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0. Introduction

The relations dealt with in the paper are considered in the general sense as systems
of maps. More precisely, by a relation we understand a subset R ⊆ GH , where G,H

are sets and GH denotes the set of all maps of H into G. G and H are called
the carrier and the index set of R, respectively. Relations with well-ordered index

sets, the so-called relations of type α, are studied in [8], while relations with general
index sets are studied in [9], [10], [5], [6] and [11]. In this paper, the fundamental

concepts concerning binary and ternary relations are extended to general relations
and discussed.

We denote by � the set of all positive integers, for any n ∈ � we denote (n] =

{m ∈ � ; m � n}. In the case of a finite set H of cardinality k we will not distinguish
between maps of the set H into the set G and k-tuples of elements of the set G. For

any n ∈ � we denote by Sn the set of all permutations of the set (n]; id denotes the
identical permutation of the set (n].

For any map f : H → G and any subset K ⊆ H , we denote by f |K the restriction
of f to K. The abbreviation w.r.t. will be written instead of the phrase “with respect
to”.
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1. Operations with relations

1.1. Definition. Let n ∈ �, let H be a set. Then the pair K = ({Ki}n+1i=1 ,

{ϕi}n−1i=1 ) is called an n-decomposition of the set H if {Ki}n+1i=1 is a sequence of n+1
sets satisfying

(1)
n+1⋃
i=1

Ki = H ,

(2) Ki ∩Kj = ∅ for all i, j ∈ (n+ 1], i �= j,
(3) card Ki = card Kj for all i, j ∈ (n], and {ϕi}n−1i=1 is a sequence of n − 1
bijections such that ϕi : Ki → Ki+1 for all i ∈ (n− 1].

1.2. ������. The concept of an n-decomposition is used here and in [5] in

different meanings.

1.3. Definition. Let G,H be sets, let K = ({Ki}n+1i=1 , {ϕi}n−1i=1 ) be an n-

decomposition of the set H . Then the relation

EK = {f ∈ GH ; f |Ki = f |Ki+1 ◦ ϕi for all i ∈ (n− 1]}

is called the diagonal w.r.t. K.

1.4. ������. Let K = ({Ki}n+1i=1 , {ϕi}n−1i=1 ) be an n-decomposition of the set H .

If Kn+1 = H or n = 1, then, obviously, EK = GH .

1.5. Definition. Let R ⊆ GH be a relation, let K = ({Ki}n+1i=1 , {ϕi}n−1i=1 ) be an

n-decomposition of the set H , ψ ∈ Sn. Then we define the relation RK,ψ ⊆ GH by
RK,ψ = {f ∈ GH ; ∃ g ∈ R:

f |Ki = g|Ki if i ∈ (n], i = ψ(i) or i = n+ 1,
f |Ki = g|Kψ(i) ◦ ϕψ(i)−1 ◦ . . . ◦ ϕi,
g|Ki = f |Kψ(i) ◦ ϕψ(i)−1 ◦ . . . ◦ ϕi if i ∈ (n], i < ψ(i),

f |Kψ(i) = g|Ki ◦ ϕi−1 ◦ . . . ◦ ϕψ(i),
g|Kψ(i) = f |Ki ◦ ϕi−1 ◦ . . . ◦ ϕψ(i) if i ∈ (n], i > ψ(i)}.

Then RK,ψ is called the (K, ψ)-modification of the relation R.

1.6. ������. Let R ⊆ GH be a relation, let K = ({Ki}n+1i=1 , {ϕi}n−1i=1 ) be an
n-decomposition of the set H , ψ ∈ Sn. Clearly, then
(1) RK,id = R,

(2) ∅K,ψ = ∅.
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1.7. �����	�. Let R ⊆ GH be a relation, H = {1, 2} (i.e.R is binary),
K = ({Ki}3i=1, {ϕ1}), K1 = {1},K2 = {2}, let ψ be the permutation of the set
(2] defined by ψ(1) = 2, ψ(2) = 1. Then RK,ψ = R−1. Hence, in this case, the
(K, ψ)-modification of a binary relation coincides with its standard inverse.

1.8. Definition. Let R1, . . . , Rn ⊆ GH be relations, K = ({Ki}n+1i=1 , {ϕi}n−1i=1 )
be an n-decomposition of the set H . Then we define the relation (R1 . . . Rn)K ⊆ GH

by (R1 . . . Rn)K = {f ∈ GH ; ∃ fi ∈ Ri for all i ∈ (n] such that

f |Ki = fi|Ki for all i ∈ (n],
f |Kn+1 = fi|Kn+1 for all i ∈ (n],
fi|Kj ◦ ϕj−1 ◦ . . . ◦ ϕi = fj |Ki for all i, j ∈ (n], i < j}.

(R1 . . . Rn)K is called the composition of R1, . . . , Rn w.r.t. K.

1.9. Definition. Let R ⊆ GH be a relation, let K be an n-decomposition of
the set H . Then we put RK1 = R, RK2 = (R . . . R)K, RKm = (RKm−1R . . .R)K ∪
(R RKm−1R . . .R)K ∪ . . . ∪ (R . . . R RKm−1)K for any m ∈ �,m � 3. RmK is called
the m-th power of R w.r.t. K.

1.10. �����	�. Let R1, R2 ⊆ GH be relations, H = {1, 2} (i.e. R1, R2 are
binary), K = ({Ki}3i=1, {ϕ1}), K1 = {1}, K2 = {2}. Then (R1R2)K = R1R2. Hence,
in this case, the composition w.r.t. K coincides with the standard composition of
binary relations.

1.11. ������. Let R1, . . . , Rn ⊆ GH be relations, let K = ({Ki}n+1i=1 , {ϕ}n−1i=1 )
be an n-decomposition of the set H . If Kn+1 = H , (R1 . . . Rn)K �= ∅, then, evidently,
there exists an f ∈

n⋂
i=1

Ri.

1.12. Notation. Let H be a set, let K = ({Ki}n+1i=1 , {ϕi}n−1i=1 ) be an n-
decomposition of the set H . Then K∗ = ({K∗

i }n+1i=1 , {ϕ∗i }n−1i=1 ) is the n-decomposition

of the set H defined by

K∗
i =





Ki+1 for all i ∈ (n− 1]
K1 for i = n,

Kn+1 for i = n+ 1,

ϕ∗i =

{
ϕi+1 for all i ∈ (n− 2],
ϕ−11 ◦ . . . ◦ ϕ−1n−1 for i = n− 1.

583



Further, for any ψ ∈ Sn, ψ∗ denotes the permutation of (n] defined by

ψ∗(i) =





ψ(i+ 1)− 1 if i ∈ (n− 1], ψ(i+ 1) �= 1,
ψ(1)− 1 if i = n, ψ(1) �= 1
n otherwise.

1.13. Proposition. Let R,R1, . . . , Rn ⊆ GH be relations, K an n-decomposition
of H , let ψ ∈ Sn,m ∈ �. Then

(1) K ∗...∗
︸︷︷︸
n times

= K.

(2) EK = EK∗ .

(3) RK,ψ = RK∗,ψ∗ .

(4) (R1 . . . Rn)K = (R2 . . . RnR1)K∗ .

(5) RmK = R
m
K∗ .

Proof is obvious.

1.14. Definition. Let R ⊆ GH be a relation, let K be an n-decomposition of the
setH , ψ ∈ Sn. Then we put R1K,ψ = RK,ψ, RmK,ψ = (Rm−1K,ψ )K,ψ for anym ∈ �,m � 2.

1.15. ������. If R ⊆ GH is a relation, K = ({Ki}n+1i=1 , {ϕi}
n−1
i=1 ) an n-

decomposition of the set H , ψ, χ ∈ Sn, then (RK,ψ)K,χ = RK,ψ◦χ need not hold in

general.

If, for example, n = 3,K1 = {1, 2},K2 = {3, 4},K3 = {5, 6},K4 = ∅, G =
{x, y, z}, ϕ1(1) = 3, ϕ1(2) = 4, ϕ2(3) = 5, ϕ2(4) = 6, ψ(1) = 1, ψ(2) = 3,
ψ(3) = 2, χ(1) = 2, χ(2) = 3, χ(3) = 1, R = {(x, y, z, x, y, z)}, then RK,ψ =
{(x, y, y, z, z, x)}, (RK,ψ)K,χ = ∅, while RK,ψ◦χ = {(y, z, z, x, x, y)}.

1.16. Proposition. Let J be a nonempty set, let R,R1, . . . , R1, R′n, . . . , R
′
n, T, Tj

for all j ∈ J be relations with the carrier G and the index set H . Let K be an n-
decomposition of the set H , ψ ∈ Sn. Let k ∈ (n],m ∈ �. Then

(1) EK = (EK)K,ψ = (EK)
2
K.

(2) (EK . . . EKR
↑ k-th place
EK . . . EK)K ⊆ R.

(3) If R ⊆ EK, then (2) becomes the equality.
(4) R ⊆ T implies RK,ψ ⊆ TK,ψ.

(5) (
⋃
j∈J

Tj)K,ψ =
⋃
j∈J
(Tj)K,ψ.

(6) (
⋂
j∈J

Tj)K,ψ =
⋂
j∈J
(Tj)K,ψ.

(7) Ri ⊆ R′i for all i ∈ (n] imply (R1 . . . Rn)K ⊆ (R′1 . . . R′n)K.
(8) R ⊆ T implies RmK ⊆ TmK .
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����. The assertions follow directly from the definitions of the operations.

For example, let us prove (2) and (3). Suppose that K = ({Ki}n+1i=1 , {ϕi}n−1i=1 ).
(2) Let f ∈ (EK . . . EKR

↑ k-th place
EK . . . EK)K. Then there exist fi ∈ EK for all i ∈ (n], i �=

k, and an fk ∈ R such that

f |Ki = fi|Ki for all i ∈ (n],
f |Kn+1 = fi|Kn+1 for all i ∈ (n],
fi|Kj ◦ ϕj−1 ◦ . . . ◦ ϕi = fj|Ki for all i, j ∈ (n], i < j.

We have f |Kk = fk|Kk , f |Kn+1 = fk|Kn+1 . Let i ∈ (n], i < k. Then f |Ki = fi|Ki =
fi|Kk ◦ ϕk−1 ◦ . . . ◦ ϕi = fk|Ki . Let i ∈ (n], i > k. Then f |Ki = fi|Ki , hence
f |Ki ◦ϕi−1 ◦ . . . ◦ϕk = fi|Ki ◦ϕi−1 ◦ . . . ◦ϕk = fi|Kk = fk|Ki ◦ϕi−1 ◦ . . . ◦ϕk. Thus,
again, f |Ki = fk|Ki . We obtain f = fk ∈ R.
(3) Let f ∈ R ⊆ EK. Put fk = f, fi|Ki = f |Ki , fi|Kn+1 = f |Kn+1 for all i ∈ (n].

Further, put

fi|Kj =
{
f |Ki ◦ ϕi−1 ◦ . . . ◦ ϕj for all i, j ∈ (n], i > j,

f |Ki ◦ ϕ−1i ◦ . . . ◦ ϕ−1j−1 for all i, j ∈ (n], i < j.

Then fi ∈ EK for all i ∈ (n] and fk ∈ R. For any i, j ∈ (n], i < j, we have

fi|Kj ◦ ϕj−1 ◦ . . . ◦ ϕi = f |Ki = f |Kj ◦ ϕj−1 ◦ . . . ◦ ϕi = fj|Ki ,

so that

f ∈ (EK . . . EKR
↑ k-th place
EK . . . EK)K.

1.17. ������. In 1.16, part (2), the inclusion cannot be replaced by the equality
unless R ⊆ EK. If, for example, n = 3, K1 = {1, 2}, K2 = {3, 4}, K3 = {5, 6}, K4 =
∅, G = {x, y}, ϕ1(1) = 3, ϕ1(2) = 4, ϕ2(3) = 5, ϕ2(4) = 6, R = {(x, x, x, x, y, x)},
then (x, x, x, x, y, x) /∈ (EKR EK)K.

1.18. Definition. Let R ⊆ GH be a relation, K an n-decomposition of the set
H , let ψ ∈ Sn be the permutation defined by

π(i) =

{
i+ 1 for all i ∈ (n− 1],
1 for i = n.

Then we define 1RK = RK,π, mRK = 1(m−1RK)K for any m ∈ �, m � 2. mRK is
called the m-th cyclic transposition of R w.r.t. K.
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1.19. Proposition. Let R ⊆ GH be a relation, K an n-decomposition of the set
H . Then

(1) 1RK = 1RK∗ .

(2) EK = 1(EK)K.


����. (1) follows from the fact that π∗ = π. (2) follows from 1.16 (1). �

1.20. Proposition. Let J be a nonempty set, R, T , Tj for all j ∈ J relations

with the carrier G and the index set H . Let K be an n-decomposition of the set H .
Then

(1) R ⊆ T implies 1RK ⊆ 1TK.

(2) 1(
⋃
j∈J

Tj)K =
⋃
j∈J

1(Tj)K.

(3) 1(
⋂
j∈J

Tj)K =
⋂
j∈J

1(Tj)K.


����. The assertions follow from 1.16 (4), (5), and (6). �

2. Properties of relations

2.1. Definition. Let R ⊆ GH be a relation, K = ({Ki}n+1i=1 , {ϕi}n−1i=1 ) an n-

decomposition of the set H , ψ ∈ Sn. Then R is called

(1) reflexive (irreflexive) w.r.t. K if EK ⊆ R (R ∩ EK = ∅),
(2) symmetric (assymmetric, antisymmetric) w.r.t. K and ψ if RK,ψ ⊆ R (R ∩

RK,ψ = ∅, R ∩RK,ψ ⊆ EK),

(3) transitive (atransitive) w.r.t. K if R2K ⊆ R (R∩RmK = ∅ for any m ∈ �,m � 2),
(4) complete w.r.t. K if f ∈ GH , f |Ki �= f |Kj ◦ϕj−1 ◦ . . . ◦ϕi for all i, j ∈ (n], i < j

imply the existence of a χ ∈ Sn such that f ∈ RK,χ.

2.2. Proposition. Let J be a nonempty set, j0 ∈ J . Let R,R1, . . . , Rn, Tj
for all j ∈ J be relations with the carrier G and the index set H . Let K be an
n-decomposition of the set H , ψ ∈ Sn. Then
(1) If Tj0 is reflexive w.r.t. K, then

⋃
j∈J

Tj is reflexive w.r.t. K.

(2) If R,R1, . . . , Rn and Tj for all j ∈ J are reflexive w.r.t. K, then ⋂
j∈J

Tj , RK,ψ

and (R1 . . . Rn)K are reflexive w.r.t. K.
(3) If R and Tj for all j ∈ J are irreflexive (symmetric) w.r.t. K (and ψ), then⋃

j∈J
Tj ,

⋂
j∈J

Tj and RK,ψ have the same property.

(4) If Tj for all j ∈ J are transitive w.r.t. K, then
⋂
j∈J

Tj is transitive w.r.t. K.
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(5) If Tj0 is atransitive (assymmetric, antisymmetric) w.r.t. K (and ψ), then
⋂
j∈J

Tj

has the same property.

(6) If R is asymmetric (antisymmetric) w.r.t. K and ψ, then RK,ψ has the same
property.

(7) If Tj0 is complete w.r.t. K, then
⋃
j∈J

Tj is complete w.r.t. K.


����. The assertion (1) is evident, the others follow from 1.6 (2), 1.16 (1),

(4)–(6), and (8). �

2.3. ������. Let R ⊆ GH be a relation, K an n-decomposition of H , let
ψ ∈ Sn. It can be easily obtained from 2.2 (3) by induction that if R is symmetric
w.r.t. K and ψ, then Rm+1K,ψ ⊆ RmK,ψ for any m ∈ �.

2.4. Proposition. Let R ⊆ GH be a relation, K an n-decomposition of the set
H , let ψ ∈ Sn. Then:
(1) If R is reflexive (irreflexive, transitive, atransitive, complete) w.r.t. K, then it
has the same property w.r.t. K∗.

(2) If R is symmetric (asymmetric, antisymmetric) w.r.t. K and ψ, then it has the
same property w.r.t. K∗ and ψ∗.


����. The assertions follow from 1.13 (2), (3), and (5). �

2.5. Definition. Let R ⊆ GH be a relation, K an n-decomposition of the set H .
Then R is called

(1) cyclic (acyclic, anticyclic) w.r.t. K if it is symmetric (asymmetric, antisymmet-
ric) w.r.t. K and π,

(2) symmetric (asymmetric, antisymmetric) w.r.t. K if it is symmetric w.r.t. K and
ψ for any ψ ∈ Sn (asymmetric, antisymmetric w.r.t. K and ψ for any odd
permutation ψ ∈ Sn).

2.6. Proposition. Let J be a nonempty set, j0 ∈ J . Let R, Tj for all j ∈ J be

relations with the carrier G and the index set H . Let K be an n-decomposition of
the set H , ψ ∈ Sn. Then:
(1) If R and Tj for all j ∈ J are cyclic w.r.t. K, then ⋃

j∈J
Tj ,

⋂
j∈J

Tj and 1RK are

cyclic w.r.t. K.
(2) If Tj for all j ∈ J are symmetric w.r.t. K, then

⋃
j∈J

Tj and
⋂
j∈J

Tj are symmetric

w.r.t. K.
(3) If R and Tj0 are acyclic (anticyclic) w.r.t. K, then

⋂
j∈J

Tj and 1RK have the same

property.
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(4) If Tj0 is asymmetric (antisymmetric) w.r.t. K, then
⋂
j∈J

Tj has the same property.

(5) If R is complete w.r.t. K, then 1RK is complete w.r.t. K.


����. The assertions follow from 2.2 (3), (5), and (6). �

2.7. ������. Let R ⊆ GH be a relation, K an n-decomposition of the set H .
Putting ψ = π in 2.3, we obtain that if R is cyclic w.r.t. K, then m+1RK ⊆ mRK for
any m ∈ �.

2.8. Proposition. Let R ⊆ GH be a relation, K an n-decomposition of the set H .
If R has any of the properties defined in 2.5 w.r.t. K, then it has the same property
w.r.t. K∗.


����. The proposition follows from 2.4 (2) and from the facts that π∗ = π

and {ψ∗ ; ψ ∈ Sn} = Sn. �

3. Hulls of relations

3.1. Definition. Let R ⊆ GH be a relation, K an n-decomposition of the set H ,
ψ ∈ Sn. Let (p) be any of the properties defined in 2.1 or 2.5. A relation Q ⊆ GH

is called the (p)-hull of R w.r.t. K (and ψ) if

(1) R ⊆ Q,

(2) Q has the property (p),

(3) if T ⊆ GH is any relation having the property (p) and such that R ⊆ T , then
Q ⊆ T .

3.2. ������. Let R ⊆ GH be a relation, K an n-decomposition of the set H ,
ψ ∈ Sn. Let (p) be any of the properties defined in 2.1 or 2.5. Obviously, then R
has the property (p) w.r.t. K (and ψ) if and only if the (p)-hull Q of R w.r.t. K (and
ψ) exists and R = Q.

3.3. Proposition. Let R, T ⊆ GH be relations, K an n-decomposition of the set
H , ψ ∈ Sn. Let (p) be any of the properties defined in 2.1 or 2.5, R

(p)
K(,ψ) (T

(p)
K(,ψ))

the (p)-hull of R(T ) w.r.t. K (and ψ). Then R ⊆ T implies R(p)K(,ψ) ⊆ T
(p)
K(,ψ).


����. Let R ⊆ T . We have T ⊆ T
(p)
K(,ψ). Thus R ⊆ T

(p)
K(,ψ). As T

(p)
K(,ψ) has the

property (p), we obtain R(p)K(,ψ) ⊆ T
(p)
K(,ψ). �

3.4. Definition. Let R ⊆ GH be a relation, K an n-decomposition of the set H .
Then we define 1RK = R, mRK =m−1 RK ∪ (m−1RK)2K for any m ∈ �,m � 2.
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3.5. ������. Let R ⊆ GH be a relation, K an n-decomposition of the set H .
Clearly, then mRK ⊆ m+1RK for any m ∈ �.

3.6. Proposition. Let R ⊆ GH be a relation, K an n-decomposition of the set
H . Let ψ ∈ Sn. Then the following relations exist:
(1) the reflexive hull R(r)K of R w.r.t. K and we have R(r)K = R ∪EK,
(2) the symmetric hull R(s)K,ψ of R w.r.t. K and ψ and we have R

(s)
K,ψ = R∪

∞⋃
i=1

RiK,ψ,

(3) the transitive hull R(t) of R w.r.t. K and we have R(t)K =
∞⋃
i=1

iRK.


����. (1) is evident.

(2) Put Q = R ∪
∞⋃
i=1

RiK,ψ. Clearly, then R ⊆ Q. We have QK,ψ = (R ∪
∞⋃
i=1

RiK,ψ)K,ψ = RK,ψ ∪
∞⋃
i=1

Ri+1K,ψ =
∞⋃
i=1

RiK,ψ ⊆ Q by 1.16 (5) and Q is symmetric

w.r.t. K and ψ. Further, let T ⊆ GH be symmetric w.r.t. K and ψ and let R ⊆ T . By

virtue of 1.16 (4) and using induction we obtain Q = R∪
∞⋃
i=1

RiK,ψ ⊆ T ∪
∞⋃
i=1

T iK,ψ ⊆ T

due to 2.3.

(3) Put Q =
∞⋃
i=1

iRK. Clearly R = 1RK ⊆ Q. Let f ∈ Q2K. Then there exists an
fi ∈ Q for each i ∈ (n] such that f |Ki = fi|Ki for each i ∈ (n], f |Kn+1 = fi|Kn+1 for
each i ∈ (n], fi|Kj ◦ ϕj−1 ◦ . . . ◦ ϕi = fj|Ki for each i, j ∈ (n], i < j. For each i ∈ (n]
there exists a ji ∈ � such that fi ∈ jiRK. Hence it follows that f ∈ (j1RK . . .jn RK)K.
Denote j0 = max{j1, . . . , jn}. By 3.5, we have jiRK ⊆j0 RK for all i ∈ (n]. By 1.16
(7), f ∈ (j0RK . . .j0 RK)K =j0 R2K ⊆ j0+1RK ⊆

∞⋃
i=1

iRK = Q. Thus Q2K ⊆ Q and Q is

transitive w.r.t. K. Let T ⊆ GH be transitive w.r.t. K and such that R ⊆ T . It is easy

to prove by induction that iRK ⊆ T for any i ∈ �. Hence Q =
∞⋃
i=1

iRK ⊆
∞⋃
i=1

T = T

and we have R(t)K = Q. �

3.7. Proposition. Let R ⊆ GH be a relation, K an n-decomposition of the set
H , ψ ∈ Sn. Then:
(1) If R is complete (symmetric, antisymmetric) w.r.t. K (and ψ), then R(r)K has

the same property.

(2) If n � 2 and R is transitive w.r.t. K, then R(r)K is transitive w.r.t. K.
(3) IfR is reflexive (irreflexive, complete) w.r.t. K, then R(s)K,ψ has the same property.
(4) If R is reflexive (complete) w.r.t. K, then R(t)K has the same property.

����. (1) follows from 1.16 (1), (5), 2.2 (3), (7), and 3.6 (1).

(2) Let n � 2 and let R be transitive w.r.t. K. Then R2K ⊆ R. The case of n = 1
is trivial. Let n = 2. Let f ∈ (R(r)K )2K = (R ∪ EK)2K (by 3.6 (1)). Then there exist
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f1, f2 ∈ R ∪ EK such that f |K1 = f1|K1 , f |K2 = f2|K2 , f |K3 = f1|K3 = f2|K3 , f1|K2 ◦
ϕ1 = f2|K1 . If f1, f2 ∈ R, then f ∈ (R R)K = R2K ⊆ R ⊆ R

(r)
K . If f1, f2 ∈ EK,

then, by 1.16 (1), f ∈ (EKEK)K = (EK)
2
K = EK ⊆ R

(r)
K . If f1 ∈ R, f2 ∈ EK,

then f |K1 = f1|K1 , f |K2 = f2|K2 = f2|K1 ◦ ϕ−11 = f1|K2 , f |K3 = f1|K3 . Hence
f = f1 ∈ R ⊆ R

(r)
K . The case of f1 ∈ EK, f2 ∈ R is analogous. Thus (R

(r)
K )

2
K ⊆ R

(r)
K

and R(r)K is transitive w.r.t. K.
(3) and (4) follow from 1.14, 1.16 (1), (2), (4), (6), 3.1 (1), 3.4, and 3.6 (2), (3). �

3.8. Corollary. Let R ⊆ GH be a relation, K an n-decomposition of the set H ,
ψ ∈ Sn. Then
(1) (R(r)K )

(s)
K,ψ = (R

(s)
K,ψ)

(r)
K .

(2) (R(t)K )
(r)
K ⊆ (R(r)K )

(t)
K .

(3) If n � 2, then (R(t)K )
(r)
K = (R

(r)
K )

(t)
K .


����. (1) As R ⊆ R
(s)
K,ψ, we have, by 3.3, R

(r)
K ⊆ (R(s)K,ψ)

(r)
K , and again

by 3.3, (R(r)K )
(s)
K,ψ ⊆ ((R

(s)
K,ψ)

(r)
K )

(s)
K,ψ. By 3.7 (1), (R

(s)
K,ψ)

(r)
K is symmetric w.r.t. K and

ψ, consequently, by 3.2, ((R(s)K,ψ)
(r)
K )

(s)
K,ψ = (R

(s)
K,ψ)

(r)
K . Thus (R

(r)
K )

(s)
K,ψ ⊆ (R(s)K,ψ)

(r)
K .

As R ⊆ R
(r)
K , we have, by 3.3, R

(s)
K,ψ ⊆ (R(r)K )

(s)
K,ψ, and again by 3.3, (R

(s)
K,ψ)

(r)
K ⊆

((R(r)K )
(s)
K,ψ)

(r)
K . By 3.7 (3), (R

(r)
K )

(s)
K,ψ is reflexive w.r.t. K, consequently, by 3.2,

((R(r)K )
(s)
K,ψ)

(r)
K = (R(r)K )

(s)
K,ψ. Thus (R

(s)
K,ψ)

(r)
K ⊆ (R(r)K )

(s)
K,ψ. Combining the two re-

sults, we obtain (R(r)K )
(s)
K,ψ = (R

(s)
K,ψ)

(r)
K .

(2) and (3) follow analogously from 3.3, 3.7 (4), (2), and 3.2. �

3.9. ������. The inclusion in 3.8 (2) cannot, in general, be replaced by equal-

ity. If, for example, n = 3, K1 = {1, 2}, K2 = {3, 4}, K3 = {5, 6}, K4 = ∅,
G = {x, y}, ϕ1(1) = 3, ϕ1(2) = 4, ϕ2(3) = 5, ϕ2(4) = 6, R = {(x, y, x, x, x, y),
(x, y, x, y, y, x)}, then (x, y, x, y, x, y) ∈ EK ⊆ R

(r)
K , (x, y, x, x, x, y) ∈ R ⊆ R

(r)
K ,

(x, y, x, y, y, x) ∈ R ⊆ R
(r)
K , hence (x, y, x, x, y, x) ∈ (R

(r)
K )

2

K ⊆ (R(r)K )
(t)

K , but R
2
K = ∅,

consequently R(t)K = R, and (x, y, x, x, y, x) /∈ R ∪ EK = R(r)K = (R
(t)
K )
(r)
K .

3.10. Corollary. Let R ⊆ GH be a relation, K an n-decomposition of the set H .
Then (R(r)K )

(t)
K = ((R

(t)
K )
(r)
K )

(t)
K .


����. Similarly as in the proof of 3.8 (1) we get (R(r)K )
(t)
K ⊆ ((R(t)K )

(r)
K )

(t)
K .

By 3.8 (2), (R(t)K )
(r)
K ⊆ (R(r)K )

(t)
K , consequently, by 3.3 and 3.2, ((R

(t)
K )
(r)
K )

(t)
K ⊆

((R(r)K )
(t)
K )
(t)
K = (R

(r)
K )

(t)
K . Thus, (R

(r)
K )

(t)
K = ((R

(t)
K )
(r)
K )

(t)
K . �

3.11. Proposition. Let R ⊆ GH be a relation, K an n-decomposition of the set
H . Then the following relations exist:
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(1) the cyclic hull R(c)K of R w.r.t. K and we have R
(c)
K = R ∪

∞⋃
i=1

iRK,

(2) the symmetric hull R(d)K of R w.r.t. K and we have

R
(d)
K =

∞⋃

i=1

⋃

ψ1,ψ2,...,ψi∈Sn
(. . . (RK,ψ1)K,ψ2 . . .)K,ψi .


����. (1) As R(c)K = R
(s)
K,π, we have, by 3.6 (2), R

(c)
K = R ∪

∞⋃
i=1

RiK,π =

R ∪
∞⋃
i=1

iRK.

(2) Put Q =
∞⋃
i=1

⋃
ψ1,ψ2,...,ψi∈Sn

(. . . (RK,ψ1)K,ψ2 . . .)K,ψi . By 1.6 (1), we have

R = RK,id ⊆ Q. Let ξ ∈ Sn.
By Proposition 1.16 (5), QK,ξ =

( ∞⋃
i=1

⋃
ψ1,ψ2,...,ψi∈Sn

(. . . (RK,ψ1)K,ψ2 . . .)K,ψi
)
K,ξ =

∞⋃
i=1

⋃
ψ1,ψ2,...,ψi∈Sn

((. . . (RK,ψ1)K,ψ2 . . .)K,ψi)K,ξ ⊆ Q, and Q is symmetric w.r.t. K.

Now, let R ⊆ T where T is symmetric w.r.t. K. Then, by 1.16 (4),

Q =
∞⋃

i=1

⋃

ψ1,ψ2,...,ψi∈Sn
(. . . (RK,ψ1)K,ψ2 . . .)K,ψi

⊆
∞⋃

i=1

⋃

ψ1,ψ2,...,ψi∈Sn
(. . . (TK,ψ1)K,ψ2 . . .)K,ψi ⊆ T.

Hence Q is the symmetric hull of R w.r.t. K. �

3.12. Proposition. Let R ⊆ GH be a relation, let K be an n-decomposition of
the set H .

(1) If R is reflexive (irreflexive, complete) w.r.t. K, then R(c)K and R(d)K have the

same property.

(2) If R is symmetric (antisymmetric) w.r.t. K, then R(r)K has the same property.


����. Let R be reflexive w.r.t. K. Then EK ⊆ R. But R ⊆ R
(c)
K , R ⊆ R

(d)
K ,

hence EK ⊆ R(c), EK ⊆ R
(d)
K , and both R

(c)
K and R(d)K are reflexive w.r.t. K. Let R

be irreflexive w.r.t. K. By 2.2 (3), 1RK = RK,π is irreflexive w.r.t. K. It follows by
induction that iRK is irreflexive w.r.t. K for all i ∈ �. By 3.11 (1), R(c)K =

∞⋃
i=1

iRK.

Hence, again by 2.2 (3), R(c)K is irreflexive w.r.t. K. The other properties can be
easily verified with the aid of 2.2 (3), 3.11 (2),3.3 (1), and 3.7 (1). �
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3.13. Corollary. Let R ⊆ GH be a relation, K an n-decomposition of the set H ,
ψ ∈ Sn. Then
(1) (R(r)K )

(c)
K = (R

(c)
K )

(r)
K .

(2) (R(d)K )
(r)
K = (R

(r)
K )

(d)
K .

(3) (R(d)K )
(s)
K,ψ = (R

(s)
K,ψ)

(d)
K = R

(d)
K .

(4) (R(d)K )
(c)
K = (R

(c)
K )

(d)
K = R

(d)
K .


����. (1) follows from 3.8 (1) for ψ = π.

(2) As R ⊆ R
(r)
K , we have, by 3.3, R

(d)
K ⊆ (R(r)K )

(d)
K , and again by 3.3, (R

(d)
K )

(r)
K ⊆

((R(r)K )
(d)
K )

(r)
K . By 3.12 (1), R

(r)
K )

(d)
K is reflexive w.r.t. K, consequently, by 3.2,

((R(r)K )
(d)
K )

(r)
K = (R(r)K )

(d)
K . Thus (R

(d)
K )

(r)
K ⊆ (R(r)K )

(d)
K . Similarly, using 3.3, 3.12 (2)

and 3.2, we obtain (R(r)K )
(d)
K ⊆ (R(d)K )

(r)
K , which proves the assertion.

(3) follows from 3.3 and 3.2.
(4) is a special case of (3). �
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