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EXAMPLES FROM THE CALCULUS OF VARIATIONS IV.

CONCLUDING REVIEW

Jan Chrastina, Brno

(Received April 16, 1999, revised November 3, 2000)

Abstract. Variational integrals containing several functions of one independent vari-
able subjected moreover to an underdetermined system of ordinary differential equations
(the Lagrange problem) are investigated within a survey of examples. More systemati-
cal discussion of two crucial examples from Part I with help of the methods of Parts II
and III is performed not excluding certain instructive subcases to manifest the significant
role of generalized Poincaré-Cartan forms without undetermined multipliers. The classical
Weierstrass-Hilbert theory is simulated to obtain sufficient extremality conditions. Un-
like the previous parts, this article is adapted to the category of continuous objects and
mappings without any substantial references to the general principles, which makes the
exposition self-contained.

Keywords: Lagrange problem, Poincaré-Cartan form, Hamiltonian-Jacobi equation,
Weierstrass-Hilbert method

MSC 2000 : 49-01, 49K45

Several rather profound mathematical theories can be best mastered only through
a survey of examples: the classical moving frames, the topical solitons, and the

recent derived categories may be (e.g.) stated in this connection. We follow the
same strategy for analogous reasons.

In this eventually concluding Part IV, two of the simplest but typical Lagrange
problems are recalled: first, the integral

∫
f(x, u, v, du/dx) dx subjected to the con-

straint dv/dx = g(x, u, v, du/dx) and second, the integral
∫

f(x, u, v, w, du/dx,
dv/dx) dx constrained by dw/dx = g(x, u, v, w, du/dx, dv/dx). They were already

discussed in Part I for the “generic case” and our aim is twofold: to involve some
“exceptional subcases” and to rephrase the results in common terms of mathematical

analysis. Concerning the first task, only quite elementary methods neglecting geome-
try (namely the equivalence theory) are applied but the results will not always follow
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by direct verification; the inevitable role of Poincaré-Cartan forms is transparently

manifested. Concerning the second task, we will not already speak of smooth func-
tions (hence of diffieties, which causes a certain lack of coherence) but employ the
common continuous categories. (Further generalizations towards functional spaces

and (e.g.) broken extremals are also possible but may be regarded as mere tedious
technical impositions.) Our main task is to demonstrate a large diversity of the

results and we do not aim for “universal recipes” of solution.

Three rather urgent and perspective topics are to be mentioned on this occasion.
First, the investigation of “degenerate Lagrange problems” which should be defined

by the property that the Lagrangian subspaces and the common Hamilton-Jacobi
equations are insufficient to cope with the extremality properties. (It seems that

appropriate generalizations, the “coisotropic subspaces”, will be useful.) Second, the
Mayer problem, which permits to involve the “extraordinary extremals” and to spec-

ify all “reasonable” boundary conditions and extremality functionals. (The Lagrange
problem is included as a subcase with a certain specific structure.) Third, the gen-

eralization of our approach to the multiple variational integrals. (At the first place,
introduction of generalized Poincaré-Cartan forms without uncertain multipliers for

the multidimensional Lagrange problems.) We believe that essential achievements
in all the directions mentioned are quite feasible and will be soon available.

First family of examples

1. Introduction. We recall the problem I 6 concerning the extremality properties
of the integral

∫
f(x, w10 , w

2
0 , w

1
1) dx, where the variable functions w10 = w10(x), w

2
0 =

w20(x) are subjected to a differential constraint w21 = g(x, w10 , w
2
0 , w

1
1). Recall that

the lower indices denote the order of derivatives here (e.g., wi
1 = dw

i
0/dx, wi

2 =

d2wi
0/dx

2, and so on) which should not be confused with the abbreviation of partial
derivatives of various functions (e.g., f i

0 = ∂f/∂wi
0, f

i
1x = ∂2f/∂wi

1∂x, and so on).

We suppose that f, g are real-valued functions in an open subdomain D(f, g) ⊂ �
4

and f, g, f11 , g
1
1 have the second order continuous derivatives therein. Let

(1) ᾰ = f dx+ f11ω
1
0 +

b

a
π (π = ω20 − g11ω

1
0)

be the Poincaré -Cartan (PC) form satisfying

(2) dᾰ = π ∧ ξ +
(
f1111 −

b

a
g1111

)
ω11 ∧ ω10

(
ξ = e dx+Aω10 −

( b

a

)1
1
ω11 −

( b

a

)1
2
ω12

)
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where ωi
r ≡ dwi

r − wi
r+1 dx are the contact forms and

a = g10 + g20g
1
1 −Xg11, b = f10 + f20 g

1
1 −Xf11 ,(3)

e = f20 −
b

a
g20 −X

b

a
, A = f1210 −

b

a
g1210 −

( b

a

)1
0
−

( b

a

)2
0
g11 ,(4)

X =
∂

∂x
+

∑
w1r+1

∂

∂w1r
+ g

∂

∂w20
.

We refer to Part I as concerns the true sense of these concepts, in particular a �= 0
is supposed. Direct verification of (2–4) is quite easy. Recall that e = 0 stands for

the Euler -Lagrange (EL) equation.
We will see that the order of the EL equation determines the structure of our

variational problem to a large extent. Clearly

e = −X
b

a
+ . . . = −Xb

a
− bX

1
a
+ . . . = (af1111 − bg1111)w

1
3/a2 + . . .

as the top order terms are concerned. In principle, we may distinguish the subcases
(i) e13 �= 0 (hence af1111 �= bg1111), then the EL equation e = 0 can be equivalently

represented by a condition w13 = E(x, w10 , w
2
0 , w

1
1 , w

1
2),

(ii) e13 = 0 identically but e12 �= 0, then the EL equation can be rewritten as w12 =

E(x, w10 , w
2
0 , w

1
1),

(iii) e13 = e12 = 0 identically but e11 �= 0 with the EL equation rewritten as w11 =

E(x, w10 , w
2
0),

(iv) e = e(x, w10 , w
2
0) is free of all derivatives.

We shall discuss these possibilities separately.
Before passing to the main task, let us recall two kinds of curves appearing in

this connection: the admissible (A) curves satisfying the contact conditions ωi
r ≡ 0

(i.e., wi
r+1 = dw

i
r/dx) where the variables are related by the original differential

constraints, e.g., w13 = g, w14 = Xg, . . . in our case) and the critical (C) curves
(alternatively: extremals) satisfying moreover the EL equations (e.g., e = 0, Xe =

0, . . ., in our case). The order of derivatives under consideration will be specified
only case by case and we do not try to obtain the best possible results.

2. Subcase (i). In accordance with the order of the function e, we will suppose
the existence of continuous third order derivatives. Consequently, the C-curves satisfy
the system

(5) dw10 − w11 dx = dw
1
1 − w12 dx = dw

1
2 − E dx = dw21 − g dx = 0.

Because of the additional variable w12 , we introduce an open subdomain D(E) ⊂
D(f, g) × �, the definition domain of E, with coordinates x, w10 , w

2
0 , w

1
1 , w

1
2 . By a
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lucky accident, ᾰ can be regarded as a differential form on D(E) and formula (2)
can be accordingly adapted: (21) remains valid if ξ is replaced by

(6) ξ̄ = Aω10 −
( b

a

)1
1
ω11 −

( b

a

)1
2
ω12 (ω12 = dw

1
2 − E dx).

We have introduced the restriction e = 0 (hence w13 = E) which affects neither ᾰ nor

dᾰ. (In terms of Part I, ᾰ = e∗ᾰ is identified.)
We are interested in Lagrangian subspaces l : L ⊂ D(E), i.e., in subspaces of the

maximal possible dimension satisfying the Hamilton-Jacobi (HJ ) condition l∗ dᾰ =
0. In order to determine the dimension of L, recall that the module

Adj dᾰ = {Z� dα} = {ω10 , ω11, π, ξ̄} = {ω10, ω20 , ω11 , ω12}

has a local basis such that

Adj dᾰ = { du1, dv1, du2, dv2}, dᾰ = du1 ∧ dv1 + du2 ∧ dv2,

consequently dim L = 3 since two interrelations between u1, . . . , v2 are needed to kill

dᾰ (cf. also I (4)). Passing to more details, let us deal with the case when x, w10 , w
2
0

may be chosen for coordinates on L. Then theHJ condition locally reads l∗ᾰ = dW ,
where W =W (x, w10 , w

2
0) is a certain function. In quite explicit terms

(7) l∗
(
f − f11w

1
1 −

b

a
(w21 − g11w

1
1)

)
=Wx, l∗

(
f11 −

b

a
g11

)
=W 1

0 , l
∗ b

a =W 2
0 ,

by using (11). One can then observe that

x, w10 , w
2
0 , p = f11 −

b

a
g11 , q =

b

a

can be locally chosen for alternative coordinates on D(E). In terms of the Hamilton
function H defined by

(8) H(x, w10 , w
2
0 , p, q) = −f + f11 + w11 +

b

a
(w21 − g11w

1
1),

equations (7) lead to the Hamilton-Jacobi equation

(9) Wx +H(x, w10 , w
2
0 , W

1
0 , W

2
0 ) = 0

for the unknown function W . This is formally the equation (71), while the other
equations (72,3) determine the embedding L ⊂ D(E).
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The equations (5) can also be written as du1 = du2 = dv1 = dv2 = 0 and it

follows that every Lagrangian subspace is fibered by C-curves. (Alternatively: C-
curves are Cauchy characteristics of the HJ equation.) In terms of the coordinates
x, w10 , w

2
0 on L, we have a generalization of the Mayer fields of extremals. At this

stage, all ingredients of the Weierstrass-Hilbert method are at hand.

Let W (x, w10 , w
2
0) be a solution of (9) on a simply connected open subdomain

D(W ) ⊂ �
3 . Let P (t) ∈ L (0 � t � 1) be a C-curve embedded into the relevant La-

grangian subspace. (Alternatively: P (t) ∈ L is a segment of a Cauchy characteristic
of the HJ equation.) Let moreover

Q(t) = (x(t), w10(t), w
2
0(t), w

1
1(t), w

1
2(t)) ∈ D(E), 0 � t � 1

be an A-curve such that the “projection into L”

R(t) = (x(t), w10(t), w
2
0(t), r

1
1(t), r

1
2(t)) ∈ L, 0 � t � 1

is defined. (Recall that the components r11 , r
1
2 are determined by (72,3). This is the

case when (x(t), w10(t), w
2
0(t)) ∈ D(W ), 0 � t � 1.) Assuming moreover the “fixed

ends” conditions

x(P (t)) = x(Q(t)), wi
0(P (t)) = wi

0(Q(t)) (t = 0, 1; i = 1, 2)

for the simplicity of exposition, we have

(10)
∫

Q

α−
∫

P

α =

(∫

Q

α−
∫

R

ᾰ

)
+

( ∫

R

ᾰ−
∫

P

ᾰ

)
.

The last summand vanishes due to Green’s theorem (R and P make a loop in L
where dᾰ = 0) and the middle term is equal to the integral

∫ 1
0 Ex′(t) dt where

E = f(. . . , w11)− f(. . . , r11)− f11 (. . . , r
1
1)(w

1
1 − r11)

− b(. . . , r11 , r
1
2)

a(. . . , r11 , r
1
2)
(g(. . . , w11)− g(. . . , r11)− g11(. . . , r

1
1)(w

1
1 − r11))

(. . . = x, w10 , w
2
0 are parameters) is the Weierstrass function.

���������	
. The inequalities x′ � 0, E � 0 ensure the minimum. The
introduction of a continuous category does not cause many formal changes of the

previous “smooth approach” of Part I but the sense of the constructions becomes a
little obscure.
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3. Subcase (ii). Let us suppose the (equivalent) identities

(11) af1111 = bg1111 ,
( b

a

)1
2
= 0, e13 = 0

are true, hence (2) simplifies to

(12) dᾰ = π ∧ ξ
(
ξ = e dx+Aω10 −

( b

a

)1
1
ω11

)
.

Then the congruence

0 = d2ᾰ ∼= π ∧
(
e12ω

1
2 ∧ dx−

( b

a

)1
1
dx ∧ ω12

)
(modω10 , ω

1
1)

implies the identity

e12 = −
( b

a

)1
1
.

Let us assume e12 �= 0, hence (b/a)11 �= 0 in this section.
By lucky accident, ᾰ can be expressed in terms of variables x, w10 , w

2
0 , w

1
1 . The

restriction e = 0 (hence w12 = E) does not affect ᾰ, therefore (12) remains true if ξ

is replaced by

ξ̄ = Aω10 − (b/a)11ω
1
1 (ω11 = dw

1
1 − E dx).

Clearly Adj dᾰ = {π, ξ̄}. It follows that dπ ∼= 0 (mod π, ξ̄), however,

dπ = d( dw20 − g dx− g11ω
1
0) = − dg ∧ dx− g11 dx ∧ ω11 − dg11 ∧ ω10

∼= −(g10 + g20g
1
1)ω

1
0 ∧ dx−Xg11 dx ∧ ω10 = a dx ∧ ω10 (modπ, ξ̄)

by direct calculation. So we have the contradiction a = 0.

���������	
. The subcase (ii) never occurs since (11) and e = 0 together
imply a = 0. Some formally quite reasonable possibilities cannot be in fact realized.

4. Subcase (iii). Let us suppose (11) and e12 = 0 hold true, hence (b/a)11 = 0.
Then dᾰ = π ∧ (e dx+ aω10) and the identity d

2ᾰ = 0 implies

(13) A = e11, eg
11
11 = 0

by simple calculation. We will assume e11 �= 0, therefore g1111 = f1111 = 0 in virtue of
(132, 111). It follows that

(14) f =Mw11 +N, g = Kw11 + L
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with certain coefficients depending on x, w10 , w
2
0 . Conversely, assuming (14), one can

find

(15) a = L10 + L20K −Kx −K20L, b = N10 +N20K −Mx −M2
0L

independent of w11 , hence (b/a)11 = 0 is realized. One can observe that the inequalities

(16) a �= 0, e11 = A =M2
0 − b/aK20 − (b/a)10 − (b/a)20 �= 0

can be realized, too, even with K = 0 (which includes the “peculiar” Lagrange
problem I 7 where moreover M = 0 identically).

Instead of the domain D(f, g), we may employ the common definition domain
D(M, N, K, L) ⊂ �

3 of our coefficients. The A-curves will have first order continuous
derivatives and satisfy dw20 − g dx = 0, the C-curves satisfy moreover dw10 = E dx,
by definition.

By using (14), the PC form (1) simplifies to

(17) ᾰ = N dx+M dw10 +
b

a
π (π = dw20 −K dw10 − L dx).

This is a form on D(M, . . . , L). Inserting e = 0 (hence w11 = E) into (12), we obtain

dᾰ = Aω20 ∧ ω10 (ω10 = dw
1
0 − E dx, ω20 = dw

2
0 − (KE + L) dx).

It follows that there exist two-dimensional Lagrangian subspaces l : L ⊂ D(M, . . . ,

L), however, one can observe that the Weierstrass-Hilbert method cannot be directly
applied.

In more detail: the decomposition (10) leads to a reasonable Weierstrass function
after certain adaptations. First, there exist (local) coordinates x̃, w̃10 , w̃

1
1 such that

π is a multiple of the form dw̃10 − w̃11 dx̃, second, then ᾰ ∼= f̃ dx̃ + dg̃ (mod π) for
appropriate functions f̃ and g̃, third, the form f̃ dx̃ may replace the original form
f dx as the extremality properties are concerned. Altogether, we have the variational

integral
∫

f̃(x̃, w̃10 , w̃
1
1) dx̃ constrained by the mere contact form dw̃

1
0 − w̃11 dx̃ = 0.

This is the simplest classical problem II (1) with m = 1. Unfortunately, the above

adaptations can be explicitly performed only in some favourable cases. For instance,
if K = 0 identically, then the choice x̃ = x, w̃10 = w20 , w̃

1
1 = L is possible.

To obtain more explicit results, we may apply the coordinates-free reformulation
of the Legendre and Jacobi criteria, the “rotation principle” of Part III. The vector

fields
X =

∂

∂x
+ E

∂

∂w10
+ (KE + L)

∂

∂w20
, Y =

∂

∂w10
+K

∂

∂w20
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can be employed, see III (91) and II (92,3) with Θ = {π}. Then we obtain the Legen-
dre condition dᾰ([X, Y ], Y ) = −Aa > 0 for the minimum. Concerning the Jacobi
condition, the variations Z = v∂w10 +w∂/∂w20 of a given C-curve are determined by
the linear system

dv
dx
= E10v + E20w,

dw
dx

−K
dv
dx
= (K10E + L10)v + (K

2
0E + L20)w.

There should be a solution satisfying π(Z) = w +Kv �= 0.
���������	
. Geometrical reformulations of the classical analytical results

and the equivalence theory of variational problems deserve more attention even from

the point of view of very earthy applications.

5. Subcase (iv). If e = 0 identically, then ᾰ is a total differential (see I 5 (vi))
and we omit comments. Therefore, let us assume e �= const., de �= 0 (but e11 =
e12 = e13 = 0). We may again suppose (14) with a �= 0 but A = e11 = 0 identically,

hence dᾰ = eπ ∧ dx, see either (2, 12) and (16). We find ourselves in the space
D(M, . . . , L) with A-curves Q(t) satisfying Q∗π = 0 (cf. (172) for the form π) and

C-curves P (t) such that moreover P ∗e = 0, hence P ∗ de = 0. It follows that π is a
multiple of the form de at every point P (t), explicitly π = E(t) de. If the C-curve
P (t), 0 � t � 1, and an A-curve Q(t), 0 � t � 1, constitute a loop, then

∫

Q

α−
∫

P

α =
∫

Q

ᾰ−
∫

P

ᾰ =
∫∫
dᾰ =

∫∫
eπ ∧ dx.

If moreoverQ(t) is near enough to P (t), the factor π can be approximated by E(t) de.
Then, assuming (e.g.) E(t) > 0 (0 � t � 1), the last double integral is nonnegative.
���������	
. We have a “Weierstrass-like” function E(t) along the C-curve

P (t), 0 � t � 1, ensuring only a local extremum. A somewhat paradoxically, the
seemingly simplest problems may cause many difficulties.

Second family of examples

6. Introduction. Let us return to the integral
∫

f(x, w10 , w
2
0, w

3
0 , w

1
1 , w

2
1) dx con-

strained by w31 = g(x, w10 , w
2
0 , w

3
0 , w

1
1 , w

2
1), see the first half of Section I 8. We sup-

pose that f, g are real-valued functions in an open subdomain D(f, g) ⊂ �
6 and

f, g, f11 , f
2
1 , g

1
1 , g

2
1 have continuous second order derivatives therein. Then the PC

form

(18) ᾰ = f dx+ f11ω
1
0 + f21ω

2
0 + cπ (π = ω30 − g11ω

1
0 − g21ω

2
0)

698



satisfies the congruence

(19) dᾰ ∼= (e1π + e2ω10) ∧ dx+
∑

ci
rω

i
r ∧ π + (f ij

11 − cgij
11)ω

i
1 ∧ ωj

0

(i, j, r = 1, 2) modulo all products ωi
0 ∧ ωj

0, ω
i
0 ∧ π, where

c = b2/a2, aj ≡ gj
0 + gj

1g
3
0 −Xgj

1, bj ≡ f j
0 + gj

1f
3
0 −Xf j

1(20)

e1 = f30 − cg30 −Xc, e2 = b1 − ca1(21)

(we suppose a2 �= 0) with the operator

X =
∂

∂x
+

∑
wi

s+1
∂

∂wi
s

+ g
∂

∂w30
(i = 1, 2).

Formulae (19–21) can be directly verified. Recall that e1 = e2 = 0 stand for the EL
system. We will again distinguish between A-curves satisfying the contact conditions
and C-curves (or: extremals) that moreover fulfil the EL system.
Unlike the previous family of examples, the order of derivatives effectively occur-

ring in the functions e1, e2 is insufficient to determine the structure of the problem.
For lack of space, we cannot state a complete classification but restrict ourselves only

to a few instructive subcases.

7.The generic subcase. Expansions of the kind

(22) dF = XF dx+
∑
(F i
0 + F 30 g

i
1)ω

i
0 + F 30 π +

∑
F j

r ωj
r

(i = 1, 2; j = 1, 2, 3; r = 0, 1, . . .) for the functions F = e1, e2, c together with the

congruence

(23) dπ ∼= dx ∧ (a1ω10 + a2ω20 + g30π)−
∑

gij
11ω

i
1 ∧ ωj

0

inserted into the identity d2ᾰ = 0 yield useful formulae

e1i3 + ci
2 ≡ 0, e1i2 + ci

1 ≡ ci
2g
3
0 −Xci

2(24)

e2i2 ≡ ci
2a
1 − f i1

11 + cgi1
11, c

i
2a
2 − f i2

11 + cgi2
11 ≡ 0(25)

by comparison of the coefficients of summands ωi
3 ∧ π ∧ dx, ωi

2 ∧ π dx, ωi
2 ∧ ωj

0 ∧ dx
(i, j = 1, 2). It follows that e2 is of the second order if and only if the couple of

functions

(26) (e212 , e
22
2) = (c

1
2a
1 − f1111 + cg1111 , c

2
2a
1 − f1211 + cg1211)

699



is nonvanishing. Then the third order summands in e1 and Xe2 are linearly inde-

pendent if and only if the couple

(27) (e113 , e
12
3 ) = (−c12,−c22)

is not a multiple of the couple ((Xe2)13, (Xe2)23) = (e
21
2 , e

22
2 ), i.e., of the couple (26).

Using (252), one can verify that both conditions are satisfied if and only if

(28) det(f ij
11 − cgij

11) �= 0.

Assuming moreover e222 �= 0 (which is a technical provision) for better clarity, the
equation e2 = 0 can be adapted as w22 = . . . (the variable w22 is separated on the
left), hence the system e2 = Xe2 = e1 = 0 can be equivalently rewritten as

w22 = E, w23 = F, w13 = G (F = XE),

where E, F , G are certain functions of x, w10 , w20 , w30 , w11 , w21 , w12 . Our reasoning
will be carried out in the definition domain D(E, G) ⊂ �

7 of these functions E, G.

In accordance with such assumptions, we shall suppose the existence of the third
order continuous derivatives for all A-curves. By definition, they satisfy the system

dw10 − w11 dx = dw
1
1 − w12 dx = dw

2
0 − w21 dx = dw

3
0 − g dx = 0

on the domain D(E, G). The additional equations

dw12 −Gdx = dw21 − E dx = dw22 − F dx = 0

define the C-curves.
Concerning the Weierstrass-Hilbert method, we may restrict ourselves to a few

brief notes, see also I 8. Since Adj dᾰ is a six-dimensional module there exist four-
dimensional Lagrangian subspaces l : L ⊂ D(E, G). They satisfy the HJ condition
l∗ dᾰ = 0. If x, w10 , w

2
0 , w

3
0 may be taken for coordinates on L, this condition locally

reads l∗ᾰ = dW where W = W (x, w10 , w
2
0 , w

3
0) is an unknown function. In more

detail,

(29) l∗
(
f − cg −

∑
(f i

j − cgi
1)w

i
1

)
=Wx, l∗(f i

1 − cgi
1) =W i

0, l
∗c =W 3

0

(i = 1, 2) and alternatively, in terms of the new local coordinates

(30) x, w10 , w
2
0 , w

3
0, p = f11 − cg11 , q = f21 − cg21, r = c
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and of the Hamilton function defined by

H(x, w10 , w
2
0 , w

3
0 , p, q, r) = −f + cg +

∑
(f i
1 − cgi

1)w
i
1,

we obtain the HJ equationWx+H(. . . , W 1
0 , W

2
0 , W

3
0 ) = 0 and the embedding equa-

tions p = W 1
0 , q = W 2

0 , r = W 3
0 for the subspace L ⊂ D(E, G). The decomposition

(10) for the “fixed endpoints” leading to the Weierstrass function

E = f(. . . , w11 , w
2
1)− f(. . . , r11 , r

2
1)−

∑
f i
1(. . . , r

1
1 , r
2
1)(w

i
1 − ri

1)(31)

− c(. . . , r11 , r
2
1 , r
1
2)

(
g(. . . , w11, w

2
1)− g(. . . , r11 , r

2
1)

−
∑

gi
1(. . . , r

1
1 , r
2
1)(w

i
1 − ri

1)
)

does not require any comment.

���������	
. All “generic cases” of our extremality problems admit a uniform
approach and the sufficient extremality conditions resemble the classical results for

the case of trivial constraints.

8. A strange nondegenerate subcase. Let us suppose that e1 is of the second
order at most. In virtue of (241) this is expressed by c11 = c22 = 0 or, more explicitly,
by

(32) f i2
11 ≡ cgi2

11(i = 1, 2), B2 = cA2

where the expressions

Ai ≡ gi
0 + gi

1g
3
0 − gi

1x −
∑

wj
1g

ij
10, Bi ≡ f i

0 + gi
1f
3
0 − f i

1x −
∑

wj
1f

ij
10

involve all lower order terms of the coefficients ai and bi, respectively. Then (242, 25)
simplify to

(33) e112 = −c11, e
12
2 = −c21, e

21
2 = −f1111 + cg1111 , e

22
2 = 0.

We will suppose e122 �= 0 and e212 �= 0, hence

(34) c21 �= 0, f1111 �= cg1111

in this section. Then the EL system e1 = e2 = 0 can be adapted as

(35) w12 = E, w22 = F,

701



where E, F are certain functions of x, w10 , w
3
0 , w

1
1, w

2
1 . Our reasonings will be carried

out in the relevant definition domain D(E, F ) ⊂ �
6 . (The requirements (32, 33)

can be fulfilled; e.g., (321) is satisfied if f21 = G(g21) and then (32, 33) simplify
accordingly.)

The A-curves have the second order continuous derivatives and satisfy the system

(36) dw10 − w11 dx = dw
2
0 − w21 dx = dw

3
0 − g dx = 0,

by definition. Then, moreover, dw11−E dx = dw21−F dx = 0 holds for the C-curves.
The PC form (18) may be regarded as a form on the space D(E, F ). Owing to

(32), Adj dᾰ is a four-dimensional module and there are four-dimensional Lagrangian

subspaces l : L ⊂ D(E, F ). If a given C-curve P (t) can be embedded into such a
subspace equipped with coordinates x, w10 , w

2
0 , w

3
0 (P (t) is embedded into a Mayer

field of extremals) then the decomposition analogous to (10) can be employed to
obtain the already known Weierstrass function (31) which resolves the extremality

problem. (The only change in our case is that the coefficient c in (31) does not
depend on the variable r12 .)

Concerning the determination of the Lagrangian subspace L ⊂ D(E, F ), the HJ
conditions (29) do not formally change but, instead of functions (30), already the

restricted family

(37) x, w10 , w
2
0 , w

3
0 , p = f11 − cg11, q = f21 − cg21

is good enough for the alternative local coordinates on D(E, F ). (Inequalities (31)
ensure a nonvanishing Jacobian.) It follows that the functions

(38) H = −f + cg +
∑
(f i
1 − cgi

1)w
i
1, K = c

can be expressed in terms of new coordinates and we obtain the involutive system

(39) Wx +H(. . . , W 1
0 , W

2
0 ) = 0, W 3

0 = K(. . . , W 1
0 , W

2
0 )

determining the Lagrangian subspace.

���������	
. The HJ conditions may be occasionally expressed by an invo-
lutive system (instead of the common single equation) but this strange fact need not
affect the Weierstrass-Hilbert method.

9. A simple degenerate subcase. Let us again suppose e1 to be of the second

order at most, hence conditions (32) are true. However, unlike Section 8, let e122 =
−c21 = 0 be identically vanishing, see (332).
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Omitting the case when gi2
11 = f i2

11 ≡ 0 identically, (321) ensures the dependence
f21 = F (x, w10 , w

2
0 , w

3
0 , g

2
1) which implies c = ∂F/∂g21, hence c21 = g2211∂

2F/(∂g21)
2 = 0.

This implies the linearity F = Kg21 + L and therefore

f = K(. . .)g + L(. . .)w21 +M(. . . , w11) (. . . = x, w10 , w
2
0 , w

3
0).

It follows easily that K = c and

ᾰ =M dx+M1
1ω
1
0 + L dw20 +K dw30 ,

e1 = (L30 −K20)w
2
1 −K10w

1
1 −Kx +M3

0 , e2 = −M11
11w

1
2 + . . . .

The remaining condition (322) reads e1g12 − (L30−K20 )g = Lx+w11L
1
0−M2

0 and may

be regarded as a differential equation for the function g.
At this place, we take a technical measure: let us suppose K = 0, M =M(w11) in

order to clarify the following construction, moreover let L30 �= 0,M ′′ �= 0 (′= d/dw11)
for certainty. Recalling the simplified data, we may state the formulae

f = L(. . .)w21 +M(w11), ᾰ =M dx+M ′ω10 + L dw20 ,

e1 = L30w
2
1 , e
2 = −M ′′w12 + (L

1
0 + g11L

2
0)w

2
1 ,(40)

g = −G+ F (. . . , w11)w
2
1

(
G =

Lx + w11L
1
0

L30

)
.(41)

This choice of g with an arbitrary function F ensures the validity of condition (322).
We will suppose that the functions L, M, M ′ have second order derivatives in an

open domain D(L)×D(M)×� ⊂ �
6 of variables x, w10 , w

2
0 , w

3
0 , w

1
1 , w

2
1 . The A-curves

satisfy the system

dw10 − w11 dx = dw
2
0 − w21 dx = dw

3
0 +Gdx = 0

by definition (we suppose the existence of the relevant derivatives). The C-curves
moreover satisfy the EL system e1 = e2 = 0. In virtue of (40, 41) we have the
“almost explicit” equations

(42) w10 = Ax +B, w20 = C,
dw30
dx
= G(x, Ax +B, C, w30 , A)

where A, B, C are constants, to determine them.

Passing to the extremality properties, one can observe that the Lagrangian sub-
space are of little use. Briefly: ᾰ is expressed by x, w10 , w

2
0 , w

3
0 , w

1
1 and the HJ condi-

tion l∗ dᾰ = 0 yields two interrelations, hence x, w10 , w
2
0 , w

3
0 cannot be taken for coor-

dinates on L. We need one more dimension. The subspace k : K ⊂ D(E)×D(M)×�
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defined by w11−A = 0 and depending on the choice of the constantA will be employed

for a substitute. Clearly

(43) dᾰ =M ′′ dw11 ∧ ω10 + dL ∧ ω20 ,k
∗ dᾰ = dL ∧ ω20 ,

so we have a “nearly Lagrangian” subspace. (One can observe that w11 −A is a first

integral of the EL system. Any other first integral e.g., the functions w20 − C or
L=const. can be principle employed as well.) After this preparation, let

Q(t) = (x(t), w10(t), w
2
0(t), w

3
0(t), w

1
1(t), w

2
1(t)) ∈ D(L)×D(M)× �, 0 � t � 1,

be an A-curve and

R(t) = (x(t), w10(t), w
2
0(t), w

3
0(t), C, w21(t)) ∈ K, 0 � t � 1,

its “projection” into K. If a C-curve P (t) ∈ K, 0 � t � 1, has the same endpoints
as the curve Q(t), hence as the curve P (t), the decompositions (10) can be applied

with the result

(44)
∫

Q

α−
∫

P

α =
∫ 1

0
Ex′(t) dt+

∫∫
dL ∧ dw20

which follows from (40, 432), where

E =M(w11)−M(A)−M ′(A)(w11 −A)

is a “partial Weierstrass function”. To determine the sign of the difference (39),

only the double integral causes some difficulties. It is however well-adapted for the
“rotation principle”.

We wish to determine the sign of the expression

(45)
∫∫
dL ∧ dw20 =

∮
L dw20 =

∫

R

L dw20 =
∫

Q

L dw20 .

The C-curve Q(t) satisfies (36) and consequently also the equation

0 = L30( dw
3
0 +Gdx) = L30 dw

3
0 + (Lx + L10 − L30Fw21) dx

= L30 dw
3
0 + Lx dx+ L10 dw

1
0 − L30F dw

2
0 = dL− (L20 + L30) dw

2
0 .

So, we may introduce the three-dimensional space of variables x, u = w20v = L,
the Pfaffian equation U du = V dv where u = L20 + L30F , V = 1, and (U/V )x =
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(L20 + L30F )x is nonvanishing. Then the Theorem III 2 ensures the constant sign of

the value (45).

Altogether taken, the extremum is ensured if the signs of both summands on the

right hand side of (44) are in the needful accordance, e.g., both are nonnegative for
the case of the minimum.

���������	
. If the common Weierstrass-Hilbert method fails, we may speak
of a degenerate variational problem. (A more precise definition in terms of the

PC form ᾰ and the EL space E is not appropriate at this place.) We have seen
that certain (coisotropic) subspaces k : K ⊂ E can replace with success the useless
Lagrangian subspaces l : L ⊂ E to achieve sufficient extremality conditions. See also
II 2, III 10–15 where k = id., K = E was employed for analogous aims.

10. A curious nondegenerate subcase. With the data of Section 6, we will
suppose

(46) f ij
11 ≡ Cij

11, f
11
11 f

22
11 = (f

12
11 )
2, g1111g

22
11 = (g

12
11)
2

for a certain coefficient C �= c, which means that the genericity condition (28) is not

satisfied. Let moreover f1111 �= 0 (hence g1111 �= 0, C �= 0). Then

(47) f i2
11 = bf i1

11, g
i2
11 = bgi1

11, c
2
2 = bc12

for a certain factor b, which follows from (462,3) and (252). Moreover

(48) e122 = be113 , (Xe2)23e
22
2 = be212 = (Xe2)13

in virtue of (47, 241, 251). One can observe that e113 = −c12 �= 0 (otherwise c12 = c22 = 0
by (473), which implies (321) and the contradiction C = c) and we shall suppose that

e212 �= 0. It follows that the third order summands e1 and Xe2 are proportional,
therefore the function

(49) e = e1 −KXe2
(

K =
e113
e212
= − c12

c12a
1 − (C − c)g1111

)

(use (211) as concerns the coefficient K) is of a lower order. We will see that e is

of order two and e22 − be12 �= 0, see Section 12 for the proof. It follows that the EL
system e1 = e2 = 0 is equivalent to the second order system e = e2 = 0 which can
be moreover adapted as

(50) w12 = E(. . .), w22 = F (. . .) (. . . = x, w10 , w
2
0 , w

3
0, w

1
1 , w

2
1).
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Formally the system (35) appears here again and some concepts may be introduced

analogously as in Section 8: the domain D(E, F ) ⊂ �
6 , the A-curves satisfying (36)

and the C-curves satisfying moreover dw11 − E dx = dw21 − F dx = 0.
A certain distinction however occurs: ᾰ and dᾰ cannot be regarded as forms on

D(E, F ) at the present time due to the coefficient c which depends on the variables
w12 , w

2
2 . We will nevertheless see that the Weierstrass-Hilbert method does not fail

if the arguments of Section 8 are slightly modified.
If (45) is inserted for the variables w12 , w

2
2 occurring in c, then ᾰ becomes a dif-

ferential form on D(E, F ). (In terms of the previous parts, we use the restriction
e∗ᾰ on the EL subspace E ⊂ L.) Then dᾰ regarded as a form on D(E, F ) has

four-dimensional Lagrangian subspaces l : L ⊂ D(E, F ); we again refer to the next
sections. Assume that x, w10 , w

2
0 , w

3
0 can be taken for local coordinates on L, and a

C-curve P (t) ∈ L (0 � t � 1) is embedded into I (in classical terms: in the relevant
Mayer field). Then the same reasoning as in Section 8 (i.e., the decomposition (10)

with the “projection” R(t) ∈ L of a C-curve Q(t) with the same endpoint) leads to
the common Weierstrass function

(51) E = F (. . . , w11 , w
2
1)− F (. . . , r11 , r

2
1)−

∑
F i
1(. . . , r

1
1 , r
2
1)(w

i
1 − ri

1)

where . . . = x, w10 , w
2
0 , w

3
0 and F = f + l∗c · g. (That means, the variables

w11 = r11 , w
2
1 = r21 , w

1
2 = E(. . . , r11 , r

2
1), w

2
2 = F (. . . , r11 , r

2
1)

are “freezed” in the coefficient c.) The function E resolves the extremality, e.g., the
minimum is guaranteed if E � 0. This is a curious result since E is not a “strongly
definite” function: F = F (. . . , w11 , w

2
1) represents the graph of a developable surface

(depending on parameters . . . = x, w10 , w
2
0 , w

3
0) and E ≡ 0 is vanishing along the

generating lines.

���������	
. Even some “semi-definite” variational problems (with a not
definite second differential) may be regarded as nondegenerate from our point of

view.

11.Continuation. Let us briefly mention the Lagrangian subspaces l : L ⊂
D(E, F ) satisfying l∗ᾰ = dW where W = W (x, w10 , w

2
0 , w

3
0) is an unknown func-

tion, i.e., we again have the conditions (29). In our case, however, (30) cannot be
taken for local coordinates on the six-dimensional space D(E, F ). By a lucky acci-

dent, the functions f11 − cg11 , f
2
1 − cg21 are functionally dependent on every level set

dx = dw10 = dw
2
0 = dw

3
0 = dc = 0 as follows from the identity det (f

ij
11− cgij

11) = 0.
It follows that locally

f21 − cg21 = F (. . . , f11 − cg11, c) (. . . = x, w10 , w
2
0, w

3
0)
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for an appropriate function F . Analogously H = H(. . . , f11 − cg11 , c) for the function

(381). Altogether taken, equations (29) imply the involutive system

Wx +H(. . . , W 1
0 , W 3

0 ), W
2
0 = F (. . . , W 1

0 , W
3
0 )

for the function W . This is a substitute for the classical HJ equation.
���������	
. As in Section 3.

12.Complements. In order to cope with the references of Section 10, let us
denote ωs ≡ ω1s + bω2s and let us state the congruence

(52) dᾰ ∼= (e1π + e2ω10) ∧ dx+
( ∑

ci
1ω

i
1 + c12ω2

)
∧ π + (C − c)ω1 ∧ ω0

which is a mere transcription of (19) if the identities (461, 472,3) are applied. Recalling
that C �= c and c12 �= 0, we have the module

Adj dᾰ =

{
π, ω0, e

2ω10 , ω1, e
1 dx−

∑
ci
1ω

i
1 − ci

2ω2, e
2 dx

}

=

{
dx, dw10 , dw

2
0 , dw

3
0 , dw

1
1 + b dw21 ,

∑
ci
1 dw

i
1 + c12( dw

1
2 + b dw22)

}

in the region where e2 �= 0. This is a completely integrable module whence

d( dw12 + b dw22) ∼= db ∧ dw22 ∼= 0 (modAdj dᾰ)

and it follows that

(53) db ∼= b11 dw
1
1 + b21 dw

2
1 ∈ Adj dᾰ, b21 = bb11.

Of course, the identity (532) holds true also at the exceptional points where e2 = 0.

Let us restrict the form dᾰ to the subspace defined by e2 = 0 which moreover

implies the identity

(54) 0 = de2 ∼= Xe2 dx+
∑

e2i1ω
i
1 + e212ω2 (modω10 , ω

2
0 , ω

3
0),

see (482) as concerns the last summand. After this restriction, the congruence (42)
again simplifies to

(55) dᾰ ∼= π ∧
(
e dx−

∑
Kiωi

1

)
+ (C − c)g1111ω1 ∧ ω0 (Ki ≡ ci

1 −Ke2i1).
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One can observe with pleasure that the function (49) is engaged. Then the identity

d2ᾰ = 0 provides the useful formula

e22 − be12 = K2 − bK1

by comparison of the coefficients of the summands π ∧ ω22 ∧ dx. We should like to
prove that this is a nonvanishing expression. However, assuming K2 = bK1, (55)
can be rewritten as

dᾰ ∼= π ∧ (e dx+K1ω1) + (C − c)g1111ω1 ∧ ω0

and (assuming b11 �= 0, which is the general case) the summand

(C − c)g1111 dω1 ∧ ω0 ∼= (C − c)g1111 db ∧ ω21 ∧ ω0 ∼= (C − c)g1111b
1
1ω1 ∧ ω21 ∧ ω0

occurring in the identity dᾰ = 0 leads to the contradiction C = c. (We have tacitly
employed several simple formulae, e.g.,

dωs = dx ∧ ωs+1 + db ∧ ω2s , db ∼= b11ω
1
1 + b21ω

2
1 = b11ω1,

(22, 23) and (54) to eliminate the form ω2.)

Since K1, K2 cannot both vanish, one can easily see that

Adj dᾰ =

{
ω0, ω1, K

1π, K2π, e dx−
∑

Kiωi
1

}

is a four-dimensional module even after performing the total restriction by the con-

ditions e = e2 = 0 (hence after the substitution (50)). Therefore two requirements
are needful to obtain the Lagrange subspace in the six-dimensional space D(E, F ) in

good accordance with Section 10.
���������	
. Some formal properties of the problem cannot be always eas-

ily obtained by direct calculations and our generalized PC forms may provide an
indispensable tool in this respect.

13. Implementation. We will be interested in the existence of functions f , g

satisfying (46). The condition (461) are equivalent to the congruences

df i
1
∼= C dgi

1 (mod dx, dw10 , dw
2
0 , dw

3
0).

It follows that dC ∧ dgi
1
∼= 0, consequently either dC ∼= 0 (mod dw11 , dw21) or dg12 ∧

dg22 = 0. The first case is easy: f = Aw11+Bw21+Cg+D with coefficients independent
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of w11 , w
2
2 and it does not need any comments. The second case automatically implies

(462) hence (463) and it will be mentioned in more detail.

It is well-known (cf. II 5) that a function g satisfying (462) appears if we take a

system of equations

(56) P +Qw11 +Rw21 = g, P ′ +Q′w11 +R′w21 = 0 (′= ∂/∂z),

where P, Q, R are in principle arbitrary functions of the variables x, w10 , w
2
0, w

3
0 and a

new parameter z. Assuming P ′′+Q′′w11+R′′w21 �= 0, then z = z(x, w10 , w
2
0, w

3
0 , w

1
1 , w

2
1)

calculated from (562) and substituted into (561) provides the sought function g.

Clearly

(57) g11 = Q, g21 = R, g1111 = Q′z11 , g
12
11 = Q′z21 = R′z11 , g

22
11 = R′z21 .

Assuming dg11 �= 0, dg21 �= 0 for better clarity, (461) implies the existence of local
identities of the kind

(58) f11 = G(. . . , g11), f
2
1 = F (. . . , g21) (. . . = x, w10 , w

2
0 , w

3
0)

with the compatibility ∂G/∂g11 = ∂F/∂g21. Also the identities

(59) P +Gw11 + Fw21 = f, P ′ +
∂G

∂g11
w11 +

∂F

∂g21
w21 = 0

(where P = P (. . . , z), G = G(. . . , Q), F = F (. . . , R)) analogous to (56) immediately
follow. If P is chosen such that

(60) P = P ′ ∂G

∂g11
= P ′ ∂F

∂g21
,

then (562, 592) determine the same function z. Conversely, if P, F, G are chosen
to satisfy the compatibility and (60), the conditions (46) are satisfied with C =

∂G/∂g11 = ∂F/∂g21.

���������	
. We have two developable surfaces u = f(. . . , w11 , w
2
1), u =

F (. . . , w11 , w
2
1) in the three-dimensional space of the variables u, w11, w

2
1 (where . . . =

x, w10 , w
2
0 , w

3
0 are parameters). Equations (562, 592) determine the vertical projections

of the generating lines (depending on the parameter z) and are identical by virtue
of (60).
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