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Abstract. A topological duality for monadic n-valued  Lukasiewicz algebras introduced
by M. Abad (Abad, M.: Estructuras cíclica y monádica de un álgebra de  Lukasiewicz n-
valente. Notas de Lógica Matemática 36. Instituto de Matemática. Universidad Nacional
del Sur, 1988) is determined. When restricted to the category of Q-distributive lattices
and Q-homomorphims, it coincides with the duality obtained by R. Cignoli in 1991. A
new characterization of congruences by means of certain closed and involutive subsets of
the associated space is also obtained. This allowed us to describe subdirectly irreducible
algebras in this variety, arriving by a different method at the results established by Abad.

Keywords: n-valued  Lukasiewicz algebras, Priestley spaces, congruences, subdirectly
irreducible algebras

MSC 2000 : 06D30, 03G20

Introduction

In 1941, G. Moisil ([17]) introduced n-valued  Lukasiewicz algebras. From that

moment on, many articles have been published about this class of algebras. Many
of the results obtained have been reproduced in the important book by C. Boicescu,

A. Filipoiu, G. Georgescu and S. Rudeanu ([4]) which can be consulted by any reader
interested in broadening his knowledge on these algebras.

In 1988, M. Abad ([1]) began the research in monadic n-valued  Lukasiewicz alge-
bras. Among other results, using certain families of deductive systems of a monadic

n-valued  Lukasiewicz algebra, this author provided a method for determining con-
gruences on these algebras and subdirectly irreducible algebras in this variety.

This paper centres around a duality theory for monadic n-valued  Lukasiewicz
algebras. In order to do this, we combine the duality for n-valued  Lukasiewicz

algebras, to be first described, and Cignoli’s duality for Q-distributive lattices ([8]).
The duality for monadic n-valued  Lukasiewicz algebras is later used to determine
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congruences on these algebras and characterize subdirectly irreducible algebras in

this variety, which are obviously obtained by a different method from that indicated
in [1].

The main definitions and results needed in this paper are summarized in Section 1.

In Section 2, we describe a topological duality for n-valued  Lukasiewicz algebras,
extending the one obtained by W. Cornish and P. Fowler for de Morgan algebras.

The main part of this section is the development of a duality theory for monadic
n-valued  Lukasiewicz algebras. In Section 3, which is the core of the paper, the

results of Section 2 are applied. We prove that the dual of an n-valued  Lukasiewicz
algebra is a Priestley space that is a disjoint union of its maximum chains having

at most n − 1 elements, and any maximun chain C is represented by an increasing
surjective (n−1)-elements sequence C = {c1 6 c2 6 . . . 6 cn−1} which does not have

to be injective, and that the morphisms are continuous order preserving mappings
sending the i-th element of the sequence representing a maximum chain onto the i-th

element of the target sequence for all i, 1 6 i 6 n− 1. We also prove that the dual
of a monadic n-valued  Lukasiewicz algebra is a Priestley space representing an n-

valued  Lukasiewicz algebra with an equivalence E such that if x = ci for a maximum
chain C = {c1 6 c2 6 . . . 6 cn−1} containing x and y = dj for a maximum chain

C = {d1 6 d2 6 . . . 6 dn−1} containing y, then from (x, y) ∈ E it follows that
ci = cj , di = dj and (ck, dk) ∈ E for all k, 1 6 k 6 n − 1. Also, the relation

E satisfies that if U is a closed and open increasing subset of the Priestley space,
then the set {y : there is x ∈ U, (y, x) ∈ E} is also closed, open and increasing.

The morphisms dual to the morphisms f of monadic n-valued  Lukasiewicz algebras
satisfy {y : there is x ∈ f−1(U), (y, x) ∈ E} = f−1{y : there is x ∈ U , (y, x) ∈ E}
for every increasing closed and open set U .

Furthermore, in this section we characterize congruences on n-valued  Lukasiewicz
algebras by means of closed subsets of the space associated with them, which are

unions of maximum chains. This enables us to obtain a new characterization of
congruences on monadic n-valued  Lukasiewicz algebras. This result allows us to

describe subdirectly irreducible algebras in this variety which are algebras such that
the maximum chains of their associated space are equivalent.

It seems worth mentioning that the dualities obtained are potentially applicable
to other problems. Specifically, in a forthcoming paper, we generalize them to the

case of monadic θ-valued  Lukasiewicz algebras with and without negation ([4]).
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1. Preliminaries

In this paper we take for granted the concepts and results on distributive lattices,

category theory and universal algebra. To obtain more information on this topics,
we direct the reader to the bibliography indicated in [2], [5] and [15]. However, in

order to simplify reading, in this section we summarize the fundamental concepts we
use.

If X is a poset (i.e. partially ordered set) and Y ⊆ X , then we shall denote by (Y ]
([Y )) the set of all x ∈ X such that x 6 y (y 6 x) for some y ∈ Y , and we shall
say that Y is increasing (decreasing) if Y = [Y ) (Y = (Y ]). Furthermore, we shall

denote by maxY the set of maximum elements of Y .

If A is a bounded distributive lattice, we shall denote by Con (A) and A/θ the set

of all congruences on A and the quotient algebra of A by θ for each θ ∈ Con (A),
respectively.

Recall that if A is a bounded distributive lattice and X(A) denotes the set of all

prime filters of A, then the following conditions are satisfied:

(F1) If θ ∈ Con (A), h : A −→ A/θ is the natural epimorphism and Y = {h−1(Q) :
Q ∈ X(A/θ)}, then for all P ∈ X(A) \ Y there are a, b ∈ A such that a ∈ P ,
b 6∈ P and (a, b) ∈ θ ([20]).

(F2) If j : A −→ A is a join homomorphism, P ∈ X(A) and F is a filter of A such

that F ⊆ j−1(P ), then there is Q ∈ X(A) which satisfies F ⊆ Q ⊆ j−1(P ) ([9]).

Although the theory of Priestley spaces and its relation to bounded distributive

lattices is well-known (see [19], [20], [21]), we shall announce some results with the
aim of fixing the notation used in this paper.

If X is a Priestley space (or P -space), we shall denote by D(X) the family of

increasing closed and open subsets of X . Then 〈D(X),∩,∪, ∅, X〉 is a bounded dis-
tributive lattice and the mapping εX : X −→ X(D(X)) defined by the prescription

(A1) εX(x) = {U ∈ D(X) : x ∈ U}

is a homeomorphism and an order isomorphism.

If A is a bounded distributive lattice, then X(A) ordered by inclusion and with
the topology having as a sub-basis the sets σA(a) = {P ∈ X(A) : a ∈ P} and

X(A) \ σA(a) for each a ∈ A is the Priestley space (or P -space) associated with A.
Besides, the map

(A2) σA : A −→ D(X(A))

is a lattice isomorphism.

257



On the other hand, H. A. Priestley ([19], [20, Section 6], [21]) proved that if Y is

a closed subset of X(A), then

(A3) Θ(Y ) = {(a, b)∈A×A : σA(a) ∩ Y = σA(b) ∩ Y }

is a congruence on A and that the correspondence Y 7−→ Θ(Y ) establishes an anti-

isomorphism from the lattice of closed sets of X(A) onto the congruence lattice of A.
Recall that a de Morgan algebra is an algebra 〈A,∨,∧,∼, 0, 1〉 of type (2, 2, 1, 0, 0)

such that 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice and the unary operation ∼
possesses the following properties: ∼ (x∨ y) =∼ x∧ ∼ y and ∼∼ x = x (see [3], [14],

[18]).
In what follows a de Morgan algebra 〈A,∨,∧,∼, 0, 1〉 will be denoted for symplicity

by (A,∼).
In 1977, W. H. Cornish and P. R. Fowler ([10]) extended Priestley duality to

de Morgan algebras (see [3], [14] and [18]) considering de Morgan spaces (or mP -

spaces) as pairs (X, g), where X is a P -space and g is an involutive homeomorphism
of X and an anti-isomorphism. They also defined the mP -functions from an mP -

space (X, g) into another one, (X ′, g′), as continuous and increasing functions
(P -functions) f from X into X ′ which satisfy the additional condition f ◦ g = g′ ◦ f .

In order to extend the Priestley duality to the case of de Morgan algebras, they
defined the operation ∼ on D(X) by means of the formula

(B1) ∼ U = X \ g−1(U) for every U ∈ D(X),

and the homeomorphism gA from X(A) onto X(A) by

(B2) gA(P ) = A \ {∼ x : x ∈ P}.

In addition, these authors introduced the notion of an involutive set in an mP -
space (X, g) as a subset Y of X such that Y = g(Y ); and they characterized the

congruences of a de Morgan algebra A by means of the family CI(X(A)) of involutive
closed subsets of X(A). To achieve this result, they proved that

(B3) the function ΘI from CI(X(A)) onto the family ConM (A) of congruences on A,
defined as in (A3), is a lattice anti-isomorphism.

R. Cignoli, in [8], introduced the category Q of Q-distributive lattices and Q-

homomorphisms, where a Q-distributive lattice is an algebra 〈A,∨,∧,∇, 0, 1〉 of type
(2, 2, 1, 0, 0) such that 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice and ∇ is a unary

operator on A which satisfies the following equalities:

∇0 = 0, x ∧ ∇x = x, ∇(x ∧ ∇y) = ∇x ∧ ∇y, ∇(x ∨ y) = ∇x ∨∇y.
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For the sake of simplicity, we shall denote the objects in Q by A or (A,∇) in case

we want to specify the quantifier.

In [8], Priestley duality is extended to the categoryQ. To this aim, the category qP
is considered whose objects are qP -spaces and whose morphisms are qP -functions.

Specifically, a qP -space is a pair (X, E) such that X is a P -space and E is an
equivalence relation on X which satisfies the following conditions:

(E1) EU ∈ D(X) for each U ∈ D(X) where EU = {y ∈ X : (x, y) ∈ E for some

x ∈ U},
(E2) the equivalence classes for E are closed in X ,

and a qP -function from a qP -space (X, E) into another one (X ′, E′) is a P -function
f : X −→ X ′ such that Ef−1(U) = f−1(E′U) for all U ∈ D(X ′).

Besides, it is proved:

(E3) If A is an object in Q and X(A) is the Priestley space associated with A, then

(X(A), E∇) is a qP -space where E∇ is the relation defined by E∇ = {(P, R) ∈
X(A)×X(A) : P ∩ ∇(A) = R ∩ ∇(A)}. Moreover, σA : A −→ D(X(A)) is an

isomorphism in Q.

(E4) If (X, E) is a qP -space, then (D(X),∇E) is a Q-distributive lattice where

∇EU = EU for every U ∈ D(X) and εX : X −→ X(D(X)) is an isomorphism
in qP.

Moreover, the isomorphisms σA and εX define a dual equivalence between the

categories Q and qP .

On the other hand, in [8] it is also shown how some Q-congruences on A can be
obtained from the qP -space associated with A. Indeed, it is proved:

(E5) If A is an object in Q and Y ⊆ X(A) is closed and saturated (i.e.∇E∇Y = Y )

then the lattice congruence Θ(Y ) defined as in (A3) preserves the operation ∇.

In 1969, R. Cignoli in [7] (see also [4]) defined n-valued  Lukasiewicz algebras (or
Lkn-algebras) where n is an integer, n > 2, as algebras (A,∼, ϕ1, . . . , ϕn−1, 0, 1) such

that (A,∼) is a de Morgan algebra and ϕi, with 1 6 i 6 n− 1, are unary operations
on A which satisfy the following conditions:

(L1) ϕi(x ∨ y) = ϕix ∨ ϕiy,

(L2) ϕix∨ ∼ ϕix = 1,

(L3) ϕiϕjx = ϕjx,

(L4) ϕi ∼ x =∼ ϕn−ix,

(L5) i 6 j implies ϕix 6 ϕjx,

(L6) ϕix = ϕiy for all i, 1 6 i 6 n− 1, implies x = y.

An example of an Lkn-algebra is the chain of n rational fractions Cn = { j
n−1 , 1 6

j 6 n − 1} endowed with the natural lattice structure and the unary operations ∼
and ϕi, defined as follows: ∼ ( j

n−1 ) = 1 − j
n−1 and ϕi( j

n−1 ) = 0 if i + j < n or
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ϕi( j
n−1 ) = 1 in the other cases. Its importance is seen in the following statement

proved in [7]:

(L7) Let A be a non trivial Lkn-algebra. Then the following conditions are equivalent:

(i) A is subdirectly irreducible,

(ii) A is simple,

(iii) A is isomorphic to a subalgebra of Cn.

In 1988, M. Abad ([1]) introduced the notion of a monadic n-valued  Lukasiewicz

algebra (or qLkn-algebra) as an algebra (A,∼, ϕ1, . . . , ϕn−1,∇) such that the follow-
ing conditions are fulfilled:

(qL1) (A,∼, ϕ1, . . . , ϕn−1) is an Lkn-algebra,

(qL2) (A,∇) ∈ Q,

(qL3) ϕi∇x = ∇ϕix for all i, 1 6 i 6 n− 1.

The category whose objects are qLkn-algebras and whose morphisms are qLkn-
homomorphisms will be denoted by qLkn.

Let X be a non empty set and CX
n the set of all functions from X into Cn. We

shall denote by C∗
n,X the monadic functional algebra (CX

n ,∼, ϕ1, . . . , ϕn−1,∇) where
the operations of the Lkn-algebra (CX

n ,∼, ϕ1, . . . , ϕn−1) are defined componentwise

as usual and the unary operation ∇ by means of the formula (∇f)(x) =
∨

f(X)
where

∨
f(X) is the supremum of f(X) = {f(y) : y ∈ X} ([1, page 65]).

2. A duality for qLkn-algebras

In this section we first describe how the Cornish and Fowler duality can be ex-
tended to the case of Lkn-algebras.

Definition 2.1. (X, g, f1, . . . , fn−1) is an n-valued  Lukasiewicz space (or lnP -
space) if it has the following properties:

(LP1) (X, g) is an mP -space,

(LP2) fi : X −→ X is continuous,

(LP3) x 6 y implies fi(x) = fi(y),
(LP4) i 6 j implies fi(x) 6 fj(x),
(LP5) fi ◦ fj = fi,

(LP6) fi ◦ g = fi,

(LP7) g ◦ fi = fn−i,

(LP8) X =
n−1⋃
i=1

fi(X).

If (X, g, f1, . . . , fn−1) and (X ′, g′, f ′1, . . . , f
′
n−1) are lnP -spaces, then an lnP -

function f from X into X ′ is an mP -function such that f ′i ◦ f = f ◦ fi for all i,
1 6 i 6 n− 1.
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2.1. It is routine to prove that condition (LP8) is equivalent to any of

the following conditions:

(LP9) for each x ∈ X there is an index i, 1 6 i 6 n− 1, such that x = fi(x),
(LP10) if Y , Z are subsets of X and f−1

i (Y ) = f−1
i (Z) for all i, 1 6 i 6 n − 1,

then Y = Z.

Next we shall show that the category lnP of lnP -spaces and lnP -functions is dually
equivalent to the category Lkn of Lkn-algebras and Lkn-homomorphisms.

Lemma 2.1. If (X, g, f1, . . . , fn−1) is an lnP -space, then % n (X) = (D(X),∼,

ϕ1
X , . . . , ϕn−1

X ) is an Lkn-algebra where for every U ∈ D(X), ∼ U is defined as in

(B1) and ϕi
X(U) = f−1

i (U) for all i, 1 6 i 6 n− 1.
&'"�()(+*

. It is routine. �

Lemma 2.2. If A is an Lkn-algebra, then  L(A) = (X(A), gA, f1
A, . . . , fn−1

A ) is an

lnP -space where gA is as indicated in (B2) and f i
A(P ) = ϕ−1

i (P ) for every P ∈ X(A).
Besides, σA defined as in (A2) is an Lkn-isomorphism from A onto D(X(A)).
&'"�()(+*

. By virtue of the results obtained in [10] and Lemma 8.1 in [6] only

condition (LP2) in Definition 2.1 remains to be proved. From the definitions of σA

and f i
A we deduce that for each a ∈ A, f i−1

A (σA(a)) = σA(ϕia) for all i, 1 6 i 6 n−1.

Then taking into account that the topology has as a sub-basis the sets of the form
σA(a) and X(A)\σA(a) for each a ∈ A, we infer that the functions f i

A are continuous

for all i, 1 6 i 6 n− 1. �

Lemma 2.3. Let (X, g, f1, . . . , fn−1) and (X ′, g′, f ′1, . . . , f
′
n−1, ) be lnP -spaces

and let f be an lnP -function from X into X ′. Then the application % n (f) defined by

the prescription % n (f)(U) = f−1(U) for every U ∈ D(X ′) is an Lkn-homomorphism

from % n (X ′) into % n (X).
&'"�()(+*

. We only prove that for each U ∈ D(X ′), % n (f)(ϕX′ iU) = ϕX
i

( % n (f)(U)) holds true for all i, 1 6 i 6 n − 1. Indeed, % n (f)(ϕX′ iU) = (f ′i ◦
f)−1(U) = (f ◦ fi)−1(U) = ϕX

i( % n (f)(U)). �

Lemma 2.4. Let (A,∼, ϕ1, . . . , ϕn−1) and (A′,∼′, ϕ′1, . . . , ϕ
′
n−1) be Lkn-algebras

and let h be an Lkn-homomorphism from A into A′. Then the application  L(h)
defined by the prescription  L(h)(P ) = h−1(P ) for all P ∈ X(A′) is an lnP -function.
&'"�()(+*

. For each P ∈ X(A′), ( L(h) ◦ f i
A′)(P ) = (f i

A ◦  L(h))(P ) holds true for

all i, 1 6 i 6 n − 1. Indeed, ( L(h) ◦ f i
A′)(P ) = (ϕi

′ ◦ h)−1(P ) = (h ◦ ϕi)−1(P ) =
(f i

A ◦  L(h))(P ). Since  L(h) is an mP -function, the proof is complete. �
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Taking into account the above mentioned lemmas, it is routine to prove the fol-

lowing theorem:

Theorem 2.1. The category lnP is naturally equivalent to the dual of the cate-

gory Lkn.

A. Filipoiu, in [4, pages 341–348] (see also [11], [12]), obtained a topological duality

for ϑ-valued  Lukasiewicz algebras with negation ([4, page 110]). In the particular
case that ϑ = n with n positive integer, this duality is essentially equivalent to the

one indicated above.

Now, we shall describe a topological duality for monadic n-valued  Lukasiewicz

algebras which extends the already mentioned dualities for Q-distributive lattices
and Lkn-algebras.

Definition 2.2. (X, g, f1, . . . , fn−1, E) is a qlnP -space if it has the following
properties:

(qLP1) (X, E) ∈ qP ,

(qLP2) (X, g, f1, . . . , fn−1) ∈ lnP ,

(qLP3) f−1
i (EU) = Ef−1

i (U) for all U ∈ D(X) and for all i, 1 6 i 6 n− 1.

If (X, g, f1, . . . , fn−1, E) and (X ′, g′, f ′1, . . . , f
′
n−1, E

′) are qlnP -spaces, then f :
X −→ X ′ is a qlnP -function if f is both an lnP and a qP -function.

We shall denote by qlnP the category of qlnP -spaces and qlnP -functions.

From properties (qLP2) and (qLP3), it follows immediately that fi are qP -
functions for all i, 1 6 i 6 n− 1.

We shall now show a characterization of qP -functions which will be useful later
on.

Proposition 2.1. Let (X, E) and (X ′, E′) be qP -spaces and let f be a P -function

from X into X ′. Then the following conditions are equivalent:

(i) f is a qP -function,

(ii) f satisfies the conditions

(a) if (x, y) ∈ E, then (f(x), f(y)) ∈ E ′,

(b) if (f(x), z) ∈ E′, then there is y ∈ X such that (x, y) ∈ E and z 6 f(y).
&'"�()(+*

. (i) ⇒ (ii): From the hypothesis and Lemma 2.8 in [8], property (a)
follows immediately. Then, (b) remains to be proved. Let x ∈ X and z ∈ X ′ be such

that (1) (f(x), z) ∈ E ′. If z 6 f(x), choosing y = x, (b) is obtained. Otherwise,
there is U ∈ D(X ′) such that z ∈ U and f(x) /∈ U , then by (1) and (i) we obtain that

x ∈ Ef−1(U). From this last assertion, it follows that f−1(U) ∩ E(x) 6= ∅. Besides,
as f is continuous and closed, K = f(f−1(U) ∩ E(x)) is a closed subset of X ′ and
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therefore a compact one. If we assume that z 66 f(y) for all y ∈ f−1(U)∩E(x), then

z 66 k for all k ∈ K. Taking into account the compactness of K, we can assert that

there are sets Vi ∈ D(X ′) with 1 6 i 6 m such that z ∈ Vi and K ⊆
m⋃

i=1

X ′ \ Vi. If

V =
m⋂

i=1

Vi, then (2) V ∩K = ∅. On the other hand, if W = U ∩ V , it follows that

z ∈ W . From (1) and (i) we obtain that f−1(W ) ∩E(x) 6= ∅, then we conclude that

V ∩ K 6= ∅, which contradicts (2). Hence, there is y ∈ X such that (x, y) ∈ E and
z 6 f(y).

(ii) ⇒ (i): From the hypothesis and the results in [8], the proof is simple to obtain.
�

Corollary 2.1. (X, g, f1, . . . , fn−1, E) is a qlnP -space if and only if it satisfies

(qLP1), (qLP2) and the following conditions:

(qLP4) if (x, y) ∈ E, then (fi(x), fi(y)) ∈ E for all i, 1 6 i 6 n− 1,

(qLP5) for each i, 1 6 i 6 n − 1, if (fi(x), z) ∈ E, then there is y ∈ X such that

(x, y) ∈ E and z 6 fi(y).
&'"�()(+*

. It is a direct consequence of Definition 2.2 and Proposition 2.1. �
�����! #"�$

2.2. Let (X, g, f1, . . . , fn−1, E) be a qlnP -space and x, y ∈ X . Tak-

ing into account (qLP4) and (LP5), we deduce that the following conditions are
equivalent:

(i) there is i, 1 6 i 6 n− 1, such that (fi(x), fi(y)) ∈ E,
(ii) (fj(x), fj(y)) ∈ E for all j, 1 6 j 6 n− 1.

The following list presents the necessary results to prove the duality between the
categories qlnP and qLkn.

Lemma 2.5. If (X, g, f1, . . . , fn−1, E) is a qlnP -space, then q % n (X) = (D(X),
∼, ϕ1

X , . . . , ϕn−1
X ,∇E) is a qLkn-algebra where for all U ∈ D(X), ∼ U , ∇E(U) and

ϕi
X(U) are defined as in (B1), (E4) and Lemma 2.1, respectively.
&'"�()(+*

. It follows from Lemma 2.1, (E4) and (qLP3). �

Lemma 2.6. If (A,∼, ϕ1, . . . , ϕn−1,∇) is a qLkn-algebra, then q L(A) = (X(A),
gA, f1

A, . . . , fn−1
A , E∇) is a qlnP -space and σA is a qLkn-isomorphism from A onto

D(X(A)), where gA, f i
A, E∇ and σA are those indicated in (B2), Lemma 2.2, (E3)

and (A2), respectively.
&'"�()(+*

. From (E3) and Lemma 2.2 we obtain that conditions (qLP1), (qLP2)
in Definition 2.2 hold true and that σA is a qLkn-isomorphism. Besides, from the

hypothesis it is easy to check that ∇E∇ϕi
X(A)σA(a) = ϕi

X(A)∇E∇σA(a) for all a ∈ A

and this implies that E∇f i−1

A (U) = f i−1

A (E∇U) for all U ∈ D(X(A)). �
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Lemmas 2.7 and 2.8 are immediate consequences of Lemmas 2.3 and 2.4, respec-

tively, and of the results obtained in [8].

Lemma 2.7. Let (X, g, f1, . . . , fn−1, E) and (X ′, g′, f ′1, . . . , f
′
n−1, E

′) be qlnP -

spaces and let f be a qlnP -function from X into X ′. Then the application q % n (f) =
% n (f) defined as in Lemma 2.3 is a qLkn-homomorphism from q % n (X ′) into q % n (X).

Lemma 2.8. Let (A,∼, ϕ1, . . . , ϕn−1,∇) and (A′,∼′, ϕ′1, . . . , ϕ
′
n−1,∇′) be qLkn-

algebras and let h be a qLkn-homomorphism from A into A′. Then the application

q L(h) =  L(h) defined as in Lemma 2.4 is a qlnP -function from q L(A′) into q L(A).

From the above mentioned lemmas and using the usual procedures we conclude:

Theorem 2.2. The category qlnP is naturally equivalent to the dual of the

category qLkn.

3. Subdirectly irreducible qLkn-algebras

In this section, our first objective is the characterization of the congruence lattice
on an n-valued  Lukasiewicz algebra by means of certain closed subsets of its associ-

ated lnP -space which allows us to describe the congruences on monadic Lkn-algebras.
Later, this result will be taken into account to obtain subdirectly irreducible qLkn-

algebras. With this purpose, we shall start by studying some properties of lnP and
qlnP -spaces.

Proposition 3.1. Let X ∈ lnP . Then X is the cardinal sum of a family of chains,

each of which has at most n− 1 elements.

&'"�()(+*
. Let x ∈ X . By (LP9) and (LP4) we obtain f1(x) 6 . . . 6 x = fi(x) 6

. . . 6 fn−1(x). If y ∈ X and y 6 x, by (LP3) we have (1) fj(y) = fj(x) for all
j, 1 6 j 6 n − 1. On the other hand, by (LP9) there is k, 1 6 k 6 n − 1, such

that y = fk(y); therefore, y = fk(x) by (1). Then we conclude that f1(x) 6 . . . 6
y = fk(x) 6 . . . 6 x = fi(x) 6 . . . 6 fn−1(x). If y ∈ X and x < y, the proof is

similar. �
�����! #"�$

3.1. If (X, g, f1, . . . , fn−1) and (X ′, g′, f ′1, . . . , f
′
n−1) are lnP -spaces and

f is an lnP -function from X into X ′ then from Proposition 3.1 and Definition 2.1
we deduce that:
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(i) for each x ∈ X , f(Cx) = Cf(x) where Cy denotes the unique maximum chain

containing y;
(ii) f sends the i-th element of the sequence representing Cx onto the i-th element

of the sequence representing Cf(x) for all i, 1 6 i 6 n− 1.

Lemma 3.1. Let (X, g, f1, . . . , fn−1, E) be a qlnP -space and x, y ∈ X . If

(fi(x), fj(y)) ∈ E, for some pair i, j with 1 6 i 6 n − 1, 1 6 j 6 n − 1, then

fi(x) 6 fj(x) and fj(y) 6 fi(y).
&'"�()(+*

. If i 6 j then by (LP4) we have fi(x) 6 fj(x). Furthermore, since
(fi(x), fj(y)) ∈ E, by (qLP5) there is z ∈ X such that fj(y) 6 fi(z). Then by (LP3)

and (LP5) it follows that fi(y) = fi(z) and therefore, fj(y) 6 fi(y). If j < i, the
proof is similar. �

Proposition 3.2. Let X ∈ qlnP and x, y ∈ X . Then the following condition is

fulfilled:

(qLP6) if (fi(x), fj(y)) ∈ E, for some pair i, j with 1 6 i 6 n− 1, 1 6 j 6 n − 1,

then fi(x) = fj(x) and fi(y) = fj(y).
&'"�()(+*

. From the hypothesis and Lemma 3.1 we have fi(x) 6 fj(x) and

fj(y) 6 fi(y). On the other hand, from the hypothesis, (qLP4) and (LP5) we
have (fi(x), fi(y)) ∈ E. Then by Remark 2.2 we obtain that (fj(x), fj(y)) ∈ E

and taking into account the fact that E is an equivalence relation, it follows that
(fj(x), fi(y)) ∈ E. Then by Lemma 3.1 we have fj(x) 6 fi(x) and fi(y) 6 fj(y),
which completes the proof. �

Corollary 3.1. (X, g, f1, . . . , fn−1, E) is a qlnP -space if and only if the conditions

(qLP1), (qLP2), (qLP4) and (qLP6) are satisfied.
&'"�()(+*

. It is routine. �

Proposition 3.3. Let X ∈ qlnP. Then for every x ∈ X , the set E(x) is order

discrete, where E(x) is an equivalence class of x.
&'"�()(+*

. Let y ∈ E(x) and suppose that y 6 z for some z ∈ E(x). Taking into
account the proof of Proposition 3.1, we have that there is j, 1 6 j 6 n − 1 such

that z = fj(y). Furthermore, by (LP9), there is i, 1 6 i 6 n− 1 such that y = fi(y).
Then (fi(y), fj(y)) ∈ E which by (qLP6) entails fi(y) = fj(y) which implies that

y = z. �

Definition 3.1. Let X ∈ lnP . A subset Y of X is modal if f−1
i (Y ) = Y for all

i, 1 6 i 6 n− 1.
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Proposition 3.4. Let X ∈ lnP and let Y be a subset of X . Then the following

conditions are equivalent:

(i) Y is modal,

(ii) for each y ∈ Y we have fi(y) ∈ Y for all i, 1 6 i 6 n− 1.

&'"�()(+*
. We only prove (ii) ⇒ (i). Suppose fi(z) ∈ Y . Since by (LP9) fi0(z) = z

for some i0, 1 6 i0 6 n− 1, from (ii) and (LP5) we obtain that z = fi0(fi(z)) ∈ Y .

Therefore, f−1
i (Y ) ⊆ Y . The other inclusion follows immediately. �

Corollary 3.2. Every maximum chain in an lnP -space is modal.

&'"�()(+*
. If C is a maximum chain in X , then taking into account the proof of

Proposition 3.1, there is x ∈ X such that C = {fi(x) : 1 6 i 6 n − 1}. Then by
(LP5) and Proposition 3.4 we have that C is modal. �

Lemma 3.2. Let X ∈ lnP and let Y be an involutive subset of X . Then the

following conditions are equivalent:

(i) Y is increasing,

(ii) Y is decreasing.

&'"�()(+*
. (i) ⇒ (ii): Let x ∈ X and y ∈ Y such that x 6 y. Then (1) g(y) 6 g(x)

and taking into account that Y is involutive we have that g(y) ∈ Y . From this

statement, (1) and (i) we deduce that g(x) ∈ Y and therefore x = g(g(x)) ∈ Y . The
converse implication is similar. �

Proposition 3.5. Let X ∈ lnP and let Y be a non empty subset of X . Then the

following conditions are equivalent:

(i) Y is modal,

(ii) Y is involutive and increasing,

(iii) Y is a cardinal sum of maximum chains in X .

&'"�()(+*
. (i) ⇒ (ii): In order to prove that Y is involutive, it is sufficient to check

that g(Y ) ⊆ Y . Let z = g(y) with y ∈ Y . Then by (LP9) z = fi(z) for some i,
1 6 i 6 n− 1 and by (LP6) z = fi(y). Hence, by (i) and Proposition 3.4 we obtain

that z ∈ Y .

Moreover, Y is increasing. Indeed, let y ∈ Y and z ∈ X be such that y 6 z. By
(LP9) z = fi(z) for some i, 1 6 i 6 n− 1. Then, by (LP3) and Proposition 3.3 we

conclude that z ∈ Y .

(ii) ⇒ (iii): From the hypothesis and Lemma 3.2 we have that Y is decreasing.

Then for each y ∈ Y , Cy = {fi(y) : 1 6 i 6 n− 1} ⊆ Y . Therefore, Y =
⋃

y∈Y

Cy and
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from Proposition 3.1 we conclude that Y is the cardinal sum of maximum chains

in X .
(iii) ⇒ (i): It is a direct consequence of Corollary 3.2. �

Theorem 3.1. Let A ∈ Lkn and let  L(A) be the lnP -space associated with A.

Then the lattice CM ( L(A)) of modal and closed subsets of X(A) is isomorphic to

the dual lattice ConLkn(A) of Lkn-congruences on A, and the isomorphism is the

function ΘM defined by the same prescription as in (A3).
&'"�()(+*

. Let Y ∈ CM ( L(A)). Then by condition (ii) in Proposition 3.5, Y is

involutive and by (B3) we have that ΘM (Y ) is a de Morgan congruence. Since σA is
an Lkn-homomorphism and Y is a modal subset of X(A), it follows that σA(ϕia) ∩
Y = f i−1

A (σA(a) ∩ Y ) for all a ∈ A, which implies that ΘM ∈ ConLkn(A).
Conversely, let θ ∈ ConLkn(A) and let h : A−→A/θ be the natural epimorphism.

Since ConLkn(A) is a sublattice of ConM (A), we have that Y = {h−1(Q) : Q ∈
X(A/θ)}= { L(h)(Q) : Q ∈ X(A/θ)} is an involutive closed subset of X(A) and θ =
ΘM (Y ). In addition, Y is modal. Indeed, let P =  L(h)(Q) with Q ∈ X(A/θ). Taking
into account that  L(h) is an lnP -function, we obtain that f i

A(P ) =  L(h)(f i
A/θ(Q)).

Therefore, f i
A(P ) ∈ Y for all i, 1 6 i 6 n − 1 and by Proposition 3.4 the proof is

concluded. �

Theorem 3.2. Let A ∈ qLkn and let q L(A) be the qlnP -space associated with

A. Then the lattice CMS(q L(A)) of saturated, modal and closed subsets of X(A)
is isomorphic to the dual lattice ConqLkn(A) of qLkn-congruences on A, and the

isomorphism is the function ΘMS defined by the same prescription as in (A3).
&'"�()(+*

. If Y is a saturated, modal and closed subset of X(A), then by Theo-
rem 3.1 and (E5) it follows that ΘMS(Y ) is a qLkn-congruence.

Conversely, if θ ∈ ConqLkn(A), then by Theorem 3.1 it only remains to prove that
Y = {h−1(Q) : Q ∈ X(A/θ)} is saturated. Suppose that it is not, then there are

P ∈ Y and (1) Q ∈ E∇(P ) such that Q 6∈ Y . Hence, from this last assertion we
have by (F1) that there are a, b ∈ A such that a ∈ Q, b 6∈ Q and (2) (a, b) ∈ θ.

On the other hand, if F is the filter of A generated by Q ∪ {b}, from (1), (F2) and
Proposition 3.4 we infer that P ∩∇(A) ⊂ F ∩∇(A). This statement means that there

is q ∈ Q such that (3) ∇(q∧ b) 6∈ P . By (2) we have that (4) (∇(a∧ q),∇(b∧ q)) ∈ θ.
Since ∇(a ∧ q) ∈ Q ∩ ∇(A), from (1) it follows that ∇(a ∧ q) ∈ P ∩ ∇(A). Hence

by (4), taking into account that θ = ΘMS(Y ), we conclude that ∇(b ∧ q) ∈ P which
contradicts (3). �

Next we shall use the results just obtained in order to determine the subdirectly
irreducible qLkn-algebras.
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Proposition 3.6. Let (X, g, f1, . . . , fn−1, E) be a qlnP -space. If x ∈ X and

x = fi(x) then f−1
i (E(x)) is a saturated, modal and closed subset of X such that

x ∈ f−1
i (E(x)).

&'"�()(+*
. It follows immediately from the hypothesis that x ∈ f−1

i (E(x)). On
the other hand, from (E2), (LP2) and (LP5) we have that f−1

i (E(x)) is a closed and

modal subset of X . In addition, it is also saturated since, if y ∈ ∇Ef−1
i (E(x)), then

there is z ∈ X such that (y, z) ∈ E and (fi(z), x) ∈ E. Hence, by (qLP4) we infer

that (fi(y), fi(z)) ∈ E and therefore, (fi(y), x) ∈ E. �

Proposition 3.7. Let (X, g, f1, . . . , fn−1, E) be a qlnP -space such that q % n (X)
is a subdirectly irreducible qLkn-algebra. If Y is a non-empty closed and modal

subset of X , then the following conditions are equivalent:

(i) Y is saturated,

(ii) maxX ⊆ Y .

&'"�()(+*
. (i) ⇒ (ii): Suppose that max X 6⊆ Y . By Proposition 3.6, it follows

that for each x ∈ maxX \ Y , Wx = f−1
n−1(E(x)) is a closed, modal and saturated

subset of X such that x ∈ Wx. Moreover, Wx ∩ Y = ∅ for all x ∈ maxX \ Y .

Indeed, if z ∈ Wx ∩ Y for some x ∈ maxX \ Y , then (fn−1(z), x) ∈ E. Since Y

is modal, fn−1(z) ∈ Y and taking into account that Y is saturated we obtain that

x ∈ Y , which is a contradiction. Hence, there are at least two non-trivial closed,
modal and saturated subsets in X . Since X = Y ∪ ⋃

x∈maxX\Y
Wx, we infer that a

maximum non-trivial closed, modal and saturated subset does not exist. Therefore,

by Theorem 3.2, q % n (X) is not a subdirectly irreducible qLkn-algebra.

(ii) ⇒ (i): As Y is modal and maxX ⊆ Y , we conclude from Proposition 3.5 that
Y = X . �

Proposition 3.8. Let (X, g, f1, . . . , fn−1, E) be a qlnP -space and q % n (X) the

qLkn-algebra associated with X . Then the following conditions are equivalent:

(i) q % n (X) is subdirectly irreducible,

(ii) q % n (X) is simple.

&'"�()(+*
. It follows immediately from Theorem 3.2, Proposition 3.5 and Proposi-

tion 3.7. �

Proposition 3.9. Let (X, g, f1, . . . , fn−1, E) be a qlnP -space. Then the following

conditions are equivalent:

(i) (fi(x), fi(y)) ∈ E for all x, y ∈ X and for all i, 1 6 i 6 n− 1,

(ii) ∇E(D(X)) is a simple Lkn-algebra.
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&'"�()(+*
. (i) ⇒ (ii): By Lemma 2.5, ∇ED(X) is an Lkn-algebra. If we suppose

that it is not a simple one, by (L7) there are U , V ∈ D(X) such that ∇EU 6⊆ ∇EV

and ∇EV 6⊆ ∇EU . Then there are x ∈ V , y ∈ U such that (x, u) 6∈ E for all u ∈ U

and (y, v) 6∈ E for all v ∈ V . By (LP9) there are i, j, 1 6 i 6 n − 1, 1 6 j 6 n− 1
such that x = fi(x) and y = fj(y). If i 6 j, by (LP4) we have that fj(x) ∈ V and
therefore (fj(x), fj(y)) 6∈ E, which contradicts (i). If j < i, the proof is similar.

(ii) ⇒ (i): Suppose that there are x, y ∈ X such that (fi(x), fi(y)) /∈ E for some i,

1 6 i 6 n−1. Then, by Lemma 2.5 in [8], we can assume that there is U ∈ D(X) such
that (1) fi(x) ∈ ∇EU and (2) fi(y) /∈ ∇EU . On the other hand, from the hypothesis

and (L7) we have ϕi
X (∇EU) = ∅ or ϕi

X(∇EU) = X ; that is, f−1
i (∇EU) = ∅ or

f−1
i (∇EU) = X . From these last statements and (1) we have that f−1

i (∇EU) = X

and therefore fi(y) ∈ ∇EU , which contradicts (2). �

Theorem 3.3. Let (X, g, f1, . . . , fn−1, E) be a qlnP -space and q % n (X) the asso-

ciated qLkn-algebra. Then the following conditions are equivalent:

(i) q % n (X) is a simple qLkn-algebra,

(ii) ∇ED(X) is a simple Lkn-algebra.
&'"�()(+*

. (i) ⇒ (ii): If we suppose that ∇ED(X) is not a simple Lkn-algebra,

then from Proposition 3.9 and Remark 2.2 we have that there are x, y ∈ X such
that (1) (fi(x), fi(y)) /∈ E for all i, 1 6 i 6 n − 1. On the other hand, by (LP9)

y = fj(y) for some j, 1 6 j 6 n− 1. Then, from Proposition 3.6 and (1) it follows
that f−1

j (E(y)) is a non-empty closed, modal and saturated subset of X such that

x 6∈ f−1
j (E(y)). Therefore, by Theorem 3.2 we conclude that q % n (X) is not a simple

qLkn-algebra.

(ii) ⇒ (i): If Y is a non-trivial saturated, modal and closed subset of X , then there

are y ∈ Y and x ∈ X such that x 6∈ Y . Since Y is modal, from Proposition 3.4 we
have that fi(y) ∈ Y and fi(x) /∈ Y for all i, 1 6 i 6 n− 1. Then, as Y is saturated,
(fi(x), fi(y)) 6∈ E for all i, 1 6 i 6 n − 1, which implies by Proposition 3.9 that

∇ED(X) is not a simple Lkn-algebra. �

Corollary 3.3. Let A ∈ qLkn. Then the following conditions are equivalent:

(i) A is subdirectly irreducible,

(ii) A is simple,

(iii) ∇A is a simple Lkn-algebra.
&'"�()(+*

. It is a direct consequence of Proposition 3.8 and Theorem 3.3. �

Corollary 3.4. The monadic functional algebra C∗
n,X is simple.
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Lemma 3.3. Let (X, g, f1, . . . , fn−1, E) and (X ′, g′, f ′1, . . . , f
′
n−1, E

′) be qlnP -

spaces such that q % n (X) and q % n (X ′) are simple algebras. If f is an lnP -function

from X onto X ′ then f is a qlnP -function.

&'"�()(+*
. Since f is an lnP -function, hence f−1

i (f−1(∇E′U)) = f−1(f ′−1
i

(∇E′U)) for all U ∈ D(X ′). Furthermore, since f ′−1
i (∇E′U) is a closed, modal and

saturated subset of X ′, by Theorem 3.2 it follows that f−1
i (f−1(∇E′U)) = ∅ or

f−1
i (f−1(∇E′U)) = X .

On the other hand, following an analogous reasoning we can prove that f−1
i (∇E

f−1(U)) = ∅ or f−1
i (∇Ef−1(U)) = X . Taking into account that f is surjective, the

following conditions are equivalent:

(a) f−1
i (f−1(∇E′U)) = ∅,

(b) f ′−1
i (U) = ∅,

(c) f−1
i (∇Ef−1(U)) = ∅.

Then we infer that f−1
i (f−1(∇E′U)) = f−1

i (∇Ef−1(U)) for all i, 1 6 i 6 n − 1
and by (LP10), f−1(∇E′U) = ∇Ef−1(U). �

Theorem 3.4 ([1]). Let A be a qLkn-algebra. Then the following conditions are

equivalent:

(i) A is simple,

(ii) A is isomorphic to a qLkn-subalgebra of C∗
n,X .

&'"�()(+*
. (i) ⇒ (ii): By the Moisil representation theorem ([16], [7]) we know that

there exists an injective Lkn-homorphism h from A into C∗
n,X . Then, by Lemma 2.4,

 L(h) is a surjective lnP -function from  L(C∗
n,X ) onto  L(A). Since A and C∗

n,X are

simple qLkn-algebras and q L(h) =  L(h), we have by Lemma 3.3 that q L(h) is a qlnP -
function. Therefore, by Lemma 2.7 and Theorem 2.2 we obtain that h = q % n (q L(h))
is an injective qLkn-homomorphism.

(ii) ⇒ (i): From the hypothesis we deduce that ∇A is an Lkn-algebra isomorphic
to a subalgebra of ∇C∗

n,X . Therefore, ∇A is isomorphic to a subalgebra of Cn and

this implies by (L7) that ∇A is a simple Lkn-algebra. Hence, by Corollary 3.3 we
complete the proof. �
,.- $)/0(21435�2687+�9��/):

. The authors are truly thankful to the referee for his
helpful comments.
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