Mathematic Bohemia

Barbara Glans; Aleksander Misiak; Zofia Stepień

Equivariant mappings from vector product into G-space of vectors and ε-vectors with $G=O(n, 1, \mathbb{R})$

Mathematica Bohemica, Vol. 130 (2005), No. 3, 265-275

Persistent URL: http://dml.cz/dmlcz/134097

Terms of use:

© Institute of Mathematics AS CR, 2005

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

EQUIVARIANT MAPPINGS FROM VECTOR PRODUCT INTO G-SPACE OF VECTORS AND ε-VECTORS WITH $G=O(n, 1, \mathbb{R})$

Barbara Glanc, Aleksander Misiak, Zofia Stepień, Szczecin

(Received September 15, 2004)

Abstract

In this note all vectors and ε-vectors of a system of $m \leqslant n$ linearly independent contravariant vectors in the n-dimensional pseudo-Euclidean geometry of index one are determined. The problem is resolved by finding the general solution of the functional equation $\left.F(\underset{1}{u}, \underset{2}{u}, \ldots, A \underset{m}{u})=(\operatorname{det} A)^{\lambda} \cdot A \cdot F \underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}\right)$ with $\lambda=0$ and $\lambda=1$, for an arbitrary pseudo-orthogonal matrix A of index one and given vectors $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}$.

Keywords: G-space, equivariant map, pseudo-Euclidean geometry
MSC 2000: 53A55

1. Introduction

For $n \geqslant 2$ consider the matrix $E_{1}=\left[e_{i, j}\right] \in G L(n, \mathbb{R})$ where

$$
e_{i, j}= \begin{cases}0 & \text { for } i \neq j \\ +1 & \text { for } i=j \neq n \\ -1 & \text { for } i=j=n\end{cases}
$$

Definition 1. A pseudo-orthogonal group of index one is a subgroup of the group $G L(n, \mathbb{R})$ satisfying the condition

$$
G=0(n, 1, \mathbb{R})=\left\{A: A \in G L(n, \mathbb{R}) \wedge A^{T} \cdot E_{1} \cdot A=E_{1}\right\} .
$$

Denoting $\varepsilon(A)=\operatorname{sign}(\operatorname{det} A)=\operatorname{det} A$ we have $\varepsilon(A \cdot B)=\varepsilon(A) \cdot \varepsilon(B)$.
The class of G-spaces $\left(M_{\alpha}, G, f_{\alpha}\right)$, where f_{α} is an action of G on the space M_{α}, constitutes a category if we take as morphisms equivariant maps $F_{\alpha, \beta}: M_{\alpha} \longrightarrow M_{\beta}$,
i.e. the maps which satisfy the condition

$$
\begin{equation*}
\bigwedge_{\alpha, \beta} \bigwedge_{x \in M_{\alpha}} \bigwedge_{A \in G} F_{\alpha, \beta}\left(f_{\alpha}(x, A)\right)=f_{\beta}\left(F_{\alpha, \beta}(x), A\right) \tag{1.1}
\end{equation*}
$$

This category is called a geometry of the group G. In particular, among the objects of this category are:
the G-spaces of contravariant vectors and ε-vectors

$$
\left(\mathbb{R}^{n}, G, f\right), \text { where } \bigwedge_{u \in \mathbb{R}^{n}} \bigwedge_{A \in G} f(u, A)= \begin{cases}A \cdot u & \text { for vectors, } \tag{1.2}\\ \varepsilon(A) \cdot A \cdot u & \text { for } \varepsilon \text {-vectors }\end{cases}
$$

the G-spaces of scalars and ε-scalars

$$
(\mathbb{R}, G, f), \text { where } \bigwedge_{x \in \mathbb{R}} \bigwedge_{A \in G} f(x, A)= \begin{cases}x & \text { for scalars, } \tag{1.3}\\ \varepsilon(A) \cdot x & \text { for } \varepsilon \text {-scalars }\end{cases}
$$

For $m=1,2, \ldots, n$ let a system of linearly independent vectors $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}$ be given. Every equivariant mapping F of this system into G-spaces of scalars, ε-scalars, vectors, ε-vectors satisfies the equality (1.1) which, applying the transformation rules (1.2) and (1.3), may be rewritten into the form

$$
\begin{equation*}
\bigwedge_{A \in G} F(\underset{1}{A}, \underset{2}{u}, \ldots, A \underset{m}{u})=F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}) \quad \text { for scalars } \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\left.\bigwedge_{A \in G} F(\underset{1}{A}, \underset{2}{\underset{\sim}{u}}, \ldots, A \underset{m}{u})=\varepsilon(A) \cdot F \underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}\right) \quad \text { for } \varepsilon \text {-scalars, } \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
\bigwedge_{A \in G} F\left(\underset{1}{1}, A_{2}^{u}, \ldots, A \underset{m}{u}\right)=A \cdot F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}) \quad \text { for vectors } \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
\bigwedge_{A \in G} F\left(\underset{1}{A u}, A_{2} u, \ldots, A \underset{m}{u}\right)=\varepsilon(A) \cdot A \cdot F\left(\underset{1}{u}, \underset{2}{u}, \ldots,{ }_{m}^{u}\right) \quad \text { for } \varepsilon \text {-vectors. } \tag{1.7}
\end{equation*}
$$

For a pair u, v of contravariant vectors the mapping $p(u, v)=u^{T} E_{1} v$ satisfies (1.4), namely

$$
p(A u, A v)=(A u)^{T} E_{1}(A v)=u^{T}\left(A^{T} E_{1} A\right) v=u^{T} E_{1} v=p(u, v)
$$

In [5] it was proved that the general solution of the equation (1.4) is of the form

$$
\begin{equation*}
F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})=\Theta(p(\underset{i}{u}, \underset{j}{u}))=\Theta\left(p_{i j}\right) \quad \text { for } i \leqslant j=1,2, \ldots, m \leqslant n \tag{1.8}
\end{equation*}
$$

where Θ is an arbitrary function of $\frac{1}{2} m(m+1)$ variables $p_{i j}$. The general solution of the equation (1.5) was found in [4]. Before presenting the explicit formula for it, let us denote by $\left.L_{m}=L \underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}\right)$ the linear subspace generated by the vectors $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}$ and by $p \mid L_{m}$ the restriction of the form p to the subspace L_{m}.

Definition 2. The subspace L_{m} is called
(1) an Euclidean subspace if the form $p \mid L_{m}$ is positively definite,
(2) a pseudo-Euclidean subspace if the form $p \mid L_{m}$ is regular and indefinite,
(3) a singular subspace if the form $p \mid L_{m}$ is singular.

If we denote

$$
P(m)=P(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})=\left|\begin{array}{cccc}
p_{11} & p_{12} & \ldots & p_{1 m} \\
p_{21} & p_{22} & \ldots & p_{2 m} \\
\ldots & \ldots & \ldots & \ldots \\
p_{m 1} & p_{m 2} & \ldots & p_{m m}
\end{array}\right|=\operatorname{det}[p(\underset{i}{u}, \underset{j}{u})]_{1}^{m}=\operatorname{det}\left[p_{i j}\right]_{1}^{m}
$$

then the above three cases are equivalent to $P(m)>0, P(m)<0$ and $P(m)=0$, respectively. Let $\stackrel{m}{P}_{i j}$ denote the cofactor of the element $p_{i j}$ of the matrix $\left[p_{i j}\right]_{1}^{m}$ and let $\stackrel{1}{P}_{11}=1, P(0)=1$ by definition.

Let us consider an isotropic cone $K_{0}=\left\{u: u \in \mathbb{R}^{n} \wedge p(u, u)=0 \wedge u \neq 0\right\}$. It is an invariant and transitive subset. Every isotropic vector $v \in K_{0}$ determines an isotropic direction which, by virtue of $v^{n} \neq 0$ and $v=v^{n}\left[\frac{v^{1}}{v^{n}}, \frac{v^{2}}{v^{n}}, \ldots, \frac{v^{n-1}}{v^{n}}, 1\right]^{T}=$ $v^{n}\left[q^{1}, q^{2}, \ldots, q^{n-1}, 1\right]^{T}$ with $\sum_{i=1}^{n-1}\left(q^{i}\right)^{2}=1=q^{n}$, is equivalent to the point q belonging to the sphere S^{n-2}.

In two cases we get particular solutions of the equation (1.5). In the case $m=n$ that equation is fulfilled by the mapping det. For $A \in G$ we have

$$
W^{\prime}=\operatorname{det}(\underset{1}{A}, \underset{2}{\underset{2}{u}}, \ldots, A \underset{n}{u})=\varepsilon(A) \cdot \operatorname{det}(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n}{u})=\varepsilon(A) \cdot W .
$$

If $m=n-1$ and $P(n-1)=0$ then the singular subspace $L \underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u})$ determines exactly one isotropic direction $q \in S^{n-2}$ whose representative, if $P(n-2) \neq 0$, is of the form

$$
\begin{equation*}
v=\frac{1}{2 P(n-2)} \sum_{i=1}^{n-1} \stackrel{n-1}{P}_{n-1, i} \cdot{\underset{i}{u}}^{n}=v^{n}\left[q^{1}, q^{2}, \ldots, q^{n-1}, 1\right]^{T} \in K_{0} \cap L_{n-1} . \tag{1.9}
\end{equation*}
$$

From $p(\underset{i}{u}, v)=0$ for $i=1,2, \ldots, n-1$ it follows that each vector u_{i} is of the form

$$
\begin{equation*}
\underset{i}{u}=\left[u_{i}^{1}, u_{i}^{2}, \ldots, u_{i}^{n-1}, \sum_{k=1}^{n-1} u_{i}^{k} q^{k}\right]^{T} \quad \text { where } \Delta=\operatorname{det}\left[u_{i}^{j}\right]_{1}^{n-1} \neq 0 \tag{1.10}
\end{equation*}
$$

The two 1-forms $\operatorname{det}(\underset{1}{u}, \ldots, \underset{r-1}{u}, v, \underset{r+1}{u}, \ldots, \underset{n-1}{u}, x)$ and $p(v, x)$ vanish on the subspace $L(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u})$, and consequently there exist uniquely determined numbers $B_{r}=$
$B_{r}(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{r}{u}, \ldots, \underset{n-1}{u})$ such that

$$
\begin{equation*}
\operatorname{det}(\underset{1}{u}, \ldots, \underset{r-1}{u}, v, \underset{r+1}{u}, \ldots, \underset{n-1}{u}, x)=-B_{r}(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u}) \cdot p(v, x) . \tag{1.11}
\end{equation*}
$$

As det is an ε-scalar, p is a scalar as well, so it follows from (1.11) that each B_{r} is an ε-scalar. Taking any given $A \in G$ we have

$$
B_{r}^{\prime}=B_{r}\left(\underset{1}{u}, \ldots, A \underset{r}{u}, \ldots, A_{n-1}^{u}\right)=\varepsilon(A) \cdot B_{r}(\underset{1}{u}, \ldots, \underset{r}{u}, \ldots, \underset{n-1}{u})=\varepsilon(A) \cdot B_{r} .
$$

From (1.9), (1.10) and (1.11) we get in terms of coordinates the formula

$$
B_{r}\left(\underset{1}{u}, \ldots,{\underset{r}{r}}_{u}, \ldots, \underset{n-1}{u}\right)=\left|\begin{array}{ccc}
u^{1} & \ldots & u^{n-1} \tag{1.12}\\
1 & & 1 \\
\ldots & \ldots & \ldots \\
u^{1} & \ldots & u^{n-1} \\
r-1 & & { }_{r-1} \\
q^{1} & \ldots & q^{n-1} \\
u^{1} & \ldots & u^{n-1} \\
r+1 & & r+1 \\
\ldots & \ldots & \ldots \\
u_{n-1}{ }^{1} & \ldots & u_{n-1}{ }^{n-1}
\end{array}\right| \quad \text { for } r=1,2, \ldots, n-1 .
$$

We have $B_{r} \cdot B_{k}=\stackrel{n-1}{P}_{r k}$ and in particular $B_{r}^{2}=P(\underset{1}{u}, \ldots, \underset{r-1}{u}, \underset{r+1}{u}, \ldots, \underset{n-1}{u})$, so at least one of the ε-scalars B_{r} is different from zero.

In [4] it was proved that the general solution of the equation (1.5) is of the form

$$
F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})= \begin{cases}0 & \text { if } m<n-1, \tag{1.13}\\ 0 & \text { if } m=n-1, P(m) \neq 0 \\ \sum_{k=1}^{n-1} \Theta^{k}\left(p_{i j}\right) \cdot B_{k} & \text { if } m=n-1, P(m)=0 \\ \Theta\left(p_{i j}\right) \cdot \operatorname{det}(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n}{u}) & \text { if } m=n\end{cases}
$$

where $\Theta, \Theta^{1}, \ldots, \Theta^{n-1}$ are arbitrary functions of $\frac{1}{2} m(m+1)$ variables.
In this work we find the general solution of the functional equations (1.6) and (1.7).

2. The Schmidt process of pseudo-orthonormality

Definition 3. Two vectors $u \neq 0$ and $v \neq 0$ satisfying the condition $p(u, v)=0$ are called orthogonal and write $u \perp v$.

Definition 4. We say that a vector u is
(1) a versor, if $p(u, u)=+1$,
(2) a pseudo-versor, if $p(u, u)=-1$.

Definition 5. We say that a system of vectors $\underset{1}{e}, \underset{2}{e}, \ldots, \underset{n}{e}$ constitutes a pseudoorthonormal base if $\left[p\left(e, e_{j}\right)\right]_{1}^{n}=E_{1}$.

Let a sequence of linearly independent vectors $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{s}{u}, \ldots,{ }_{n}^{u}$ be given. This sequence generates a sequence of linear subspaces $L_{1}=L(\underset{1}{u}), L_{2}=L(\underset{1}{u}, \underset{2}{u}), \ldots$, $L_{s}=L(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{s}{u}), \ldots, L_{n}$. Let us denote $\varepsilon_{s}=\operatorname{sign} P(s)$. Apparently $\varepsilon_{n}=-1$ and from the definition $\varepsilon_{0}=+1$.

Definition 6. The sequence $\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{s}, \ldots, \varepsilon_{n}\right)=\left(+1, \varepsilon_{1}, \ldots, \varepsilon_{s}, \ldots, \varepsilon_{n-1}\right.$, -1) will be called the signature of the sequence of subspaces $L_{1}, L_{2}, \ldots, L_{s}, \ldots, L_{n}$, or the signature of the sequence of vectors $\underset{1}{u}, \underset{2}{u}, \ldots,{ }_{s}^{u}, \ldots,{ }_{n}^{u}$.

In [5] it was proved that the only restriction is $\varepsilon_{i} \geqslant \varepsilon_{i+1}$ and that any given system of n linearly independent vectors can be arranged in the sequence $\underset{1}{u}, \underset{2}{u}, \ldots,{ }_{s}, \ldots,{\underset{n}{n}}^{u}$ with the signature either
(1) $\varepsilon_{0}=\ldots=\varepsilon_{s-1}=+1, \varepsilon_{s}=\ldots=\varepsilon_{n}=-1$ for $s \in\{1,2, \ldots, n\}$ or
(2) $\varepsilon_{0}=\ldots=\varepsilon_{s-1}=+1, \varepsilon_{s}=0, \varepsilon_{s+1},=\ldots=\varepsilon_{n}=-1$ for $s \in\{1,2, \ldots, n-1\}$.

In both these cases we construct a pseudo-orthonormal base $\underset{1}{e}, \ldots, \underset{s-1}{e}, \underset{n}{e}, \underset{s+1}{e}, \ldots$, $\underset{n-1}{e}, e$. . In the former case the vectors

$$
\begin{equation*}
\underset{k}{e}=\frac{\sum_{i=1}^{k} \stackrel{k}{P}_{k i} \cdot{ }_{i}^{u}}{\sqrt{|P(k-1) P(k)|}} \quad \text { for } k=1,2, \ldots, n \tag{2.1}
\end{equation*}
$$

form a pseudo-orthonormal base such that

$$
\underset{k}{e}=\underset{k}{e} \underset{1}{(u, \underset{2}{u}}, \ldots, \underset{k}{u}) \quad \text { and } \quad p(\underset{k}{e}, \underset{r}{u})= \begin{cases}0 & \text { for } r<k \tag{2.2}\\ \Theta\left(p_{i j}\right) & \text { for } r \geqslant k .\end{cases}
$$

In the latter case we determine vectors $\underset{1}{e}, \ldots, \underset{s-1}{e}, \underset{s+2}{e}, \ldots, \underset{n}{e}$ constituting a pseudoorthonormal base using (2.1). Since $P(s)=0$ we have

$$
\left(\stackrel{s}{P}_{s+1, s}\right)^{2}=-P(s-1) P(s+1) \neq 0 .
$$

There exists only one isotropic direction, determined by the vector

$$
\begin{equation*}
v=\frac{1}{2 P(s-1)} \sum_{i=1}^{s} \stackrel{s}{P_{s i}} \cdot \underset{i}{u} \perp \underset{1}{u}, \underset{2}{u}, \ldots, \underset{s-1}{u}, \underset{s}{u} \tag{2.3}
\end{equation*}
$$

in the singular space $L \underset{1}{u}, \underset{2}{u}, \ldots, \underset{s}{u})$. In the pseudo-Euclidean space $L \underset{1}{u}, \ldots, \underset{s}{u}, \underset{s+1}{u})$ there exists one more isotropic direction, which is orthogonal to $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{s-1}{u}$, determined by the vector

$$
\begin{equation*}
\underset{1}{v}=\frac{1}{2 \stackrel{s+1}{P_{s+1, s} P(s+1)}} \sum_{i=1}^{s+1}\left(2 \stackrel{s+1}{P}_{s+1, s} \cdot \stackrel{s+1}{P} s i-\stackrel{s+1}{P}_{s s} \cdot \stackrel{s+1}{P} s+1, i\right) \cdot{\underset{i}{u}}^{(} \tag{2.4}
\end{equation*}
$$

We have $p(\underset{1}{v}, \underset{s}{u})=1$ contrary to $p\left(v,{\underset{s}{u}}_{u}^{u}\right)=0$. The vectors

$$
\begin{equation*}
\underset{s}{e}=\underset{1}{v}-v \quad \text { and } \quad \underset{s+1}{e}=\underset{1}{v}+v \tag{2.5}
\end{equation*}
$$

complement the pseudo-orthonormal base. This base fulfils conditions (2.2) with only two exceptions,

$$
\begin{equation*}
\underset{s}{e}=\underset{s}{e}(\underset{1}{u}, \ldots, \underset{s}{u}, \underset{s+1}{u}) \quad \text { and } \quad p(\underset{s+1}{e}, \underset{s}{u})=1 . \tag{2.6}
\end{equation*}
$$

To each vector $\underset{i}{e}$ of the pseudo-orthonormal base we assign the covector $\underset{i}{e}=e_{i}^{T} \cdot E_{1}$ and then

$$
p(\underset{i}{e}, \underset{r}{u})=\underset{i}{e} E_{1} \underset{r}{u}=\underset{i}{*} \cdot \underset{r}{u} .
$$

Definition 7. We say that a pseudo-orthogonal matrix A whose successive rows consist of successive coordinates of covectors $\stackrel{*}{\stackrel{*}{1}}, \ldots, \stackrel{*}{\stackrel{*}{e}}, \stackrel{*}{\underset{n}{e},} \stackrel{\stackrel{*}{e}}{\stackrel{e}{+1}}, \ldots, \underset{n-1}{\stackrel{*}{e}}, \stackrel{*}{e}$ corresponds to the pseudo-orthonormal base $\underset{1}{e}, \ldots, \underset{s-1}{e}, \underset{n}{e}, \underset{s+1}{e}, \ldots, \underset{n-1}{e},{ }_{s}^{e}$, or corresponds to the sequence of vectors $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n}{u}$.

The matrix $A=A(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})$ allows us to solve functional equations (1.6) and (1.7).

3. Solution of the equation $F(\underset{1}{u}, \ldots, A \underset{m}{u})=A \cdot F(\underset{1}{u}, \ldots, \underset{m}{u})$

We arrange a given system of $1 \leqslant m \leqslant n$ linearly independent vectors into a sequence $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}$ whose signature up to ε_{m} must be in one of the forms

1. $(+1, \ldots,+1)$ for $m \in\{1,2, \ldots, n-1\}$
2. $(+1, \ldots,+1,-1, \ldots,-1)$ for $m \in\{1,2, \ldots, n\}$
3. $(+1, \ldots,+1,0,-1, \ldots,-1)$ for $m \in\{1,2, \ldots, n\}$
4. $(+1, \ldots,+1,0)$ for $m \in\{1,2, \ldots, n-1\}$.

We solve the equation (1.6) in the first three cases. We construct the vectors $\underset{1}{e}, \underset{2}{e}, \ldots, \underset{m}{e}$ of a pseudo-orthonormal base using formulas (2.1) or (2.1) and (2.5). The other vectors of the base $\underset{m+1}{e}, \ldots, \underset{n}{e}$, if there is lack of them, are built in the orthogonal complement $\left.L^{\perp} \underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}\right)$. To simplify the following argument we consider only the first case. Inserting the matrix $\underset{0}{A}$, which corresponds to the base $\underset{1}{e}, \underset{2}{e}, \ldots,{ }_{n}^{e}$ and then the matrix $\underset{m+1}{A}$, which corresponds to the base $\underset{1}{e}, \ldots, \underset{m}{e}, \underset{m+1}{e}, \underset{m+2}{e}, \ldots,{ }_{n}^{e}$ into equation (1.6) we get

$$
\begin{align*}
& F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})=\underset{0}{A_{0}^{-1}} F(\underset{0}{A} \underset{0}{A}, \underset{0}{A} \underset{2}{A}, \ldots, \underset{0}{A} u)=\left(E_{1}^{A_{0}^{T}} E_{1}\right) F(\underset{0}{A} \underset{0}{A}, \underset{0}{A} \underset{2}{A}, \ldots, \underset{0}{A} u) \\
& =E_{1} \underset{0}{A^{T}} F_{0}\left(p_{i j}\right)=E_{1} \underset{m+1}{A^{T}} F_{0}\left(p_{i j}\right) . \tag{3.1}
\end{align*}
$$

The constant vector F_{0} is the same in both cases and from the last equation we conclude that its $(m+1)$ component is zero. Moreover, it is obvious that $F_{0}^{m+1}=$ $F_{0}^{m+2}=\ldots=F_{0}^{n}=0$. We get further from (3.1) that

$$
\begin{equation*}
F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})=E_{1} \underset{0}{A^{T}} F_{0}\left(p_{i j}\right)=\sum_{k=1}^{n} F_{0}^{k} \cdot \underset{k}{e}=\sum_{k=1}^{m} F_{0}^{k} \cdot \underset{k}{e}=\sum_{k=1}^{m} \Theta^{k}\left(p_{i j}\right) \cdot \underset{k}{u}, \tag{3.2}
\end{equation*}
$$

where $\Theta^{1}, \Theta^{2}, \ldots, \Theta^{m}$ are arbitrary functions of $\frac{1}{2} m(m+1)$ variables. The same result we get in the cases 2 and 3 .

Let us consider the case 4 . Now $P(m-1)>0$ and $P(m)=0$. In the singular subspace L_{m} there lies its only isotropic direction $q=[v]$, where the vector v is given by the formula (2.3) for $s=m$. The subspace L_{m-1}^{\perp} is a pseudo-Euclidean space of dimension $n-m+1$. If $n-m+1=2$ or equivalently $m=n-1$ then there exists in L_{m-1}^{\perp} exactly one isotropic direction $[\underset{1}{v}]=q_{1} \neq q$ such that $p(\underset{1}{v}, \underset{m}{u})=1$. If $m<n-1$ we find at least two such directions q_{1} and q_{2} represented by linearly independent vectors $\underset{1}{v}$ and $\underset{2}{v}$. Since

$$
P(\underset{1}{u}, \ldots, \underset{m-1}{u}, \underset{m}{u}, \underset{1}{v})=-P(\underset{1}{u}, \ldots, \underset{m-1}{u})<0
$$

we get the vectors $\underset{1}{e}, \ldots, \underset{m-1}{e}$ of a pseudo-orthonormal base using formulas (2.1), the vectors $\underset{m}{e}, \underset{m+1}{e}$ we get using formulas (2.5) and the vectors $\underset{m+2}{e}, \ldots, \underset{n}{e}$ we find in the orthogonal complement $L^{\perp}(\underset{1}{u}, \ldots, \underset{m-1}{u}, \underset{m}{u}, \underset{1}{v})$. Let C_{0} denote the pseudo-orthogonal matrix which corresponds to this base. We get similarly to (3.1) and (3.2)

$$
\begin{align*}
& \underset{\substack{1 \\
\underset{2}{u} \\
\underset{2}{u}, \ldots, \underset{m}{u})}}{ }=E_{1} C_{0}^{T} F_{0}\left(p_{i j}\right)=\sum_{k=1}^{n} F_{0}^{k} \cdot \underset{k}{e} \tag{3.3}\\
&=\sum_{k=1}^{m+1} F_{0}^{k} \cdot \underset{k}{e}=\sum_{k=1}^{m} \Theta^{k}\left(p_{i j}\right) \cdot \underset{k}{u}+\Theta\left(p_{i j}\right) \cdot \underset{1}{v} .
\end{align*}
$$

Now, if $m<n-1$ we have at the same time

$$
\begin{equation*}
F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})=\sum_{k=1}^{m} \Theta^{k}\left(p_{i j}\right) \cdot \underset{k}{u}+\Theta\left(p_{i j}\right) \cdot \underset{2}{v} \tag{3.4}
\end{equation*}
$$

In this case we have $\Theta\left(p_{i j}\right) \equiv 0$ and analogously to the previous cases we get $F=$ $\sum_{k=1}^{m} \Theta^{k} \cdot{ }_{k}$.

If $m=n-1$ then the direction of the vector v is determined unambiguously. As $P(n-2)>0$ we conclude that $L^{\perp}(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-2}{u})$ is a two dimensional pseudoEuclidean space with exactly two isotropic directions $q=[v]$ and $q_{1}=\left[\begin{array}{l}v \\ 1\end{array}\right.$, where $\underset{1}{v} \notin L \underset{2}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u})$ contrary to $v \in L_{n-1}$.

Let a sequence $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u}$ of linearly independent vectors with $P(n-2)>0$ and $P(n-1)=0$ be given. Let Δ^{i} for $i=1,2, \ldots, n-1$ denote the cofactors of the elements $\underset{n-1}{u}{ }^{i}$ of the determinant $\left.\Delta \underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u}\right)$ and let by definition $\Delta^{n}=0$. Let us denote $2 D=\sum_{i=1}^{n-1}\left(\Delta^{i}\right)^{2}$ and $B=B_{n-1}$, where B_{r} is defined by formula (1.12). $B \neq 0$ because of $B^{2}=P(n-2)$. Taking these facts into account we have

Theorem 1. Let the mapping η assign $\eta=\eta(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u}) \in \mathbb{R}^{n}$ to the sequence $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-2}{u}, \underset{n-1}{u}$, such that $P(n-2) \neq 0$ and $P(n-1)=0$, by the formula

$$
\begin{equation*}
\eta^{i}=\frac{1}{\Delta \cdot B}\left(B \Delta^{i}-D q^{i}\right) \quad \text { for } i=1,2, \ldots, n \tag{3.5}
\end{equation*}
$$

Then the equation

$$
\begin{equation*}
\eta\left(A_{1}^{u}, A_{2}^{u}, \ldots, A_{n-1}^{u}\right)=A \cdot \eta(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u}) \tag{3.6}
\end{equation*}
$$

holds for an arbitrary matrix $A \in G$.

Proof. The mapping η is the only solution of the system of n equations

$$
\left\{\begin{array}{l}
p(\eta, \underset{i}{u})=0 \quad \text { for } i=1,2, \ldots, n-2 \\
p(\eta, \underset{n-1}{u})=1 \\
p(\eta, \eta)=0
\end{array}\right.
$$

As the right hand sides are scalars so η is a vector, so it fulfils (3.6). The vector η is linearly independent of $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u}$ because

$$
\operatorname{det}(\underset{1}{u}, \ldots, \underset{n-1}{u}, \eta(\underset{1}{u}, \ldots, \underset{n-1}{u}))=-B(\underset{1}{u}, \ldots, \underset{n-1}{u}) \neq 0
$$

The vector v from (3.3) and η must be collinear. We have proved

Theorem 2. Every solution of the functional equation

$$
F\left(\underset{1}{A}, \underset{2}{A} \underset{2}{ }, \ldots, A_{m}^{u}\right)=A \cdot F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})
$$

for given vectors $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}$ and any matrix $A \in G$ is of the form

$$
\begin{align*}
& \underset{1}{\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})} \tag{3.7}\\
& \quad= \begin{cases}\sum_{k=1}^{m} \Theta^{k} \cdot \underset{k}{u} & \text { for } m \neq n-1 \text { or } m=n-1, P(n-1) \neq 0, \\
\Theta \cdot \eta+\sum_{k=1}^{n-1} \Theta^{k} \cdot \underset{k}{u} & \text { for } m=n-1, P(n-1)=0, P(n-2) \neq 0\end{cases}
\end{align*}
$$

where $\Theta, \Theta^{1}, \ldots, \Theta^{n-1}$ are arbitrary functions of $\frac{1}{2} m(m+1)$ variables $p_{i j}$.
4. Solution of the equation $F(\underset{1}{\underset{1}{u}}, \ldots, \underset{m}{u})=\varepsilon(A) \cdot A \cdot F(\underset{1}{u}, \ldots, \underset{m}{u})$

If $m=n$ then according to (1.13) and (3.7) the general solution of the above equation is of the form

$$
F=\operatorname{det}(\underset{1}{u}, \ldots, \underset{n}{u})\left(\sum_{k=1}^{n} \Theta^{k} \cdot{\underset{k}{u}}_{u}^{)}\right)
$$

If $m<n$ and $P(m) \neq 0$ then at least one of the vectors of the required pseudoorthogonal base, let us say $\underset{r}{e}$, lies in the orthogonal complement $\left.L^{\perp} \underset{1}{\underset{1}{u}} \underset{2}{u}, \ldots, \underset{m}{u}\right)$. Let
the matrix $\underset{+}{A}$ corresponds to a base which includes $\underset{r}{e}$ while the matrix $\underset{-}{A}$ corresponds to the same base in which $\underset{r}{e}$ is replaced by $-\underset{r}{e}$. We have

$$
\begin{align*}
F(\underset{1}{u}, \ldots, \underset{m}{u}) & \left.=\varepsilon \underset{+}{A} \underset{+}{A} E_{1}{\underset{+}{T}}_{A_{0}} F_{0}=\underset{+}{A}\right) \sum_{k=1}^{n} F_{0}^{k} \cdot \underset{k}{e} \tag{4.1}\\
& =\varepsilon(\underset{+}{A})\left(F_{0}^{r} \cdot \underset{r}{e}+\sum_{k \neq r} F_{0}^{k} \cdot \underset{k}{e}\right)=\varepsilon(\underset{-}{A})\left(-F_{0}^{r} \cdot \underset{r}{e}+\sum_{k \neq r} F_{0}^{k} \cdot \underset{k}{e}\right) .
\end{align*}
$$

In this case the required ε-vector F must have the direction of the vector $\underset{r}{e}$. It is obvious that if $\underset{r}{e}$ is not uniquely determined by the vectors $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u}$, then the equation (1.7) has only the trivial solution $F \equiv 0$. It is so for $m<n-1$.

Let $m=n-1$. The equivalent of the well-known cross product in Euclidean geometry, the ε-vector $\omega(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u})$ given by the conditions

$$
\begin{cases}p(\underset{i}{u}, \omega \underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u}))=0 & \text { for } i=1,2, \ldots, n-1, \tag{4.2}\\ \operatorname{det}(\underset{1}{u} \underset{2}{u}, \ldots, \underset{n-1}{u}, \omega)=-p(\omega, \omega)=P(n-1) & \end{cases}
$$

has the direction of the orthogonal complement if $P(n-1) \neq 0$. Then using (4.2) we obtain for $A \in G$

$$
\omega\left(\underset{1}{u}, \underset{2}{\underset{2}{u}}, \ldots, A_{n-1}^{u}\right)=\varepsilon(A) \cdot A \cdot \omega(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u})
$$

and in accordance with (4.1) we get $F=\Theta \cdot \omega$. In the case $P(n-1)=0$ we have a decomposition $\omega=\sum_{r=1}^{n-1} B_{r} \cdot \underset{r}{u}$ and $L^{\perp}(\underset{1}{u}, \ldots, \underset{n-1}{u})$ is not the orthogonal complement. Starting from linearly independent vectors $\underset{1}{u}, \underset{2}{u}, \ldots, \underset{n-1}{u}, \eta\left(\underset{1}{u}, \ldots,{ }_{n} \underset{-1}{u}\right)$, whose signature is $(+1, \ldots,+1,0,-1)$, we define $\underset{1}{e}, \underset{2}{e}, \ldots, \underset{n-2}{e}$ by formulas (2.1) and additionally by $\underset{n-1}{e}=\eta+v$ and $e=\eta-v$. The matrix D corresponding to this base has the determinant $B / \sqrt{P(n-2)}$. Inserting D into equation (1.7) we get

$$
\begin{aligned}
F(\underset{1}{u}, \ldots, \underset{n-1}{u}) & =\varepsilon(D) \cdot E_{1} \cdot D^{T} \cdot F_{0}=\varepsilon(D) \sum_{k=1}^{n} F_{0}^{k} \cdot \underset{k}{e} \\
& =\frac{B}{\sqrt{P(n-2)}}\left(\sum_{k=1}^{n-2} F_{0}^{k} \cdot \underset{k}{e}+F_{0}^{n-1}(\eta+v)+F_{0}^{n}(\eta-v)\right) \\
& =B\left(\Theta \cdot \eta+\sum_{k=1}^{n-1} \Theta^{k} \cdot \underset{k}{u}\right) .
\end{aligned}
$$

Theorem 3. The general solution of the functional equation

$$
F(A \underset{1}{u}, \underset{2}{u}, \ldots, A \underset{m}{u})=\varepsilon(A) \cdot A \cdot F(\underset{1}{u}, \underset{2}{u}, \ldots, \underset{m}{u})
$$

for given vectors $\underset{1}{u}, \underset{2}{u}, \ldots,{ }_{m}^{u}$ and an arbitrary matrix $A \in G$ is of the form
$F(\underset{1}{u}, \ldots, \underset{m}{u})= \begin{cases}0 & \text { for } m<n-1, \\ \Theta \cdot \omega\left(\underset{1}{u}, \ldots,{\underset{n}{n-1}}_{u}\right) & \text { for } m=n-1, P(n-1) \neq 0, \\ B \cdot\left(\Theta \cdot \eta+\sum_{k=1}^{n-1} \Theta^{k} \cdot \underset{k}{u}\right) & \text { for } m=n-1, P(m)=0, P(n-2) \neq 0, \\ \operatorname{det}(\underset{1}{u}, \ldots, u) \sum_{k=1}^{n} \Theta^{k} \cdot{ }_{k}^{u} & \text { for } m=n,\end{cases}$
where $\Theta, \Theta^{1}, \Theta^{2}, \ldots, \Theta^{n}$ are arbitrary functions of $\frac{1}{2} m(m+1)$ variables $p_{i j}$.

References

[1] J. Aczél, S. Gotab: Functionalgleichungen der Theorie der geometrischen Objekte. P.W.N. Warszawa, 1960.
[2] L. Bieszk, E. Stasiak: Sur deux formes équivalentes de la notion de (r, s)-orientation de la géométrie de Klein. Publ. Math. Debrecen 35 (1988), 43-50.
[3] M. Kucharzewski: Über die Grundlagen der Kleinschen Geometrie. Period. Math. Hung. 8 (1977), 83-89.
[4] A. Misiak, E. Stasiak: Equivariant maps between certain G-spaces with $G=O(n-1, n)$. Math. Bohem. 126 (2001), 555-560.
[5] E. Stasiak: Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1. Publ. Math. Debrecen 57 (2000), 55-69.

Authors' addresses: Barbara Glanc, Aleksander Misiak, Zofia Stępień, Instytut Matematyki, Politechnika Szczecińska, Al. Piastów 17, 70-310 Szczecin, e-mail: misiak@ps.pl.

