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Abstract. In the paper a new proof of Lemma 11 in the above-mentioned paper is given.
Its original proof was based on Theorem 3 which has been shown to be incorrect.
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Introduction

Theorem 3 in [4, p. 292] is not correct as the following example of a non locally
connected continuum in �2 shows. This example was suggested by N.Dancer in [1].

(For similar results, see [3, p. 162], [2, Example 5.1].)

X = {(0, y) : 0 � y � 2} ∪ {(x, y) : y = 1 + sin 1x , 0 < x � 2
�
} ∪ {(x, 2): 2

�
< x � 2}.

In view of this, Theorem 4, Remark 4, Lemma 9 and Theorem 5, Lemma 11 in [4]
are true in a weaker formulation. They only guarantee the existence of a continuum

of sub- and superequilibria and a continuum of equilibria, respectively. They will be
rewritten here. Also a new proof of Lemma 11 from the above-mentioned paper will

be given. This will guarantee that, with these changes, all results of [4] remain valid.

The author would like to thank Prof. N.Dancer for his valuable remarks. Supported by
grant no. 1/7176/20 of the Scientific Grant Agency VEGA of Slovak Republic.
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Theorem 4. Let assumption (H3) be fulfilled, let [z1, z2] ⊂ [a, b] be a positively

invariant interval for the operator T and let z1, z2 ∈ C2. Then the set F of all

subequilibria and all superequilibria lying in C2 forms a continuous branch connecting

the points z1, z2 and contains a continuum possessing z1, z2.

������ �. By Theorem 2, each equilibrium belongs to C2. Further, if z is a

subequilibrium (superequilibrium) and there is a sequence zk → z such that zk are
superequilibria (subequilibria), then z is an equilibrium. We also have that the set

of all equilibria lying in a continuum C is closed, and thus the set of all sub- and
superequilibria in C is open (with respect to that continuum).

Theorem 5. If assumption (H3) is satisfied and [z1, z2] ⊂ [a, b] is a singular

interval for the mapping T , then the set Fp of all equilibria lying in [z1, z2] forms a
continuous branch connecting the points z1, z2 and contains a continuum possessing

z1, z2.

Lemma 9. Let assumption (H3) be fulfilled, let [z1, z2] ⊂ [a, b] be a positively
invariant interval for T and let z1, z2 be two equilibria. Then the following alternative

holds: Either

(a) there exists a further equilibrium in [z1, z2], or

(b) there exists a continuum C in [z1, z2] containing z1, z2 such that all points of C

except z1, z2 are strict subequilibria, or

(c) there exists a continuum C in [z1, z2] containing z1, z2 such that all points of C

except z1, z2 are strict superequilibria.

Lemma 11. Let assumption (H3) be satisfied, let z1, z2 be two equilibria such

that a � z1 < z2 � b and let T be order-preserving in [z1, z2]. Further, let all
equilibria in [z1, z2] be stable. Then there is a continuum of equilibria in [z1, z2]

containing z1, z2.

The proof of this lemma will be based on Theorem 4 and on the following

Lemma. Let assumption (H3) be fulfilled, let a � z1 < z2 � b be two points

such that z1 (z2) is a subequilibrium (superequilibrium) and T is order-preserving

in [z1, z2]. Further, let all equilibria in [z1, z2] be stable. Denote F (Fp) the set of

all sub- and superequilibria (the set of all equilibria) lying in [z1, z2]. Then:

(a) For each x ∈ F there exists lim
k→∞

T k(x) ∈ [z1, z2].
(b) The mapping U : F → Fp defined by

(1) U(x) = lim
k→∞

T k(x), x ∈ F,

is continuous.
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����	. The statement (a) follows from Lemma 10 and hence the mapping U

defined by (1) is well-defined. Let x ∈ F be an arbitrary point and ε > 0 an arbitrary
number. Then by the stability of y = U(x) there exists a δ > 0 such that

(2) ‖y − T k(u)‖ < ε for each u ∈ [z1, z2], ‖u− y‖ < δ and each natural k.

Since lim
k→∞

T k(x) = y, there exists a natural k0 with the property

(3) ‖T k0(x)− y‖ <
δ

2
.

As T k0 is continuous at x, there exists a δ1 > 0 such that z ∈ F , ‖x−z‖ < δ1 implies

(4) ‖T k0(x) − T k0(z)‖ <
δ

2
.

Then for each z ∈ F , ‖x− z‖ < δ1, (4) and (3) give that

(5) ‖T k0(z)− y‖ � ‖T k0(z)− T k0(x)‖ + ‖T k0(x)− y‖ < δ.

Put u = T k0(z) in (2). In view of (5), (2) implies that

(6) ‖y − T k0+k(z)‖ < ε for each natural k.

Thus we get that ‖x − z‖ < δ1, z ∈ F , implies the inequality ‖U(x) − U(z)‖ � ε

which means the continuity of U at x. �

����	 �	 Lemma 11. By Theorem 4 above, there is a continuum C containing
z1, z2 in the set F of all subequilibria and all superequilibria lying in C2. Lemma

assures the existence of a continuous map U which maps C onto a continuum of
equilibria in [z1, z2] containing z1, z2. �
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