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EQUIVARIANT MAPPINGS FROM VECTOR PRODUCT INTO

G-SPACE OF VECTORS AND ε-VECTORS WITH G = O(n, 1,
�
)
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Abstract. In this note all vectors and ε-vectors of a system of m 6 n linearly independent
contravariant vectors in the n-dimensional pseudo-Euclidean geometry of index one are
determined. The problem is resolved by finding the general solution of the functional
equation F (Au

1
, Au
2
, . . . , Au

m
) = (detA)λ · A · F (u

1
, u
2
, . . . , u

m
) with λ = 0 and λ = 1, for an

arbitrary pseudo-orthogonal matrix A of index one and given vectors u
1
, u
2
, . . . , u

m
.

Keywords: G-space, equivariant map, pseudo-Euclidean geometry

MSC 2000 : 53A55

1. Introduction

For n > 2 consider the matrix E1 = [ei,j ] ∈ GL(n,
�
) where

ei,j =





0 for i 6= j,

+1 for i = j 6= n,

−1 for i = j = n.

Definition 1. A pseudo-orthogonal group of index one is a subgroup of the
group GL(n,

�
) satisfying the condition

G = 0(n, 1,
�
) = {A : A ∈ GL(n,

�
) ∧ AT ·E1 · A = E1}.

Denoting ε(A) = sign(det A) = det A we have ε(A · B) = ε(A) · ε(B).
The class of G-spaces (Mα, G, fα), where fα is an action of G on the space Mα,

constitutes a category if we take as morphisms equivariant maps Fα,β : Mα −→ Mβ,
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i.e. the maps which satisfy the condition

(1.1)
∧

α,β

∧

x∈Mα

∧

A∈G

Fα,β(fα(x, A)) = fβ(Fα,β(x), A).

This category is called a geometry of the group G. In particular, among the objects
of this category are:

the G-spaces of contravariant vectors and ε-vectors

(1.2) (
� n , G, f), where

∧

u∈ ! n

∧

A∈G

f(u, A) =

{
A · u for vectors,

ε(A) ·A · u for ε-vectors,

the G-spaces of scalars and ε-scalars

(1.3) (
�
, G, f), where

∧

x∈ !
∧

A∈G

f(x, A) =

{
x for scalars,

ε(A) · x for ε-scalars.

For m = 1, 2, . . . , n let a system of linearly independent vectors u
1
, u
2
, . . . , u

m
be given.

Every equivariant mapping F of this system into G-spaces of scalars, ε-scalars, vec-
tors, ε-vectors satisfies the equality (1.1) which, applying the transformation rules

(1.2) and (1.3), may be rewritten into the form
∧

A∈G

F (Au
1
, Au

2
, . . . , Au

m
) = F (u

1
, u
2
, . . . , u

m
) for scalars,(1.4)

∧

A∈G

F (Au
1
, Au

2
, . . . , Au

m
) = ε(A) · F (u

1
, u
2
, . . . , u

m
) for ε-scalars,(1.5)

∧

A∈G

F (Au
1
, Au

2
, . . . , Au

m
) = A · F (u

1
, u
2
, . . . , u

m
) for vectors,(1.6)

∧

A∈G

F (Au
1
, Au

2
, . . . , Au

m
) = ε(A) ·A · F (u

1
, u
2
, . . . , u

m
) for ε-vectors.(1.7)

For a pair u, v of contravariant vectors the mapping p(u, v) = uT E1v satisfies (1.4),
namely

p(Au, Av) = (Au)T E1(Av) = uT (AT E1A)v = uT E1v = p(u, v).

In [5] it was proved that the general solution of the equation (1.4) is of the form

(1.8) F (u
1
, u
2
, . . . , u

m
) = Θ(p(u

i
, u

j
)) = Θ(pij) for i 6 j = 1, 2, . . . , m 6 n

where Θ is an arbitrary function of 1
2m(m + 1) variables pij . The general solution

of the equation (1.5) was found in [4]. Before presenting the explicit formula for it,

let us denote by Lm = L(u
1
, u
2
, . . . , u

m
) the linear subspace generated by the vectors

u
1
, u
2
, . . . , u

m
and by p|Lm the restriction of the form p to the subspace Lm.
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Definition 2. The subspace Lm is called

(1) an Euclidean subspace if the form p|Lm is positively definite,
(2) a pseudo-Euclidean subspace if the form p|Lm is regular and indefinite,
(3) a singular subspace if the form p|Lm is singular.

If we denote

P (m) = P (u
1
, u
2
, . . . , u

m
) =

∣∣∣∣∣∣∣∣∣∣

p11 p12 . . . p1m

p21 p22 . . . p2m

. . . . . . . . . . . .

pm1 pm2 . . . pmm

∣∣∣∣∣∣∣∣∣∣

= det[p(u
i
, u

j
)]m1 = det[pij ]m1

then the above three cases are equivalent to P (m) > 0, P (m) < 0 and P (m) = 0,

respectively. Let
m

P ij denote the cofactor of the element pij of the matrix [pij ]m1 and

let
1

P 11 = 1, P (0) = 1 by definition.
Let us consider an isotropic cone K0 = {u : u ∈ � n ∧ p(u, u) = 0 ∧ u 6= 0}.

It is an invariant and transitive subset. Every isotropic vector v ∈ K0 determines
an isotropic direction which, by virtue of vn 6= 0 and v = vn[ v1

vn , v2

vn , . . . , vn−1

vn , 1]T =

vn[q1, q2, . . . , qn−1, 1]T with
n−1∑
i=1

(qi)2 = 1 = qn, is equivalent to the point q belonging

to the sphere Sn−2.

In two cases we get particular solutions of the equation (1.5). In the case m = n

that equation is fulfilled by the mapping det . For A ∈ G we have

W / = det(Au
1
, Au

2
, . . . , Au

n
) = ε(A) · det(u

1
, u

2
, . . . , u

n
) = ε(A) ·W.

If m = n−1 and P (n−1) = 0 then the singular subspace L(u
1
, u
2
, . . . , u

n−1
) determines

exactly one isotropic direction q ∈ Sn−2 whose representative, if P (n− 2) 6= 0, is of
the form

(1.9) v =
1

2P (n− 2)

n−1∑

i=1

n−1

P n−1,i · u
i

= vn[q1, q2, . . . , qn−1, 1]T ∈ K0 ∩ Ln−1.

From p(u
i
, v) = 0 for i = 1, 2, . . . , n− 1 it follows that each vector u

i
is of the form

(1.10) u
i

=
[
u
i

1, u
i

2, . . . , u
i

n−1,

n−1∑

k=1

u
i

kqk

]T

where ∆ = det[u
i

j ]n−1
1 6= 0.

The two 1-forms det(u
1
, . . . , u

r−1
, v, u

r+1
, . . . , u

n−1
, x) and p(v, x) vanish on the subspace

L(u
1
, u
2
, . . . , u

n−1
), and consequently there exist uniquely determined numbers Br =
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Br(u
1
, u
2
, . . . , u

r
, . . . , u

n−1
) such that

(1.11) det(u
1
, . . . , u

r−1
, v, u

r+1
, . . . , u

n−1
, x) = −Br(u

1
, u
2
, . . . , u

n−1
) · p(v, x).

As det is an ε-scalar, p is a scalar as well, so it follows from (1.11) that each Br is

an ε-scalar. Taking any given A ∈ G we have

B/
r = Br(Au

1
, . . . , Au

r
, . . . , A u

n−1
) = ε(A) ·Br(u

1
, . . . , u

r
, . . . , u

n−1
) = ε(A) · Br.

From (1.9), (1.10) and (1.11) we get in terms of coordinates the formula

(1.12) Br(u
1
, . . . , u

r
, . . . , u

n−1
) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u
1

1 . . . u
1

n−1

. . . . . . . . .

u
r−1

1 . . . u
r−1

n−1

q1 . . . qn−1

u
r+1

1 . . . u
r+1

n−1

. . . . . . . . .

u
n−1

1 . . . u
n−1

n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for r = 1, 2, . . . , n− 1.

We have Br · Bk =
n−1

P rk and in particular B2
r = P (u

1
, . . . , u

r−1
, u
r+1

, . . . , u
n−1

), so at

least one of the ε-scalars Br is different from zero.

In [4] it was proved that the general solution of the equation (1.5) is of the form

(1.13) F (u
1
, u

2
, . . . , u

m
) =





0 if m < n− 1,

0 if m = n− 1, P (m) 6= 0,
n−1∑
k=1

Θk(pij) · Bk if m = n− 1, P (m) = 0,

Θ(pij) · det(u
1
, u
2
, . . . , u

n
) if m = n

where Θ, Θ1, . . . , Θn−1 are arbitrary functions of 1
2m(m + 1) variables.

In this work we find the general solution of the functional equations (1.6) and
(1.7).
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2. The Schmidt process of pseudo-orthonormality

Definition 3. Two vectors u 6= 0 and v 6= 0 satisfying the condition p(u, v) = 0
are called orthogonal and write u ⊥ v.

Definition 4. We say that a vector u is

(1) a versor, if p(u, u) = +1,
(2) a pseudo-versor, if p(u, u) = −1.

Definition 5. We say that a system of vectors e
1
, e
2
, . . . , e

n
constitutes a pseudo-

orthonormal base if [p(e
i
, e

j
)]n1 = E1.

Let a sequence of linearly independent vectors u
1
, u
2
, . . . , u

s
, . . . , u

n
be given. This

sequence generates a sequence of linear subspaces L1 = L(u
1
), L2 = L(u

1
, u
2
), . . .,

Ls = L(u
1
, u
2
, . . . , u

s
), . . . , Ln. Let us denote εs = signP (s). Apparently εn = −1 and

from the definition ε0 = +1.

Definition 6. The sequence (ε0, ε1, . . . , εs, . . . , εn) = (+1, ε1, . . . , εs, . . . , εn−1,

−1) will be called the signature of the sequence of subspaces L1, L2, . . . , Ls, . . . , Ln,

or the signature of the sequence of vectors u
1
, u
2
, . . . , u

s
, . . . , u

n
.

In [5] it was proved that the only restriction is εi > εi+1 and that any given system
of n linearly independent vectors can be arranged in the sequence u

1
, u
2
, . . . , u

s
, . . . , u

n

with the signature either
(1) ε0 = . . . = εs−1 = +1, εs = . . . = εn = −1 for s ∈ {1, 2, . . . , n} or
(2) ε0 = . . . = εs−1 = +1, εs = 0, εs+1, = . . . = εn = −1 for s ∈ {1, 2, . . . , n− 1}.
In both these cases we construct a pseudo-orthonormal base e

1
, . . . , e

s−1
, e
n
, e
s+1

, . . . ,

e
n−1

, e
s
. In the former case the vectors

(2.1) e
k

=

k∑
i=1

k

P ki · u
i√

|P (k − 1)P (k)|
for k = 1, 2, . . . , n

form a pseudo-orthonormal base such that

(2.2) e
k

= e
k
(u
1
, u

2
, . . . , u

k
) and p(e

k
, u

r
) =

{
0 for r < k,

Θ(pij) for r > k.

In the latter case we determine vectors e
1
, . . . , e

s−1
, e
s+2

, . . . , e
n
constituting a pseudo-

orthonormal base using (2.1). Since P (s) = 0 we have

(
s+1

P s+1,s)2 = −P (s− 1)P (s + 1) 6= 0.
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There exists only one isotropic direction, determined by the vector

(2.3) v =
1

2P (s− 1)

s∑

i=1

s

Psi · u
i
⊥ u

1
, u
2
, . . . , u

s−1
, u

s
,

in the singular space L(u
1
, u
2
, . . . , u

s
). In the pseudo-Euclidean space L(u

1
, . . . , u

s
, u
s+1

)

there exists one more isotropic direction, which is orthogonal to u
1
, u
2
, . . . , u

s−1
, deter-

mined by the vector

(2.4) v
1

=
1

2
s+1

P s+1,sP (s + 1)

s+1∑

i=1

(2
s+1

P s+1,s ·
s+1

P si −
s+1

P ss ·
s+1

P s+1,i) · u
i
.

We have p(v
1
, u

s
) = 1 contrary to p(v, u

s
) = 0. The vectors

(2.5) e
s

= v
1
− v and e

s+1
= v

1
+ v

complement the pseudo-orthonormal base. This base fulfils conditions (2.2) with
only two exceptions,

(2.6) e
s

= e
s
(u
1
, . . . , u

s
, u
s+1

) and p( e
s+1

, u
s
) = 1.

To each vector e
i
of the pseudo-orthonormal base we assign the covector

∗
e
i
= e

i

T · E1

and then

p(e
i
, u

r
) = e

i

T E1u
r

=
∗
e
i
· u

r
.

Definition 7. We say that a pseudo-orthogonal matrix A whose successive rows
consist of successive coordinates of covectors

∗
e
1
, . . . ,

∗
e

s−1
,
∗
e
n
,
∗
e

s+1
, . . . ,

∗
e

n−1
,
∗
e
s
corresponds

to the pseudo-orthonormal base e
1
, . . . , e

s−1
, e
n
, e
s+1

, . . . , e
n−1

, e
s
, or corresponds to the

sequence of vectors u
1
, u
2
, . . . , u

n
.

The matrix A = A(u
1
, u
2
, . . . , u

m
) allows us to solve functional equations (1.6) and

(1.7).
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3. Solution of the equation F (Au
1
, . . . , Au

m
) = A · F (u

1
, . . . , u

m
)

We arrange a given system of 1 6 m 6 n linearly independent vectors into a

sequence u
1
, u
2
, . . . , u

m
whose signature up to εm must be in one of the forms

1. (+1, . . . , +1) for m ∈ {1, 2, . . . , n− 1}
2. (+1, . . . , +1,−1, . . . ,−1) for m ∈ {1, 2, . . . , n}
3. (+1, . . . , +1, 0,−1, . . . ,−1) for m ∈ {1, 2, . . . , n}
4. (+1, . . . , +1, 0) for m ∈ {1, 2, . . . , n− 1}.

We solve the equation (1.6) in the first three cases. We construct the vectors
e
1
, e
2
, . . . , e

m
of a pseudo-orthonormal base using formulas (2.1) or (2.1) and (2.5). The

other vectors of the base e
m+1

, . . . , e
n
, if there is lack of them, are built in the orthogonal

complement L⊥(u
1
, u

2
, . . . , u

m
). To simplify the following argument we consider only

the first case. Inserting the matrix A
0
, which corresponds to the base e

1
, e
2
, . . . , e

n
and

then the matrix A
m+1
, which corresponds to the base e

1
, . . . , e

m
,− e

m+1
, e
m+2

, . . . , e
n
into

equation (1.6) we get

(3.1)
F (u

1
, u
2
, . . . , u

m
) = A

0

−1F (A
0
u
1
, A

0
u
2
, . . . , A

0
u
m

) = (E1A
0

T E1)F (A
0
u
1
, A

0
u
2
, . . . , A

0
u
m

)

= E1A
0

T F0(pij) = E1 A
m+1

T F0(pij).

The constant vector F0 is the same in both cases and from the last equation we
conclude that its (m + 1) component is zero. Moreover, it is obvious that F m+1

0 =
F m+2

0 = . . . = F n
0 = 0. We get further from (3.1) that

(3.2) F (u
1
, u
2
, . . . , u

m
) = E1A

0

T F0(pij) =
n∑

k=1

F k
0 · e

k
=

m∑

k=1

F k
0 · e

k
=

m∑

k=1

Θk(pij) · u
k
,

where Θ1, Θ2, . . . , Θm are arbitrary functions of 1
2m(m + 1) variables. The same

result we get in the cases 2 and 3.
Let us consider the case 4. Now P (m − 1) > 0 and P (m) = 0. In the singular

subspace Lm there lies its only isotropic direction q = [v], where the vector v is given
by the formula (2.3) for s = m. The subspace L⊥m−1 is a pseudo-Euclidean space of

dimension n−m + 1. If n−m + 1 = 2 or equivalently m = n− 1 then there exists in
L⊥m−1 exactly one isotropic direction [v

1
] = q1 6= q such that p(v

1
, u
m

) = 1. If m < n−1
we find at least two such directions q1 and q2 represented by linearly independent
vectors v

1
and v

2
. Since

P (u
1
, . . . , u

m−1
, u
m

, v
1
) = −P (u

1
, . . . , u

m−1
) < 0
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we get the vectors e
1
, . . . , e

m−1
of a pseudo-orthonormal base using formulas (2.1), the

vectors e
m

, e
m+1

we get using formulas (2.5) and the vectors e
m+2

, . . . , e
n
we find in the

orthogonal complement L⊥(u
1
, . . . , u

m−1
, u
m

, v
1
). Let C0 denote the pseudo-orthogonal

matrix which corresponds to this base. We get similarly to (3.1) and (3.2)

F (u
1
, u
2
, . . . , u

m
) = E1C

0

T F0(pij) =
n∑

k=1

F k
0 · e

k
(3.3)

=
m+1∑

k=1

F k
0 · e

k
=

m∑

k=1

Θk(pij) · u
k

+ Θ(pij) · v
1
.

Now, if m < n− 1 we have at the same time

(3.4) F (u
1
, u
2
, . . . , u

m
) =

m∑

k=1

Θk(pij) · u
k

+ Θ(pij) · v
2
.

In this case we have Θ(pij) ≡ 0 and analogously to the previous cases we get F =
m∑

k=1

Θk · u
k
.

If m = n − 1 then the direction of the vector v
1
is determined unambiguously.

As P (n − 2) > 0 we conclude that L⊥(u
1
, u
2
, . . . , u

n−2
) is a two dimensional pseudo-

Euclidean space with exactly two isotropic directions q = [v] and q1 = [v
1
], where

v
1

/∈ L(u
2
, u
2
, . . . , u

n−1
) contrary to v ∈ Ln−1.

Let a sequence u
1
, u
2
, . . . , u

n−1
of linearly independent vectors with P (n−2) > 0 and

P (n − 1) = 0 be given. Let ∆i for i = 1, 2, . . . , n − 1 denote the cofactors of the
elements u

n−1

i of the determinant ∆(u
1
, u
2
, . . . , u

n−1
) and let by definition ∆n = 0. Let

us denote 2D =
n−1∑
i=1

(∆i)2 and B = Bn−1, where Br is defined by formula (1.12).

B 6= 0 because of B2 = P (n− 2). Taking these facts into account we have

Theorem 1. Let the mapping η assign η = η(u
1
, u

2
, . . . , u

n−1
) ∈ � n to the sequence

u
1
, u
2
, . . . , u

n−2
, u
n−1
, such that P (n− 2) 6= 0 and P (n− 1) = 0, by the formula

(3.5) ηi =
1

∆ ·B (B∆i −Dqi) for i = 1, 2, . . . , n.

Then the equation

(3.6) η(Au
1
, Au

2
, . . . , A u

n−1
) = A · η(u

1
, u
2
, . . . , u

n−1
)

holds for an arbitrary matrix A ∈ G.
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"$#&%'%)(
. The mapping η is the only solution of the system of n equations





p(η, u
i
) = 0 for i = 1, 2, . . . , n− 2,

p(η, u
n−1

) = 1,

p(η, η) = 0.

As the right hand sides are scalars so η is a vector, so it fulfils (3.6). The vector η is
linearly independent of u

1
, u
2
, . . . , u

n−1
because

det(u
1
, . . . , u

n−1
, η(u

1
, . . . , u

n−1
)) = −B(u

1
, . . . , u

n−1
) 6= 0.

�

The vector v
1
from (3.3) and η must be collinear. We have proved

Theorem 2. Every solution of the functional equation

F (Au
1
, Au

2
, . . . , Au

m
) = A · F (u

1
, u
2
, . . . , u

m
)

for given vectors u
1
, u

2
, . . . , u

m
and any matrix A ∈ G is of the form

(3.7) F (u
1
, u
2
, . . . , u

m
)

=





m∑
k=1

Θk · u
k

for m 6= n− 1 or m = n− 1, P (n− 1) 6= 0,

Θ · η +
n−1∑
k=1

Θk · u
k

for m = n− 1, P (n− 1) = 0, P (n− 2) 6= 0

where Θ, Θ1, . . . , Θn−1 are arbitrary functions of 1
2m(m + 1) variables pij .

4. Solution of the equation F (Au
1
, . . . , Au

m
) = ε(A) ·A · F (u

1
, . . . , u

m
)

If m = n then according to (1.13) and (3.7) the general solution of the above

equation is of the form

F = det(u
1
, . . . , u

n
)
( n∑

k=1

Θk · u
k

)
.

If m < n and P (m) 6= 0 then at least one of the vectors of the required pseudo-
orthogonal base, let us say e

r
, lies in the orthogonal complement L⊥(u

1
, u
2
, . . . , u

m
). Let
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the matrix A
+
corresponds to a base which includes e

r
while the matrix A

−
corresponds

to the same base in which e
r
is replaced by −e

r
. We have

(4.1) F (u
1
, . . . , u

m
) = ε(A

+
)E1A

+

T F0 = ε(A
+

)
n∑

k=1

F k
0 · e

k

= ε(A
+

)
(

F r
0 · e

r
+

∑

k 6=r

F k
0 · e

k

)
= ε(A

−
)
(
−F r

0 · e
r
+

∑

k 6=r

F k
0 · e

k

)
.

In this case the required ε-vector F must have the direction of the vector e
r
. It is

obvious that if e
r
is not uniquely determined by the vectors u

1
, u
2
, . . . , u

m
, then the

equation (1.7) has only the trivial solution F ≡ 0. It is so for m < n− 1.

Let m = n − 1. The equivalent of the well-known cross product in Euclidean

geometry, the ε-vector ω(u
1
, u
2
, . . . , u

n−1
) given by the conditions

(4.2)

{
p(u

i
, ω(u

1
, u
2
, . . . , u

n−1
)) = 0 for i = 1, 2, . . . , n− 1,

det(u
1
, u
2
, . . . , u

n−1
, ω) = −p(ω, ω) = P (n− 1)

has the direction of the orthogonal complement if P (n − 1) 6= 0. Then using (4.2)
we obtain for A ∈ G

ω(Au
1
, Au

2
, . . . , A u

n−1
) = ε(A) ·A · ω(u

1
, u
2
, . . . , u

n−1
)

and in accordance with (4.1) we get F = Θ · ω. In the case P (n− 1) = 0 we have a

decomposition ω =
n−1∑
r=1

Br · u
r
and L⊥(u

1
, . . . , u

n−1
) is not the orthogonal complement.

Starting from linearly independent vectors u
1
, u
2
, . . . , u

n−1
, η(u

1
, . . . , u

n−1
), whose signa-

ture is (+1, . . . , +1, 0,−1), we define e
1
, e
2
, . . . , e

n−2
by formulas (2.1) and additionally

by e
n−1

= η + v and e
n

= η − v. The matrix D corresponding to this base has the

determinant B/
√

P (n− 2). Inserting D into equation (1.7) we get

F (u
1
, . . . , u

n−1
) = ε(D) ·E1 ·DT · F0 = ε(D)

n∑

k=1

F k
0 · e

k

=
B√

P (n− 2)

( n−2∑

k=1

F k
0 · e

k
+ F n−1

0 (η + v) + F n
0 (η − v)

)

= B

(
Θ · η +

n−1∑

k=1

Θk · u
k

)
.
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Theorem 3. The general solution of the functional equation

F (Au
1
, Au

2
, . . . , Au

m
) = ε(A) ·A · F (u

1
, u

2
, . . . , u

m
)

for given vectors u
1
, u

2
, . . . , u

m
and an arbitrary matrix A ∈ G is of the form

F (u
1
, . . . , u

m
) =





0 for m < n− 1,

Θ · ω(u
1
, . . . , u

n−1
) for m = n− 1, P (n− 1) 6= 0,

B ·
(
Θ · η +

n−1∑
k=1

Θk · u
k

)
for m = n− 1, P (m) = 0, P (n− 2) 6= 0,

det(u
1
, . . . , u

n
)

n∑
k=1

Θk · u
k
for m = n,

where Θ, Θ1, Θ2, . . . , Θn are arbitrary functions of 1
2m(m + 1) variables pij .
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[1] J. Aczél, S. Go ląb: Functionalgleichungen der Theorie der geometrischen Objekte.
P.W.N. Warszawa, 1960.

[2] L. Bieszk, E. Stasiak: Sur deux formes équivalentes de la notion de (r, s)-orientation de
la géométrie de Klein. Publ. Math. Debrecen 35 (1988), 43–50.

[3] M. Kucharzewski: Über die Grundlagen der Kleinschen Geometrie. Period. Math. Hung.
8 (1977), 83–89.

[4] A. Misiak, E. Stasiak: Equivariant maps between certain G-spaces with G = O(n−1, n).
Math. Bohem. 126 (2001), 555–560.

[5] E. Stasiak: Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of
index 1. Publ. Math. Debrecen 57 (2000), 55–69.

Authors’ addresses: Barbara Glanc, Aleksander Misiak, Zofia Stępień, Instytut Mate-
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