that
L + JP : V n−1 → � n−1 is an isomorphism and that (L + JP )−1h = J−1h for every

h ∈ Im Q. Consequently,

L + QF = L + JP − JP + QF = (L + JP )[I + (L + JP )−1(−JP + QF )]

= (L + JP )(I − P + J−1QF ).

Consequently, by the product formula of the Brouwer degree,

|d[L + QF, B%(0), 0]| = | ind[L + JP, 0]d[I − P + J−1QF, B%(0), 0]|
= |d[I − P + J−1QF, B%(0), 0]|.

Now, by the Leray-Schauder reduction theorem for the Brouwer degree, we have

|d[I − P + J−1QF, B%(0), 0]| = |d[(I − P + J−1QF )|ker L, B%(0) ∩ kerL, 0]|
= |d[ϕ, ]−%, %[, 0]|.

�

Theorem 4. If the functions fm (1 6 m 6 n − 1) satisfy the conditions of
Lemma 4 and if

(37) ϕ(−R)ϕ(R) < 0,

then problem (30) has at least one solution.
�������	�

. It follows from Lemma 4, Lemma 5 and from the invariance of the
Brouwer degree under a homotopy that

|d[G, B%(0), 0]| = |d[G(1, ·), B%(0), 0]| = |d[G(0, ·), B%(0), 0]|(38)

= |d[L + QF, B%(0), 0]| = |d[ϕ, ]−%, %[, 0]| = 1,

the last equality coming from (37). �
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D :� � �,��� 3. The problem

D2xm + λ1xm + exp xm − tm = 0 (1 6 m 6 n− 1), x0 = 0 = xn,

has at least one solution if and only if (t1, . . . , tn−1) ∈ � n−1 is such that

n−1∑

m=1

tmϕ1
m > 0.

Necessity follows from summing both members of the equation from 1 to n− 1 after
multiplication by ϕ1

m, and sufficiency from Theorem 4, if we observe that there exists
R > 0 such that the function ϕ defined by

ϕ(u) =
n−1∑

m=1

[
exp(uϕ1

m)− tm
]
ϕ1

m

is such that ϕ(u) > 0 for u > R and ϕ(u) < 0 for u 6 −R.

D :� � �,��� 4. If g : � → � is a continuous function bounded from below or from
above and (t1, . . . , tn−1) ∈ � n−1 is such that

(39) −∞ < lim sup
x→−∞

g(x) <

n−1∑
m=1

tmϕ1
m

n−1∑
m=1

ϕ1
m

< lim inf
x→+∞

g(x) < +∞,

then the problem

D2xm + λ1xm + g(xm)− tm = 0 (1 6 m 6 n− 1), x0 = 0 = xn,

has at least one solution.

Condition (39) is a Landesman-Lazer-type condition for difference equations. It

is easily shown to be necessary if lim sup
x→−∞

g(x) < g(x) < lim inf
x→+∞

g(x) for all x ∈ � .
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No. 92, Presses Univ. Montréal, Montréal (1985). Zbl 0561.34001
[13] J.Mawhin: Ambrosetti-Prodi type results in nonlinear boundary value problems. Differ-

ential equations and mathematical physics. Lect. Notes in Math. 1285. Springer, Berlin,
1987, pp. 290–313. Zbl 0651.34014

[14] J.Mawhin: A simple approach to Brouwer degree based on differential forms. Advanced
Nonlinear Studies 4 (2004), 535–548. Zbl pre02149277

[15] J.Mawhin, H.B.Thompson, E.Tonkes: Uniqueness for boundary value problems for
second order finite difference equations. J. Differ. Equations Appl. 10 (2004), 749–757.

Zbl 1057.39016
[16] H.B.Thompson: Existence of multiple solutions for finite difference approximations to

second-order boundary value problems. Nonlinear Anal. 53 (2003), 97–110.
Zbl 1019.65054

[17] H.B.Thompson, C.C.Tisdell: The nonexistence of spurious solutions to discrete,
two-point boundary value problems. Appl. Math. Lett. 16 (2003), 79–84.

Zbl 1018.39009

Author’s address: Cristian Bereanu, Jean Mawhin, Département de Mathématique,
Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium, e-mail: mawhin@
math.ucl.ac.be.

160


		webmaster@dml.cz
	2020-07-01T16:12:10+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




