
Mathematica Bohemica

Ralucca Gera; Ping Zhang
Realizable triples for stratified domination in graphs

Mathematica Bohemica, Vol. 130 (2005), No. 2, 185–202

Persistent URL: http://dml.cz/dmlcz/134128

Terms of use:
© Institute of Mathematics AS CR, 2005

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134128
http://dml.cz


130 (2005) MATHEMATICA BOHEMICA No. 2, 185–202

REALIZABLE TRIPLES FOR STRATIFIED

DOMINATION IN GRAPHS� ��� � ��� � � � 	 �
, 
 � �  � � � �  , Kalamazoo
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Abstract. A graph is 2-stratified if its vertex set is partitioned into two classes, where
the vertices in one class are colored red and those in the other class are colored blue. Let
F be a 2-stratified graph rooted at some blue vertex v. An F -coloring of a graph G is a
red-blue coloring of the vertices of G in which every blue vertex v belongs to a copy of F
rooted at v. The F -domination number γF (G) is the minimum number of red vertices in
an F -coloring of G. In this paper, we study F -domination where F is a red-blue-blue path
of order 3 rooted at a blue end-vertex. It is shown that a triple (A,B, C) of positive integers
with A 6 B 6 2A and B > 2 is realizable as the domination number, open domination
number, and F -domination number, respectively, for some connected graph if and only if
(A,B, C) 6= (k, k, C) for any integers k and C with C > k > 2.
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1. Introduction

An area of graph theory that has received considerable attention in recent decades

is domination. Although initiated by Berge [1] and Ore [9] in 1958 and 1962, re-
spectively, it was a paper by Cockayne and Hedetniemi [5] in 1977 that began the

popularity of the subject and has led to a theory. This subject is based on a very
simple definition: A vertex v dominates a vertex u in a graph G if either u = v or

u is adjacent to v. Over the years a large number of variations of domination have
surfaced. Each type of domination is based on a condition under which a vertex v

dominates a vertex u in a graph G. As with standard domination, many definitions
of domination state that a vertex v dominates a vertex u in a graph G if either

u = v or u satisfies some condition involving v. Then there are those definitions of
domination that state a vertex v dominates a vertex u not if u = v but if u satisfies
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some condition involving v. The simplest example of this is total or open domina-

tion where v dominates u if u is adjacent to v. An advantage of the former type
of domination is that every graph G contains a set of vertices (called a dominating
set) such that every vertex of G is dominated by some vertex of S; while this is

not necessarily the case for the latter type of domination. For example, graphs with
isolated vertices contain no open dominating sets.

In 1999 a new way of looking at domination was introduced in [3] that encompassed
several of the best known domination parameters defined earlier (including standard

domination and open domination). This gave rise to an infinite class of domination
parameters, each of which is defined for every graph. This new view of domination

was based on a simple but fundamental idea introduced by Rashidi [10] in 1994. A
graph whose vertex set V (G) is partitioned is a stratified graph. If V (G) is partitioned
into k subsets, then G is k-stratified. In particular, the vertex set of a 2-stratified
graph is partitioned into two subsets. Typically, the vertices of one subset in a 2-

stratified graph are considered to be colored red and those in the other subset are
colored blue. A red-blue coloring of a graph G is an assignment of colors to the

vertices of G, where each vertex is colored either red or blue. In a red-blue coloring,
however, all vertices of G may be colored the same. A red-blue coloring in which at

least one vertex is colored red and at least one vertex is colored blue and thereby
produces a 2-stratification of G.

We now describe how domination was defined in [3] with the aid of stratification.
Let F be a 2-stratified graph in which some blue vertex r is designated as the “root”

of F . Thus F is said to be rooted at r. Since F is 2-stratified, necessarily F contains
at least two vertices, at least one of which is colored red and at least one of which

is colored blue. Of course, the root r is blue but there may be other blue vertices
in F . Now let G be a graph. By an F -coloring of a graph G, we mean a red-blue
coloring of G such that for every blue vertex u of G, there is a copy of F in G with

r at u. Therefore, every blue vertex u of G belongs to a copy F ′ of F rooted at
u. A red vertex v in G is said to F -dominate a vertex u if u = v or there exists

a copy F ′ of F rooted at u and containing the red vertex v. The set S of red
vertices in a red-blue coloring of G is an F -dominating set of G if every vertex of

G is F -dominated by some vertex of S, that is, this red-blue coloring of G is an
F -coloring. The minimum number of red vertices in an F -dominating set is called

the F -domination number γF (G) of G. An F -dominating set with γF (G) vertices
is a minimum F -dominating set. The F -domination number of every graph G is

defined since V (G) is an F -dominating set.

To illustrate these concepts, consider the three 2-stratified graphs H1, H2, and

H3 and the graph G of Figure 1, where solid vertices denote red vertices and open
vertices denote blue vertices. Each of the 2-stratified graphs H1, H2, and H3 has
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the same 2-stratification of the path P4 of order 4 but is rooted at a different blue

vertex. A minimum Hi-dominating set of G with exactly i red vertices is also shown
in that figure for i = 1, 2, 3. Therefore, γHi(G) = i for i = 1, 2, 3. We refer to the
books [4], [7] for graph theory notation and terminology not described in this paper.

H1 :

r�
H2 : r

�
H3 :

r

�
G :

γH1(G) = 1 γH2(G) = 2 γH3(G) = 3

Figure 1. A minimum Hi-dominating set (i = 1, 2, 3) for a graph G.

2. F3-Domination in graphs

For a graph G, the domination number γ(G) of G is the minimum number of
vertices in a dominating set for G. A dominating set of cardinality γ(G) is called a
minimum dominating set. The minimum cardinality of an open dominating set is the
open domination number γo(G) of G. An open dominating set of cardinality γo(G)
is a minimum open dominating set for G. There are five possible choices for the
2-stratified P3 rooted at a blue vertex v shown in Figure 2. It was shown in [3] that

if G is a connected graph of order at least 3, then γF1(G) = γ(G), γF2(G) = γo(G),
γF4(G) = γr(G), and γF5(G) = γ2(G), where γ(G) is the domination number, γo(G)
is the open domination number, γr(G) is the restrained domination number and
γ2(G) is the 2-domination number (see [7, 8]). The parameter γF3 is new and has

been studied in [6]. In this work, we continue the study of F3-domination.

F1

v�
F2

v�
F3

v�
F4

v

�
F5

v

�
Figure 2. The five 2-stratified graphs P3.
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For simplification, we write F = F3 unless otherwise stated. Since the 2-stratified
graph F contains exactly one red vertex, 1 6 γF (G) 6 n for every connected graph
G of order n. The following result was presented in [6].

Theorem 2.1. Let G be a connected graph of order n > 3. Then γF (G) = n

if and only if G = K1,n−1, and γF (G) = 1 if and only if G contains a vertex

whose neighborhood is an open dominating set of G. If G is a bipartite graph, then

γF (G) > 2. In particular, if T is a tree, then γF (T ) = 2 if and only if T is a double
star.

For every nontrivial connected graph G, γ(G) 6 γo(G). Other than this require-
ment, there is no other restriction on the relative values of γ(G), γo(G), and γF (G).
That is, it is possible that (i) γF (G) 6 γ(G) 6 γo(G), (ii) γ(G) 6 γo(G) 6 γF (G),
and (iii) γ(G) 6 γF (G) 6 γo(G). This gives rise to the following natural question.

Problem 2.2. For which triples (A,B, C) of positive integers, does there exist a
connected graph G such that γ(G) = A, γo(G) = B, and γF (G) = C?
Since γ(G) 6 γo(G) 6 2γ(G) and γo(G) > 2 for every nontrivial connected graph

G, no triple (A,B, C) of positive integers with A > B, B > 2A, or B = 1 can be
realized, respectively, as the domination number, the open domination number, and
the F -domination number of any connected graph. For this reason, by a triple, we

mean an ordered triple (A,B, C) of positive integers with A 6 B 6 2A and B > 2.
We define a triple (A,B, C) to be realizable if there exists a connected graph G such

that γ(G) = A, γo(G) = B, and γF (G) = C. Observe that γ(K3) = 1, γo(K3) = 2,
and γF (K3) = 1. For C > 2, γ(K1,C−1) = 1, γo(K1,C−1) = 2, and γF (K1,C−1) = C.
Therefore, we have the following.

Observation 2.3. Every triple (1, 2, C) is realizable.

In [6] the existence of graphs G was investigated for which γF (G) = 1 and γ(G)
and γo(G) could have a wide variety of values. Also, the existence of graphs G was

studied for which γ(G) = γF (G) = γo(G) = k for various values of k. In particular,
the following two results were obtained.

Theorem 2.4. For each pair A,B of integers with 1 6 A 6 B 6 2A and B > 2,
there exists a connected graphG with γF (G) = 1 such that γ(G) = A and γo(G) = B.

Theorem 2.5. For each integer k > 2, there exists a connected graph G such

that γ(G) = γF (G) = γo(G) = k.

Theorems 2.4 and 2.5 now have two immediate corollaries.
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Corollary 2.6. Every triple (A,B, 1) is realizable.

Corollary 2.7. Every triple (k, k, k) is realizable for each integer k > 2.

Not every triple is realizable, however. In order to show this, the following lemma
from [6] is useful.

Lemma 2.8. Let G be a connected graph of order at least 3. If H is a connected
subgraph of G, then

γF (G) + |V (H)| 6 |V (G)|+ γF (H).

In particular, if H is a spanning subgraph of G, then γF (G) 6 γF (H).

Proposition 2.9. Let k > 2 be an integer. If G is a connected graph with

γ(G) = γo(G) = k, then γF (G) 6 k and so no triple (k, k, C) is realizable for C > k.���������
. Let G be a connected graph with γ(G) = γo(G) = k and let S be a

minimum open dominating set of G. Necessarily S is also a minimum dominating

set. Let v1 ∈ S. Since S is a minimum dominating set and G is connected, there
exists u1 /∈ S such that u1 is dominated by v1. Since S is a minimum dominating

set, there is u2 /∈ S that is not dominated by v1. Let v2 ∈ S such that v2 dominates
u2. If k > 3, then there is u3 /∈ S that is not dominated by any vertex in {v1, v2}.
Let v3 ∈ S such that v3 dominates u3. Continuing in this manner, we arrive at
the set U = {u1, u2, . . . , uk}. We claim that U is an F -dominating set of G. Let

x ∈ V (G). If x = ui for 1 6 i 6 k, then x is F -dominated by itself. If x = vi for
some i (1 6 i 6 k), then since S is a minimum open dominating set of G, there is a

vj ∈ S that is adjacent to vi. Then vi is F -dominated by uj . Otherwise, x /∈ U ∪ S.
Since S is a dominating set, x is adjacent to some vertex vi (1 6 i 6 k). Then x is

F -dominated by ui. Thus, γF (G) 6 |U | = k. Therefore, (k, k, C) is nonrealizable for
any C > k. �

3. Which triples are realizable?

As we have seen, there are infinitely many realizable triples and infinitely many
nonrealizable triples. We now investigate the problem of determining which triples

are realizable. To simplify the notation, we classify triples into the following three
categories:

A triple (A,B, C) is of type I if C 6 A 6 B;
A triple (A,B, C) is of type II if A 6 B 6 C;
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A triple (A,B, C) is of type III if A 6 C 6 B.
Some additional information and notation from [6] will be useful to us.

Lemma 3.1. Let v be an end-vertex of a connected graph G that is adjacent to

the vertex u. Furthermore, let c be an F -coloring of G. Then v is colored red by c

if either of the following two conditions are satisfied: (1) deg u = 2, (2) u is colored

red by c.

For positive integers i, j, and t, define the graph Ji to be a copy of H1 in Figure 3,

where V (Ji) = {ui,0, ui,1, ui,2, . . . , ui,6} such that ui,p corresponds to up in H1 for
0 6 p 6 6; define the graph Gj to be a copy of H2 in Figure 3 where V (Gj) =
{vj,0, vj,1, vj,2, vj,3} such that vj,q corresponds to vq in H2 for 0 6 q 6 3; and define
the graph It to be a copy of H2 in Figure 3, where V (It) = {wt,0, wt,1, wt,2, wt,3}
such that wt,q corresponds to vq in H2 for 0 6 q 6 3.

u0

u6

u5

u4u3

u2

u1

H1

v2

v0

v1

v3

H2

Figure 3. The graphs H1 and H2.

3.1 Realizable triples of type I. In this section, we show that every triple of
type I is realizable.

Theorem 3.2. Every triple (A,B, C) of type I is realizable.���������
. By Corollaries 2.7 and 2.6, the result holds for C = A = B or C = 1.

Thus it suffices to consider three cases, according to whether 2 6 C < A < B 6 2A,
2 6 C < A = B, or 2 6 C = A < B 6 2A. We will only prove the first case in detail.���! �"

I. 2 6 C < A < B 6 2A. Let A = C + k and B = C + l. Since C < A <

B 6 2A, it follows that 1 6 k < l 6 C + 2k. We consider three cases, according to
whether k < l < 2k, 2k 6 l < C + 2k, or l = C + 2k.���! �"

1. k < l < 2k. Let G be the graph obtained from the graphs Ji, Gj and It

(1 6 i 6 l− k, 1 6 j 6 2k− l, and 1 6 t 6 C − 1) by identifying all vertices ui,0, vj,0

and wt,3 and labeling the identified vertex v.

We first show that γF (G) = C. Since {v} ∪ {wt,2 : 1 6 t 6 C − 1} is an F -
dominating set, γF (G) 6 C. On the other hand, let c be a minimum F -coloring of
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G. If v ∈ Rc, then wt,1 can be F -dominated only by some vertex in V (It) − {v}
for 1 6 t 6 C − 1. This implies that Rc contains at least one vertex from each set
V (It) − {v} for 1 6 t 6 C − 1. Hence γF (G) = |Rc| > 1 + (C − 1) = C. Thus, we
may assume v /∈ Rc. Since wt,2 must be F -dominated by a vertex in V (It) − {v}
for 1 6 t 6 C − 1 and ui,3 is only F -dominated by a vertex in V (Ji) − {v} for
1 6 i 6 l− k, it follows that

γF (G) = |Rc| > (C − 1) + (l − k) > C,

and so γF (G) = C. Furthermore, observe that

S = {v} ∪ {ui,3 : 1 6 i 6 l− k} ∪ {vj,1 : 1 6 j 6 2k − l} ∪ {wt,1 : 1 6 t 6 C − 1}

is a minimum dominating set of G and S ∪ {ui,2 : 1 6 i 6 l− k} is a minimum open
dominating set of G. Therefore, γ(G) = A and γo(G) = B.���! �"

2. 2k 6 l < C + 2k. Let G be the graph obtained from the graphs Ji and

Gj for 1 6 i 6 l − k and 1 6 j 6 C + 2k − l − 1 by (1) identifying all vertices ui,0

and vj,0 and labeling the identified vertex v and (2) adding C − 1 new vertices wt

(1 6 t 6 C − 1) and joining each wt to v.
We first show that γF (G) = C. Since {v}∪{wt : 1 6 t 6 C−1} is an F -dominating

set, γF (G) 6 C. On the other hand, let c be a minimum F -coloring of G. If v ∈ Rc,
then wt ∈ Rc for 1 6 t 6 C −1 and so γF (G) = |Rc| > C. Thus, we may assume that
v /∈ Rc. Since ui,3 is only F -dominated by a vertex in V (Ji)− {v} for 1 6 i 6 l − k

and vj,3 is only F -dominated by a vertex in V (Gj)− {v} for 1 6 j 6 C + 2k− l− 1,
it follows that

γF (G) = |Rc| > (l − k) + (C + 2k − l − 1) = C + k − 1 > C

and so γF (G) = C. Furthermore, since

S = {v} ∪ {ui,3 : 1 6 i 6 l − k} ∪ {vj,1 : 1 6 j 6 C + 2k − l − 1}

is a minimum dominating set of G and S ∪ {ui,2 : 1 6 i 6 l − k} a minimum open
dominating set of G, it follows that γ(G) = A and γo(G) = B.���! �"

3. l = C + 2k. In this case B = 2A. Let p > 2 be an integer. For each
integer i with 1 6 i 6 A − C + 1, let Mi be the graph obtained from the path
ui, yi, vi by (1) adding 2p new vertices ri,j (1 6 j 6 2p), (2) joining each vertex

ri,j (1 6 j 6 p) to ui and yi, and (3) joining each vertex ri,j (p + 1 6 j 6 2p)
to yi and vi (see Figure 4). The graph M is then obtained from the A − C + 1
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copies of Mi and a new vertex x by (1) joining x to y1 and to each vertex in the set

{ui, vi : 1 6 i 6 A − C + 1} and (2) joining vi to ui+1 for all i with 1 6 i 6 A − C
and vA−C+1 to u1. For each integer t with 1 6 t 6 C − 1, let Tt : wt,1, wt,2, wt,3 be a
copy of P3. Then the graph G is obtained from the graphsM and Tt (1 6 t 6 C − 1)
by joining each wt,1 (1 6 t 6 C − 1) to x.

Mi :

ui yi vi

ri,1

ri,p

ri,p+1

ri,2p

Figure 4. The graph Mi.

We first show that γF (G) = C. Since {x} ∪ {wt,3 : 1 6 t 6 C − 1} is an F -

dominating set, γF (G) 6 C. To show that γF (G) > C, let c be a minimum F -coloring
of G. By Proposition 3.1, wt,3 ∈ Rc for 1 6 t 6 C − 1. Since x, for example, is not

F -dominated by any vertex wt,3 (1 6 t 6 C − 1), it follows that γF (G) > C − 1.
Therefore, γF (G) = C. Moreover, observe that

{wt,2 : 1 6 t 6 C − 1} ∪ {yi : 1 6 i 6 A− C + 1}

is a minimum dominating set of G and that

{wt,1, wt,2 : 1 6 t 6 C − 1} ∪ {ui, vi : 1 6 i 6 A− C + 1}

is a minimum open dominating set of G. Thus γ(G) = A and γo(G) = 2A.���! �"
II. 2 6 C < A = B. Let A = C + k, where k > 1. For C = 2, let G be the

graph obtained from the graphs Gj for 1 6 j 6 A− 1 by identifying all vertices vj,0

and labeling the identified vertex by v and adding one new vertex u together with

the edge uv. Then {v, u} is a minimum F -dominating set, γF (G) = 2. Furthermore,
since {v}∪{vj,1 : 1 6 j 6 A−1} is both a minimum dominating set and a minimum
open dominating set of G, it follows that γ(G) = γo(G) = A. Now assume that
C > 3. For each i with 1 6 i 6 C − 2, let Xi be the graph obtained from the 5-cycle

xi,1, xi,2, xi,3, xi,4, xi,5, xi,1 by adding a new vertex xi,0 and joining xi,0 to xi,1,
xi,3, and xi,4. Now, let G be the graph obtained from the graphs Xi and Gj for

1 6 i 6 C − 2 and 1 6 j 6 A− C + 1 by (1) identifying all vertices xi,0 and vj,0 and
labeling the identified vertex by v and (2) adding a new vertex u and the edge uv.
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Since {v, u} ∪ {xi,1 : 1 6 i 6 C − 2} is a minimum F -dominating set, γF (G) = C.
Since

{v} ∪ {xi,1 : 1 6 i 6 C − 2} ∪ {vj,1 : 1 6 j 6 A− C + 1}

is both a minimum dominating set and a minimum open dominating set of G, it
follows that γ(G) = γo(G) = A.���! �"

III. 2 6 C = A < B 6 2A. Let B = A + l, where 1 6 l 6 A. We consider
two cases, according to whether 1 6 l < A, or l = A.���! �"

1. 1 6 l < A. If A = 2 and B = 3, then let G be the graph obtained

from the graph H1 by adding a new vertex u and the edge u0u. Then {u, u0} is a
minimum F -dominating set, {u0, u4} is a minimum dominating set and {u0, u4, u5}
is a minimum open dominating set. Therefore, γ(G) = γF (G) = 2 and γo(G) = 3.
Thus, we can assume that A > 3. Let G be the graph obtained from the graphs

Ji and Gj for 1 6 i 6 l and 1 6 j 6 A − l − 1 by (1) identifying all vertices ui,0

and vj,0 and labeling the identified vertex v and (2) adding A − 1 new vertices wt

(1 6 t 6 A− 1) and joining each wt to v. (Note that if l = A − 1, then there is no
graph Gj in the construction of G.) Since {v} ∪ {wt : 1 6 t 6 A− 1} is a minimum
F -dominating set, γF (G) = A. Furthermore, since

S = {v} ∪ {ui,3 : 1 6 i 6 l} ∪ {vj,1 : 1 6 j 6 A− l − 1}

is a minimum dominating set of G and S ∪ {ui,2 : 1 6 i 6 l} is a minimum open
dominating set of G, it follows that γ(G) = A and γo(G) = B.���! �"

2. l = A. In this case, B = 2A. Let p > 2 be an integer. Let M be
the graph obtained from the graph M1 in Figure 4 by adding a new vertex x and

joining x to each vertex in {u1, v1, y1}. For each integer j with 1 6 j 6 A − 1,
let Tj : wj,1, wj,2, wj,3 be a copy of P3. Then the graph G is obtained from the
graphs M and Tj (1 6 j 6 A − 1) by joining each wj,1 (1 6 j 6 A − 1) to x.

Since {x} ∪ {wj,3 : 1 6 j 6 A − 1} is a minimum F -dominating set, γF (G) =
A. Since {y1} ∪ {wj,2 : 1 6 j 6 A − 1} is a minimum dominating set of G and

{x, y1} ∪ {wj,1, wj,2 : 1 6 j 6 A − 1} is a minimum open dominating set of G, it
follows that γ(G) = A and γo(G) = 2A. �

3.2 Realizable triples of type II. Recall that a triple (A,B, C) is of type II if
A 6 B 6 C. By Proposition 2.9, each triple (k, k, C) of type II is nonrealizable for
C > k > 2. In this section we show that all other triples of type II are realizable,
beginning with those triples for which B = 2A.
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Theorem 3.3. Every triple (A,B, C) of type II with B = 2A is realizable.���������
. By Observation 2.3, every triple (1, 2, C) is realizable for each positive

integer C. Thus we may assume that A > 2. Let P : v1, v2, . . . , v3A−2 be a path of
order 3A− 2 and let G be the caterpillar obtained from P by adding C −A− 1 > 1
pendant edges at each vertex v3i+1 for 0 6 i 6 A − 1. For A = 2, 3, 4, the graph G

is drawn in Figure 5.

A = 2: v1 v2 v3 v4

A = 3: v1 v2 v3 v4 v5 v6 v7

A = 4: v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 5. The graph G for A = 2, 3, 4.

For each vertex v3i+1 (0 6 i 6 A − 1), let Wi = N(v3i+1) − V (P ). We show that
γF (G) = C. Since

S = W0 ∪ {v1} ∪ {v3i+2 : 0 6 i 6 A− 2} ∪ {wA−1},

where wA−1 ∈ WA−1, is an F -dominating set, γF (G) 6 |S| = C. To show that
γF (G) > C, let c be a minimum F -coloring of G.
First, we show that if v1 ∈ Rc, then |Rc| > C. Suppose that v1 ∈ Rc. Then

necessarily, W0 ⊆ Rc. We verify the following two claims.�$#%�'&)(
1. At least one vertex in {v3i+2, v3i+3, v3i+4} ∪ Wi+1 must be red

for each i with 0 6 i 6 A − 3. Assume, to the contrary, that each vertex in
{v3j+2, v3j+3, v3j+4} ∪ Wj+1 is blue for some j with 0 6 j 6 A − 3. Then a vertex
in Wj+1 can only be F -dominated by v3j+5 and so v3j+5 ∈ Rc. However then, v3j+4

is not F -dominated by any vertex in Rc, a contradiction. Therefore, at least one
vertex in {v3i+2, v3i+3, v3i+4} ∪Wi+1 is red for 0 6 j 6 A− 3.�$#%�'&)(

2. At least two vertices in {v3A−4, v3A−3, v3A−2} ∪ WA−1 must be red.

Since wA−1 ∈ WA−1 is only F -dominated by v3A−3 or by a vertex in WA−1, either
v3A−3 is red or some vertex in WA−1 is red. Furthermore, since v3A−2 is only
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F -dominated by v3A−2 or by v3A−4, it follows that v3A−2 ∈ Rc or v3A−4 ∈ Rc.

Therefore, at least two vertices in {v3A−4, v3A−3, v3A−2} ∪WA−1 are red.

Since {v1} ∪W0 ⊆ Rc, it then follows by Claims 1 and 2 that

γF (G) = |Rc| > 1 + |W0|+ (A− 2) + 2 = 1 + (C −A− 1) + (A− 2) + 2 = C.

Therefore, if v1 ∈ Rc, then |Rc| > C. We now consider two cases.���! �"
1. Suppose that v3i+1 ∈ Rc for some i (0 6 i 6 A − 1). Let j be the

smallest integer i such that v3i+1 ∈ Rc. If j = 0, then v1 ∈ Rc and we have seen

that |Rc| > C. Hence, we may assume that 1 6 j 6 A − 1. Thus v3j+1 ∈ Rc and
Wj ⊆ Rc. If j < A− 1 and j 6 i 6 A− 2, then an argument similar to the situation
where v1 ∈ Rc shows that at least one vertex in {v3i+2, v3i+3, v3i+4}∪Wi+1 must be
red. We now show that if 0 6 i 6 j−1, then some vertex in {v3i+1, v3i+2, v3i+3}∪Wi

is red. If j > 2, then we first consider v3i+1, where 1 6 i < j. Thus v3i+1 is blue
and is either F -dominated by v3i+3 or by v3i−1. If v3i+1 is F -dominated by v3i+3,

then v3i+3 ∈ Rc. If v3i+1 is F -dominated by v3i−1, then v3i−1 ∈ Rc and v3i is blue.
Hence either v3i+2 ∈ Rc or wi ∈ Rc for some wi ∈ Wi. For i = 0, the blue vertex v1

can only be F -dominated by v3 and the blue vertex v2 can only be F -dominated by
a vertex in W0. Thus at least two vertices in {v1, v2, v3} ∪ W0 must be red, which

implies that

γF (G) = |Rc| > 2 + (j − 1) + 1 + (C −A − 1) + (A− 2− j + 1) = C.���! �"
2. Suppose that v3i+1 is blue for every integer i (0 6 i 6 A − 1). We

claim that v3i+1 is blue and v3i+3 is red for every integer i (0 6 i 6 A − 2). We
verify this by induction. First, because v1 is blue, v1 can only be F -dominated by
v3 and so v3 ∈ Rc. In addition, this says that v2 is blue and so some vertex in W0

is red. Assume that v3k+1 is blue and v3k+3 is red, where 0 6 k < A − 2. By the
assumption in Case 2, v3k+4 is blue. Since v3k+4 is blue and v3k+3 is red, v3k+4 can

only be F -dominated by v3k+6 and so v3k+6 is red. This verifies the claim. Thus
v3(A−2)+3 = v3A−3 is red. If v3A−2 is blue, then v3A−2 is not F -dominated by any

vertex. Hence v3A−2 ∈ Rc and so WA−1 ⊆ Rc as well. Therefore,

γF (G) = |Rc| > (A− 1) + 1 + 1 + (C −A − 1) = C,

as desired. Furthermore, since {v3i+1 : 0 6 i 6 A− 1} is a minimum domination set
and for wi ∈ Wi with 0 6 i 6 A− 1, {v3i+1, wi : 0 6 i 6 A− 1} is a minimum open
domination set, γ(G) = A and γo(G) = 2A = B. �
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It remains to consider those triples (A,B, C) of type II with B 6= 2A. For a
positive integer α, let Lα be the graph shown in Figure 6. Since {w, y} is a minimum
dominating set, {w, x, y} is a minimum open dominating set, and {w, x} ∪ {wi : 1 6
i 6 α} is a minimum F -dominating set, γ(Lα) = 2, γo(Lα) = 3, and γF (Lα) = α+2
for every integer α > 1.

Lα :

z

y

x

w

yα

y2

y1w1

w2

wα

Figure 6. The graph Lα.

Theorem 3.4. Let (A,B, C) be a triple of type II such that B 6= 2A. If (A,B, C) 6=
(k, k, C) where C > k > 2, then (A,B, C) is realizable.���������

. Observe that A > 2. By Corollary 2.7 and Proposition 2.9, it suffices
to consider two cases, according to whether 2 6 A < B < C or 2 6 A < B = C.���! �"

I. 2 6 A < B < C. If A = 2, then B = 3, and C > 4. Note that the graph
LC−2 has the desired properties. Thus, we may assume that A > 3. Let B = A + k

and C = A + l. Since A < B < 2A and B < C, it follows that 1 6 k 6 A − 1 and
k < l. We consider three cases, according to whether k = 1, 2 6 k 6 A − 2, or
k = A− 1.���! �"

1. k = 1. Let G be the graph obtained from the graph LC−2 and the
A − 2 graphs Gi (1 6 i 6 A − 2) by identifying all the vertices vi,0 and w and

calling the new vertex v. Since S = {v, x} ∪ {wj : 1 6 j 6 C − 2} is a minimum
F -dominating set, γF (G) = C. Observe that S = {v, y} ∪ {vi,1 : 1 6 i 6 A− 2} is a
minimum dominating set of G and S ∪ {x} is a minimum open dominating set of G;
so γ(G) = A and γo(G) = B.���! �"

2. 2 6 k 6 A− 2. Let G be the graph obtained from the graph LC−2 and
the graphs Ji, Gj for 1 6 i 6 k− 1 and 1 6 j 6 A− k− 1 by identifying all vertices
ui,0, vj,0 and w and labeling the identified vertex v. Since {v, x}∪{wt : 1 6 t 6 C−2}
is a minimum F -dominating set, γF (G) = C. Furthermore, since

S = {v, y} ∪ {ui,3 : 1 6 i 6 k − 1} ∪ {vj,1 : 1 6 j 6 A− k − 1}

is a minimum dominating set of G and S ∪{x}∪{ui,2 : 1 6 i 6 k− 1} is a minimum
open dominating set of G, it follows that γ(G) = A and γo(G) = A+ k = B.
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���! �"
3. k = A − 1. Then B = A + k = 2k + 1 and C = A + l = k + l + 1. Let

G be the graph obtained from the graph LC−2 and the graphs Ji for 1 6 i 6 k − 1
by identifying all vertices ui,0 and w and labeling the identified vertex v. Since
{v, x} ∪ {wj : 1 6 j 6 C − 2} is a minimum F -dominating set, γF (G) = C. Observe
that

S = {v, y} ∪ {ui,3 : 1 6 i 6 k − 1}
is a minimum dominating set of G and

S ∪ {x} ∪ {ui,2 : 1 6 i 6 k − 1}

is a minimum open dominating set of G; so γ(G) = A and γo(G) = B.���! �"
II. 2 6 A < B = C. If A = 2, then B = 3 and the graph L1 has the desired

properties. Thus, we may assume that A > 3. Let B = A + k. Since A < B < 2A,
it follows that 1 6 k < A. We consider three cases, according to whether k = 1,
2 6 k 6 A− 2, or k = A− 1.���! �"

1. k = 1. Let G be the graph obtained from a copy of the graph LB−2

and the A − 2 graphs Gi (1 6 i 6 A − 2) by identifying all the vertices vi,0 and w

and calling the new vertex v. Since {v, x} ∪ {wj : 1 6 j 6 B − 2} is a minimum
F -dominating set, γF (G) = B. Observe that

S = {v, y} ∪ {vi,1 : 1 6 i 6 A− 2}

is a minimum dominating set of G and S ∪ {x} is a minimum open dominating set
of G; so γ(G) = A and γo(G) = B.���! �"

2. 2 6 k 6 A− 2. Let G be the graph obtained from the graph LB−2 and

the graphs Ji, Gj for 1 6 i 6 k− 1 and 1 6 j 6 A− k− 1 by identifying all vertices
ui,0, vj,0 and w and labeling the identified vertex v. Since {v, x}∪{wt : 1 6 t 6 B−2}
is a minimum F -dominating set, γF (G) = B. Since

S = {v, y} ∪ {ui,3 : 1 6 i 6 k − 1} ∪ {vj,1 : 1 6 j 6 A− k − 1}

is a minimum dominating set of G and S ∪{x}∪{ui,2 : 1 6 i 6 k−1} it follows that
γ(G) = A and γo(G) = A+ k = B.���! �"

3. k = A − 1. Then B = A + k = 2k + 1. Let G be the graph obtained

from the graph LB−2 and the graphs Ji for 1 6 i 6 k − 1 by identifying all vertices
ui,0 and w and labeling the identified vertex v. Since {v, x} ∪ {wj : 1 6 j 6 B − 2}
is a minimum F -dominating set, γF (G) = B. Since

S = {v, y} ∪ {ui,3 : 1 6 i 6 k − 1}
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is a minimum dominating set of G and

S ∪ {x} ∪ {ui,2 : 1 6 i 6 k − 1}

is a minimum open dominating set of G, it follows that γ(G) = A. and γo(G) = B.
�

Combining Proposition 2.9 and Theorems 3.3 and 3.4, we have the following.

Corollary 3.5. A triple (A,B, C) of type II is realizable if and only if (A,B, C) 6=
(k, k, C) for any integers k and C with C > k > 2.

3.3 Realizable triples of type III. Recall that a triple (A,B, C) is of type III
if A 6 C 6 B. In this section we show that every triple (A,B, C) of type III is
realizable, beginning with those triples for which B = 2A.

Theorem 3.6. Every triple (A,B, C) of type III with B = 2A is realizable.���������
. By Proposition 2.3, (1, 2, 1) and (1, 2, 2) are realizable. Thus, we may

assume that A > 2. First, suppose that A = C. Let G be the graph obtained from the
cycle C3A : v1, v2, . . . , v3A, v1 by adding the pendant edge uiv3i+1 for 0 6 i 6 A− 1.
Since {v3i+2 : 0 6 i 6 A− 1} is a minimum F -dominating set, γF (G) = A. Observe
that S = {v3i+1 : 0 6 i 6 A− 1} is a minimum dominating set and S ∪{ui : 0 6 i 6
A− 1} is a minimum open dominating set; so γ(G) = A and γo(G) = 2A.
Next, suppose that A < C. If C > A + 2, then C − A − 1 > 1. Let G be the

graph constructed in Theorem 3.3, that is, let G be the caterpillar obtained from the
path P : v1, v2, . . . , v3A−2 of order 3A − 2 by adding C − A − 1 > 1 pendant edges
at each vertex v3i+1 for 0 6 i 6 A − 1. For each vertex v3i+1 (0 6 i 6 A − 1), let
Wi = N(v3i+1)− V (P ). For wA−1 ∈ WA−1,

S = W0 ∪ {v1} ∪ {v3i+2 : 0 6 i 6 A− 2} ∪ {wA−1},

is a minimum F -dominating set by the proof of Theorem 3.3. Thus γF (G) = |S| = C.
Furthermore, since {v3i+1 : 0 6 i 6 A − 1} is a minimum domination set and for
wi ∈ Wi with 0 6 i 6 A− 1, the set {v3i+1, wi : 0 6 i 6 A− 1} is a minimum open
domination set. Therefore, γ(G) = A and γo(G) = 2A = B.
Thus, we may assume that C = A+1. Let P : v1, v2, . . . , v3A−2 be a path of order

3A− 2 and let H be the caterpillar obtained from P by adding three pendant edges
at each vertex v3i+1 for 0 6 i 6 A − 1. For each vertex v3i+1 (0 6 i 6 A − 1), let
Wi = N(v3i+1)−V (P ). The graph G is then obtained from H by joining two vertices
in WA−1. For A = 2, 3, 4, the graph G is drawn in Figure 7.
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A = 2: v1 v2 v3 v4

A = 3: v1 v2 v3 v4 v5 v6 v7

A = 4: v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 7. The graph G for A = 2, 3, 4.

For wi ∈ Wi for i = 0,A− 1, where deg wA−1 = 2,

S = {w0, wA−1} ∪ {v3i : 1 6 i 6 A− 1}

is an F -dominating set and so γF (G) = |S| = A+ 1. To show that γF (G) > A+ 1,
let c be a minimum F -coloring of G.

First, we show that if v1 ∈ Rc, then |Rc| > A + 1 = C. Suppose that v1 ∈ Rc.

Then necessarily, W0 ⊆ Rc. We verify the following claim.�$#%�'&)(
. At least one vertex in {v3i+2, v3i+3, v3i+4} ∪ Wi+1 must be red for

each i with 0 6 i 6 A − 2. Assume, to the contrary, that each vertex in
{v3j+2, v3j+3, v3j+4} ∪ Wj+1 is blue for some j with 0 6 j 6 A − 2. First sup-
pose that 0 6 j 6 A− 3. Then a vertex in Wj+1 can only be F -dominated by v3j+5

and so v3j+5 ∈ Rc. However then, v3j+4 is not F -dominated by any vertex in Rc,

a contradiction. Next suppose that j = A − 2. Then wA−1 ∈ WA−1 can only be
F -dominated by v3A−3 or by a vertex in WA−1 and so either v3A−3 is red or some

vertex in WA−1 is red.

Since {v1} ∪W0 ⊆ Rc, it then follows by the claim

γF (G) = |Rc| > 1 + |W0|+ (A− 1) = 1 + 3 + (A− 1) = A+ 3 > A+ 1 = C.

Therefore, if v1 ∈ Rc, then |Rc| > C. Since this is impossible, it follows that v1 is

blue. We now consider two cases.���! �"
1. v3i+1 ∈ Rc for some i (1 6 i 6 A−1). Let j be the smallest integer i such

that v3i+1 ∈ Rc. Thus v3j+1 ∈ Rc andWj ⊆ Rc. If j < A−1 and j 6 i 6 A−2, then
an argument similar to the situation where v1 ∈ Rc shows that at least one vertex
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in {v3i+2, v3i+3, v3i+4} ∪ Wi+1 must be red. We now show that if 0 6 i 6 j − 1,
then some vertex in {v3i+1, v3i+2, v3i+3} ∪Wi is red. If j > 2, then we first consider
v3i+1, where 1 6 i < j. Thus v3i+1 is blue and is either F -dominated by v3i+3 or by
v3i−1. If v3i+1 is F -dominated by v3i+3, then v3i+3 ∈ Rc. If v3i+1 is F -dominated by

v3i−1, then v3i−1 ∈ Rc and v3i is blue. Hence either v3i+2 ∈ Rc or wi ∈ Rc for some
wi ∈ Wi. For i = 0, the blue vertex v1 can only be F -dominated by v3 and the blue

vertex v2 can only be F -dominated by a vertex in W0. Thus at least two vertices in
{v1, v2, v3} ∪W0 must be red, which implies that

γF (G) = |Rc| > 2 + (j − 1) + 1 + 3 + (A− 2− j + 1) = A+ 4 > A+ 1 = C.

Thus Case 1 cannot occur.���! �"
2. v3i+1 is blue for every integer i (0 6 i 6 A− 1). We claim that v3i+1 is

blue and v3i+3 is red for every integer i (0 6 i 6 A−2). We verify this by induction.
First, because v1 is blue, v1 can only be F -dominated by v3 and so v3 ∈ Rc. In
addition, this says that v2 is blue and so some vertex in W0 is red. Assume that
v3k+1 is blue and v3k+3 is red, where 0 6 k < A− 2. By the assumption in Case 2,
v3k+4 is blue. Since v3k+4 is blue and v3k+3 is red, v3k+4 can only be F -dominated
by v3k+6 and so v3k+6 is red. This verifies the claim. Thus v3(A−2)+3 = v3A−3 is red.

Since v3A−2 can only be F -dominated by v3A−2 or by a vertex of degree 2 in WA−1,
it follows that either v3A−2 is red or a vertex of degree 2 in WA−1 is red. Therefore,

γF (G) = |Rc| > 2 + (A− 2) + 1 = A+ 1 = C,

as desired. Furthermore, since {v3i+1 : 0 6 i 6 A− 1} is a minimum domination set
and {v3i+1, wi : 0 6 i 6 A− 1}, where wi ∈ Wi, is a minimum open domination set,

it follows that γ(G) = A and γo(G) = 2A = B. �

Theorem 3.7. Every triple (A,B, C) of type III with B < 2A is realizable.���������
. By Corollary 2.7 and Case II (2 6 A < B = C < 2A) in Theorem 3.4,

we need only consider the two cases 2 6 A < C < B < 2A and 2 6 A = C < B < 2A.���! �"
I. 2 6 A < C < B < 2A. Necessarily, A > 3 in this case. Let C = A + k

and B = A + l. Since A < C < B < 2A, it follows that 1 6 k < l < A. Thus, we
consider two cases, according to whether 2 6 l 6 A− 2, or l = A− 1.���! �"

1. 2 6 l 6 A − 2. Let G be the graph obtained from the graph LC−2 and

the graphs Ji, Gj for 1 6 i 6 l − 1 and 1 6 j 6 A− l − 1 by identifying all vertices
ui,0, vj,0 and w and labeling the identified vertex v.
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Since {v, x}∪{wt : 1 6 t 6 C−2} is an F -dominating set, γF (G) 6 C. On the other
hand, let c be an F -coloring of G. Since y is only F -dominated by v or y, it follows
that either v ∈ Rc or y ∈ Rc. Thus either W1 = {v} ∪ {wt : 1 6 t 6 C − 2} ⊆ Rc or
W2 = {y}∪{yt : 1 6 t 6 C−2} ⊆ Rc. In either case, |Rc| > C −1. If γF (G) = C −1,
then either Rc = W1 or Rc = W2. However then, the blue vertex x is not F -
dominated by any vertex in Rc, which is a contradiction. Therefore γF (G) = C.
Furthermore, since

S = {v, y} ∪ {ui,3 : 1 6 i 6 l − 1} ∪ {vj,1 : 1 6 j 6 A− l − 1}

is a minimum dominating set of G and

S ∪ {x} ∪ {ui,2 : 1 6 i 6 l − 1}

is a minimum open dominating set of G, it follows that γ(G) = A and γo(G) =
A+ l = B.���! �"

2. l = A− 1. Then B = A+ l = 2l + 1 and C = A + k = k + l + 1. Let G

be the graph obtained from the graph LC−2 and the graphs Ji for 1 6 i 6 l − 1 by
identifying all vertices ui,0 and w and labeling the identified vertex v.

Since {v, x} ∪ {wj : 1 6 j 6 C − 2} is a minimum F -dominating set, γF (G) = C.
Since

S = {v, y} ∪ {ui,3 : 1 6 i 6 l − 1}

is a minimum dominating set of G and

S ∪ {x} ∪ {ui,2 : 1 6 i 6 l − 1}

is a minimum open dominating set of G, it follows that γ(G) = A and γo(G) = B.���! �"
II. 2 6 A = C < B. If A = 2, then since A < B < 2A, it follows that

B = 3. Let G be obtained from the graph K4 − e and the path P2 : x, y by joining

x to a vertex of degree 2 in K4 − e. Then γ(G) = γF (G) = 2 and γo(G) = 3. Thus
we may assume that A > 3. Let B = A + k. In the remaining proof , we consider

three cases, according to whether k = 1, 2 6 k 6 A− 2, or k = A− 1. The proof is
similar to that in Case I and is therefore omitted. �

Combining Theorems 3.6 and 3.7, we have the following.

Corollary 3.8. Every triple of type III is realizable.

By Theorem 3.2 and Corollaries 3.5 and 3.8, we have the main result of this paper.
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Theorem 3.9. A triple (A,B, C) is realizable if and only if (A,B, C) 6= (k, k, C)
for any integers k and C with C > k > 2.*,+.-�/ �10 #)"1243�(5" /�6  

. We are grateful to Professor Gary Chartrand for sug-

gesting this topic to us and kindly providing useful information.
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