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ON DETECTABLE COLORINGS OF GRAPHS
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Abstract. Let G be a connected graph of order n > 3 and let ¢: E(G) — {1,2,...,k}
be a coloring of the edges of G (where adjacent edges may be colored the same). For each
vertex v of G, the color code of v with respect to c¢ is the k-tuple ¢(v) = (a1,a2,...,ax),
where a; is the number of edges incident with v that are colored ¢ (1 < 7 < k). The coloring
¢ is detectable if distinct vertices have distinct color codes. The detection number det(G) of
G is the minimum positive integer k for which G has a detectable k-coloring. We establish
a formula for the detection number of a path in terms of its order. For each integer n > 3,
let Dy (n) be the maximum detection number among all unicyclic graphs of order n and
dw(n) the minimum detection number among all unicyclic graphs of order n. The numbers
Dy (n) and dy(n) are determined for all integers n > 3. Furthermore, it is shown that for
integers k > 2 and n > 3, there exists a unicyclic graph G of order n having det(G) = k if
and only if dy(n) < k < Dy(n).

Keywords: detectable coloring, detection number

MSC 2000: 05C15, 05C70

1. INTRODUCTION

Let G be a connected graph of order n > 3 and let ¢: E(G) — {1,2,...,k} be
a coloring of the edges of G for some positive integer k (where adjacent edges may
be colored the same). The color code of a vertex v of G (with respect to ¢) is the
ordered k-tuple

c(v) = (a1, as,...,a;) (or simply, c¢(v) = arasz...ax),

where a; is the number of edges incident with v that are colored ¢ for 1 < 7 < k.
k
Therefore, Y a; = degq v. The coloring c is called detectable if distinct vertices have

=1
distinct color codes; that is, for every two vertices of GG, there exists a color such
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that the number of incident edges with that color is different for these two vertices.
The detection number det(G) of G is the minimum positive integer k for which G
has a detectable k-coloring. Such a coloring is called a minimum detectable coloring.
Since every nontrivial graph contains at least two vertices having the same degree,
the vertices of a nontrivial connected graph cannot be distinguished by their degrees
alone. Therefore, every connected graph of order 3 or more has detection number at
least 2.

To illustrate these concepts, consider the graph G shown in Figure 1(a). A coloring
of the edges of G is shown in Figure 1(b). For this 3-coloring ¢, the color codes of
its vertices are

10, c(v) =021, c(w) =210,
101, ¢(z) = 001.
Since the vertices of G have distinct color codes, c is a detectable coloring. Figure 1(c)

shows yet another detectable coloring ¢’ of the graph G of Figure 1(a). For this
coloring,

d(u) =20, d(v) =30, d(w) =21, d(z) =12, d(y) =02, (2) =01,

The coloring ¢’ uses only two colors. Once a detectable 2-coloring for the graph G
of Figure 1(c) was obtained, we can immediately conclude that det(G) = 2 as every
connected graph of order 3 or more has detection number at least 2.

U
v w
G: T
Yy
z

Figure 1. A detectable coloring of a graph

The concept of detectable coloring was studied in [1], [2], [3], [4], [5], inspired by
the basic problem in graph theory that concerns finding means to distinguish the
vertices of a connected graph. The following results were stated in [2], [5].
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Theorem A. Let ¢ be a k-coloring of the edges of a graph G. The maximum

number of different color codes of the vertices of degree r in G is (TH: 71).

Theorem B. If c is a detectable k-coloring of a connected graph G of order at
least 3, then G contains at most (T+:f_1) vertices of degree r.

Since vertices with distinct degrees in a connected graph always have distinct
color codes, it is most challenging to find minimum detectable colorings of graphs
having many vertices of the same degree. The detection numbers of complete graphs
and complete bipartite graphs have been determined and detectable colorings of
connected r-regular graphs and trees have been studied as well (see [2], [3], [4], [5])-
The detection number of the cycle C,, of order n was established in [5].

Theorem C. Let n > 3 be an integer and let | = [\/n/2 ]. Then

< 202,

2 iF 22— l4+1<n
det(Cr) = l<n<22—1.

20— 1 if 2(1—1)2+

In this work, we first establish a formula for the detection number of paths in
Section 2 and then study some extremal problems concerning detection numbers of
unicyclic graphs in Section 3. We refer to the book [6] for graph theory notation and
terminology not described in this paper.

2. DETECTABLE COLORING OF PATHS
In this section, we determine the detection numbers of all paths. In order to do
this, we first present four results, the first of which is a consequence of Theorem B, the

next two are well-known results in graph theory, and the fourth has a straightforward
proof.

Corollary 2.1. Let k > 2 be an integer. If n > (g) + 2, then det(P,) > k.

Theorem D. For each positive integer k, the complete graph Ks, can be factored
into k — 1 Hamiltonian cycles and a 1-factor.

Theorem E. For each positive integer k, the complete graph Kog1 is Hamilto-
nian factorable (into k Hamiltonian cycles).
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Lemma 2.2. For each integer n > 3, there exists a unique positive integer [ such
that

9 9 42
(2)+2:212—l+2<n<212+31+2=( ;L)H.

Furthermore, | = [1(=3+/8n —T7)].
Theorem 2.3. Let n >3 and let | = [1(=3+ +/8n —7)]. Then

21 if 22 —1+4+2<n<20%+3,

det(P,) = {
20+ 1 if 22 +4<n<20%+31+2.

Proof. Observethat 212 —1+2 < n < 2(2+ 3] +2 by Lemma 2.2. It is easy to
see that det(P,) = 2 for 3 < n < 5 and so the result holds for 3 < n < 5. Hence, we
may restrict our attention to n > 6. We consider two cases, according to whether
22 —1+2<n<2+3o0r 22 +4<n< 2%+ 31+ 2.

Case 1: 212 —1+2 < n <2024 3. By Corollary 2.1, if n > () +3 =212 —1+3,
then det(P,) > 2I. We now show that if n = 21> — [ + 2, then det(P,) > 2I. Since
n > (2l2_1) +2 = 212 — 31 + 3 for every | > 1, it follows that det(P,) > 2l — 1.
Suppose that there exist a detectable (21 — 1)-coloring ¢ of P,, where n = 2[? — [ + 2.
Since the maximum number of vertices in a path with detection number 2/ — 1
is ((2l_21)+1) +2 = @l) +2 = 22 — | + 2, it follows that all possible color codes
for the vertices of degree 2 are used in the coloring c. Observe that among the
possible color codes for vertices of degree 2, there is a total of 2l — 2 codes starting
with 1. Indeed, among the codes containing exactly two 1’s, there is a total of 2] — 2
.,2l — 1. Since the code
of each end-vertex of P, = P52 ;.o contains exactly one 1, it follows that in the

codes having 1 in the jth position for every j = 1,2,..

corresponding detectable (2! — 1)-tuple factorization of P, = Pyz2_;y2, two of the
factors have an odd number of vertices of degree 1, which is not possible. Hence,
det(P,,) = det(Pa2_;12) # 21 — 1. Consequently, det(P,) = det(Pa2_;42) > 2. This
shows that det(P,) > 21 if 212 — [ +2 < n < 212 + 3.

We now show that det(P,) < 21 if 212 — [ + 2 < n < 2/2 + 3 by considering two
subcases, depending on whether n = 2[2 +3 or 212 — [+ 2 < n < I? + 2.

Subcase 1.1: n = 2> +3. Let V(Ky) = {1,2,...,2l}. We now describe a
method to assign a detectable coloring of the edges of Py2, 35 with the elements of
V(Kq) ={1,2,...,2l}. By Theorem D, there exists a factorization of Ko; into [ — 1
Hamiltonian cycles

Hy, Hy,... H_,

and a 1-factor F'. For each integer ¢ with 1 <4 <[ — 1, suppose that
Hi: 1=ai1,ai2,...,a;20,1,
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where a; ; (1 < j < 20) is the jth vertex of H;,. We may assume, without loss of
generality, that
Hy: 1,2,...,20,1.

Therefore, a1 ; = j for 1 < j < 21. Also, let b; be the neighbor of 1 in the 1-factor
F of Ky;. Note that by # a; 2 and by # a; 9 for every ¢ with 1 <4 <! — 1. Suppose
that the edges of P23 are encountered in the order

€1,€2;,...,€21219

as we proceed along the path. For each integer k with 1 < k < 212, either 1 < k < 4l
or k =i(2l) + j for some integers i and j with 2 < i <I!—1and 1 < j < 2I. We now
define a coloring ¢: E(Pyp2y3) — V(Ky;) of the edges of Py23 by

ai ko) = [k/2] 1<k <4,

aij itk =i2)+j,2<i<l—1,1<j<2l,
cler) = . )

1 k=202 41,

by if k=202+2.

In other words, we assign the color [k/2] to the edge ey for 1 < k < 4, color the
next 21 edges ep(2y4; (1 < j < 21) of Py2 i3 by ap j, color the next 21 edges es(2);
(1 <j<2l) by as,; and so on. We continue this process until we have gone through
all the Hamiltonian cycles Hy, Ho, ..., H;_1. We have now assigned colors to the
first 212 edges of Py2,3. We assign the colors 1 and by to the last two edges in that
order. (Figure 2 illustrates a detectable 2[-coloring for Py2 3 = Ps; for [ = 3.) Since
every vertex of degree 2 of Pyj2 3 is incident with two edges having a unique pair of
colors and the edges incident with the end-vertices are colored 1 and b1(# 1), cis a
detectable 2I-coloring of Pyj2, 3 and so det(Pyz,3) < 21.

1 1 1 1
| | 6 | GXKQ 6 |
5 3 5 3 5 3 5 3

4 4 4 4
Ky H, H, F
1 1 2 2 3 3 4 4 5 5 6 6
1
Poy:
21 5 1 4 6 2 5 3

Figure 2. The detectable coloring of P>1 in Subcase 1.1.
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Subcase 1.2: n = 2I2 4+ 3 — p, for some integer p with 1 < p <1+ 1. For each
integer ¢ with 1 < ¢ < p, let v, be the vertex incident with eg;—1 and ezq on Py2 3.
Suppressing the vertex v, (1 < ¢ < p) so that ezq—1 and ez, become the single edge
fq, we obtain a path Pyj23_, of order 21243 —p. Let c be the detectable 2{-coloring
of Py 3 defined in Subcase 1.1. Define an edge coloring ¢*: E(Pyp245_,) — V(Ky)
of Py2y3 4, by

(o) {C(Squ) if e = f for some ¢ with 1 < ¢ < p,
c*(e) =

c(e) otherwise.

The codes of the vertices of Py2y3_,, are all those of P23 except those p 2i-tuples
for which 2 occurs in the gth coordinate for 1 < ¢ < p. This is a detectable 2I-coloring
of Py2y5_, and so det(Py243_,) < 2. Figure 3 illustrates a detectable 2[-coloring
of Popyg_p,=Pirforl=3andp=4=1+1

P17 .

5 1 4 6 2 5 3

Figure 3. The detectable coloring of Pj7 in Subcase 1.2.

Case 2: 21244 < n < 212+431+2. By Corollary 2.1, if n > (*'J1) +2 = 212 +1+2,
then det(P,) > 20 + 1. Thus, if n > 21? + [ + 3, then det(P,) > 2l + 1. Now, let
n = 212 +1+2. Since n > (22l) = 2(% —[+2, it follows that det(P,) = det(Py242) =
2l. Suppose now that there exists a detectable 2l-coloring ¢ of P, = Pyp2,10.
Because the largest possible number of vertices in a path with detection number 2/
is (2l;1) +2 = 212 +1 + 2, all possible color codes for the vertices of degree 2 are
used in the coloring ¢. Observe that among the codes containing exactly two 1’s,
there is a total of 2] — 1 codes having 1 in the jth position for every j =1,2,...,21.
The code of each end-vertex of P,, = Py32,;,o contains exactly one 1. This implies
that in the corresponding detectable 2{-tuple factorization of P, = P24, all but
two of the factors have an odd number of vertices of degree 1, which is not possible.
Hence, det(P,) = det(Py2,y12) > 20 + 1. Suppose now that 1 < p <1 — 2. Then
2°0414+2—p=22+1+2—(1—2)=21>+4. But 21 +4 > 21> — [ + 2. It follows
that det(Py2qi42-p) = 21 for every p=1,2,...,1—2. If ¢ is a detectable 2[-coloring
of Po;24149_p, then in the corresponding 2I-tuple factorization of Pyz2;y9_, there
would be at least 21 — (2 4+ 2(I — 2)) = 2 factors having an odd number of vertices of
degree 1 which is not possible. It follows then that det(P,) > 2l + 1 if n > 212 + 4.
Since 212 4+ 31 +2 > 2[%2 +4 for all [ > 1, we have det(P,) > 20+ 1if 21> +4 < n <
202 + 31+ 2.
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It remains to show that det(P,) < 2/ + 1 whenever 212 + 4 < n < 21? + 31 + 2.
This is accomplished by finding a detectable (2 4+ 1)-coloring of P,,. We consider
two subcases.

Subcase 2.1. n =202+ 31+ 2. Let V(Kg11) = {1,2,...,2[,2l + 1}. We now
describe a method to assign a detectable coloring of Py2, 3,0 with the elements of
V(K241). By Theorem E, K511 can be factored into | Hamiltonian cycles

H,,H,,... H.
For each integer ¢ with 1 < i <[, suppose that
Hil 1= ai,l,ai,z, ceey ai,gprl, 1,

where a; ; (1 < j <20+ 1) is the jth vertex of H;. We may assume, without loss of
generality, that
Hy:1,2,...,204+1,1.

Therefore, a;; = j for 1 < j < 2l + 1. Suppose that the edges of P2 3,40 are
encountered in the order

€1,€2,...,€21243]4+1

as we proceed along the path. We now define a coloring ¢: E(Pyz2y3142) — V(Kai11)
of the edges of Py2 ;.o by

(ex) ai [k/2] = [k/2] f1<k<4+2,
cle =
i ai k=i +1) 45, 2<i<l,1<j<2+1.

That is, we color the first 4] + 2 edges e; (1 < k < 4l + 2) of Pyy2 1340 by [k/2],
color the next 2/ 41 edges ea(2141)+; (1 < J <20+ 1) of Py 549 by azj, color the
next 21 4 1 edges e3(214+1)+; (1 < j <20+ 1) by a3 ; and so on. (Figure 4 illustrates
the detectable (2] + 1)-coloring of P21 3;10 = Pag for [ = 3.) The last 2] + 1 edges
e2i+1)+5 (1 < j < 20+ 1) are then colored by a; ;. Since every vertex of degree 2
of Pyj2y 3114 is incident with two edges having a unique pair of colors and the edges
incident with the two end-vertices are assigned 1 and a; ;41 # 1, it follows that c
is a detectable (20 + 1)-coloring of Pyj2 3,12 and so det(Py2342) < 2] + 1. Hence,
det(Po2 13142) = 20+ 1.

Subcase 2.2: 21 +4 < n < 20> +3l+1. Let n = (21> + 3l + 2) — p, where
1 < p <3l —2. We consider two subcases, according to whether 1 < p <2+ 1 or
204+2<p<3l—2.

Subcase 2.2.1: 1 <p < 2l + 1. For each integer ¢ with 1 < ¢ < p, let v, be the
vertex incident with eaq—1 and egq on P23, 5. Suppressing the vertex v, (1 < ¢ <
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6 4 6 3 6 3 6 3
""‘"7
Ve
5 4 5 1 5 1 5 4
Ky H, Hy Hj
1 1 2 2 3 3 4 4 5 5 6 6 7 T,
Pay: 5 2 6 3 7 4 1 6 4 2 7 5 3

Figure 4. The detectable coloring of P9 in Subcase 2.1.

p) so that ezq_1 and ez, become the single edge f,, we obtain a path Py23,19_), of
order 2/2+ 31 +2— p. Let ¢ be the detectable (2 + 1)-coloring of Py 3, defined in
Subcase 2.1. Define an edge coloring ¢*: E(Py24349_) — V(Ka41) of Pyzi340-,
by
(o) c(ezg—1) if e = f, for some ¢ with 1 < ¢ < p,
c*(e) =
c(e) otherwise.

The codes of the vertices of Poj2 3,19, are all those of Py2 3,45 except those (21+1)-
tuples for which 2 occurs in the gth coordinate for 1 < ¢ < p. Since this is a detectable

(21 + 1)-coloring of P2 45140y, it follows that det(Py24340-p) < 20+ 1. Figure 5
illustrates the detectable (2/4-1)-coloring of P2 5145, = P25 when ! = 3 and p = 4.

P25 .

Figure 5. The detectable coloring of Ps5 in Subcase 2.2.1.

Subcase 2.2.2: 214+ 2 < p < 3l —2. Note that this subcase can only occur when
l>4. Let p= (21 4+ 1)+ h where 1 < h <! — 3. Observe that | —3 < 2/ + 1 for all
positive integers [. Recall that the edges of P2 3,15 are encountered in the order

€1,€2,...,€21213],€2/243]41

as we proceed along the path. Let v; denote the vertex of Py2, 3,42 incident with
ei and e; 1 for 1 <4 < 60 + 3. First, we construct a path P(g23112)_(2141) from
P2 3142 by

434



(1) deleting the vertices v4;y3, v4i+4, --., Vsi+2 and therefore, deleting the 21 + 1
edges €41+3, €4i44, - - -, €6i+3 (which correspond to the Hamiltonian cycle Hs),
and

(2) identifying the vertices vyq;42 and vgi13.

This produces a path P(g;243142)—(2141) of order (212 + 31 +2) — (21 +1). Next,
we suppress the vertex vg;_1 for 1 < j < h, where the two edges ey;—1 and ey;
become the single edge f;. This produces a path Pio2 1112)—(21414n) = Pn. Let ¢ be
the detectable (21 + 1)-coloring of P2, 312 defined in Subcase 2.1. Define an edge
coloring ¢’: E(C,) — V(K24+1) by

' cezj—1) ife=f;jfor1<j<h,
cle) =
c(e) otherwise.

Figure 6 illustrates a detectable (2] + 1)-coloring of P2, 3,19 = Pys where [ = 4 and
a detectable (21 + 1)-coloring of Pg243142)—(214148) = P36 (for | = 4 and h = 1)
obtained from the coloring of Pj¢.

Psg: 1

Figure 6. Detectable colorings of Pyg and Psg in Subcase 2.2.2 in the proof of Theorem 2.3.

The codes of the vertices of P, are all these of Py2 5,19 except
(a) those (21 + 1)-tuples for which 2 occurs in the jth coordinate for 1 < j < A
(there are h such (2] + 1)-tuples) and
(b) those (2] 4 1)-tuples that are produced from the Hamiltonian cycle Ho; that is,
the codes of the vertices vajys, Vait4, ..., Vsi+3 in the path Pyy2, 3,5 (there are
21+ 1 such (21 + 1)-tuples).
Since ¢’ is a detectable (2] + 1)-coloring of P,,, it follows that det(P,) < 20+1. O
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3. EXTREMAL PROBLEMS ON UNICYCLIC GRAPHS

A connected graph with exactly one cycle is called a wunicyclic graph. A graph G
of order n and size m is unicyclic if and only if G is connected and m = n. In this
section, we study some extremal problems concerning detection numbers of unicyclic
graphs, in particular, the problems of determining how large and how small the
detection number of a unicyclic graph of a fixed order can be.

Observe that if n; is the number of vertices of degree 7 in a unicyclic graph G with

maximum degree A, then
(1) ny =ng+2n4 +3ns+ ...+ (A —2)na.

For each integer n > 3, let D, (n) denote the maximum detection number among
all unicyclic graphs of order n and d,(n) the minimum detection number among all
unicyclic graphs of order n. That is, if U, is the set of all unicyclic graphs of order
n, then

Dy (n) = max{det(G): G € U,}
dy(n) = min{det(G): G € U, }.

Figure 7 shows all the unicyclic graphs of order n for 3 < n < 5 together with a
)

minimum detectable coloring for each. Hence D, (3) = d,(3) = 3, and D,(n) = 3
and dy(n) = 2 for n =4, 5.
2
1
n=4: ! 2 3 2
1
3
1/\2
1 2

Figure 7. Minimum detectable colorings of unicyclic graphs of order n = 3,4, 5.

In order to determine D, (n) for n > 6, we first present a lemma. For a graph F,
let m(F') denote the size of F.
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Lemma 3.1. Let G be connected graph of order n > 3. If H is a connected
subgraph of G, then

det(G) — det(H) < m(G) — m(H).

Proof. Color the m(H) edges of H using k = det(H) colors and color the
remaining m(G)—m(H) edges of G using the colors k+1, k+2, ..., k+(m(G)—m(H)).
This gives us a detectable (m(G)—m(H)+ k)-coloring of G. It follows that det(G) <
m(G) —m(H) + det(H). O

The following is an immediate consequence of Lemma 3.1

Corollary 3.2. Let G be a connected graph of order n > 3 and size m. If g is
the girth of G, then
det(G) < m — g+ det(Cy).

Proposition 3.3. Forn > 6, D,(n) =n — 3.

Proof. It is easy to verify that det(K;,-1 +¢) = n —3 for n 6 and so
D,(n) 2 n — 3 for n > 6. It remains to show that D,(n) <n —3 for n > 6. Let G
be a unicyclic graph of order n > 6 and let g be the girth of G. If 3 < g < 5, then
G contains a subgraph F such that F € {Fy, Fy, F3, Fy, F5}, where F; (1 < i < 4)
is shown in Figure 7 and F5 is the graph obtained from Cs: ’1)1,’02,1}3,1}4,’05,’01 by

>
>

adding a pendant edge vv;. We have seen that det(F;) = m(F;) —3 for 1 < i < 4.
For the graph Fy, the 3-coloring ¢ defined by c(viva) = 1, c¢(vavs) = (’U3U4) =
2, and c(vqvs) = c(v1vs) = c¢(vv1) = 3 is a minimum detectable coloring of Fj
and so det(F5) = 3 = m(Fs) — 3. Therefore, det(F) = m(F) — 3 for each F €
{Fy, Fy, F3, Fy, F5}. It then follows by Lemma 3.1 that det(G) < m(G) + det(F) —
m(F)=n+(m(F)—3)—m(F)=n—-3for3< g <5. If g > 6, then det(Cy) < g—3
by Theorem C. It then follows by Corollary 3.2 that det(G) < n — g + det(C,) <
n—g+ (g —3)=n—3. Thus, D,(n) <n—3 for all n > 6. O

Next, we determine the minimum detection number among all unicyclic graphs
of order n. According to Theorem B, every unicyclic graph of order n > 3 having
detection number £ contains at most k end-vertices and at most %k:(k + 1) vertices
of degree 2. It then follows by (1) that

k(k+1 k? + 5k
w_kk— + .

<k =
n + 5 5

(k? + 5k) with det(G) = k, then
k+ 1) vertices of degree 2, and

Furthermore, if G is a unicyclic graph of order n = %
k(

G must contain exactly k end-vertices, exactly
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exactly k vertices of degree 3. We first determine d, (n) for the values of n mentioned
above.

Theorem 3.4. Let k > 2 be an integer. If n = (k* + 5k), then d,(n) = k.

1
2

Proof. First, we show that if n = J(k? + 5k), then d,(n) > k. Assume, to
the contrary, that there exists a unicyclic graph G of order %(k:2 + 5k) such that
det(G) < k — 1. By Theorem B, G has at most £ — 1 end-vertices and at most
1k(k — 1) vertices of degree 2. Therefore, G contains at least

k242r5k7(k71)7k(k71)

=2k+1

vertices of degree 3 or more. It then follows by (1) that G contains at least 2k + 1
end-vertices, which is impossible. Thus, d,(n) > k.

To show that d, (n) < k, we construct a unicyclic graph G}, of order n = %(k2 + 5k)
having detection number k& such that G, has exactly k end-vertices, exactly %(k:2 +k)
vertices of degree 2, and exactly k vertices of degree 3. We consider two cases,
according as to whether k is odd or even.

Case 1. k is odd. Then k = 2] — 1 for some integer [ > 2. We now construct G.
Let

Copz 1t v1,V2,..., V92, U1

be a cycle of length 2{?> — [ and for 1 < i < k, let Q; be a copy of Ko with V(Q;) =
{wi1,ui2}. Then the graph G}, is obtained from Cy2_; and Q; (1 < i < k) by
adding the edges vo;u; 1 (1 <4 < k). Observe that Gy, is a unicyclic graph of order
n=(20%—-1)+2(2l— 1) = $(k* + 5k).

We now define a k-coloring ¢ for the edges of Gj. First, we color the 2{% — [
edges of Cy2_; with the elements of V(Ko —1) ={1,2,...,2],2] — 1} as follows. Let
H,, Hs, ..., H;_1 bel—1 pairwise edge-disjoint Hamiltonian cycles of K5;_;. For each
integer ¢ with 1 < ¢ <! —1, suppose that H;: 1 =a;1,a;52,...,a;2-1,1, where a; ;
(1 <j<20—1)is the jth vertex of H; and we assume that Hy: 1,2,...,21 —1,1.
Therefore, a1 ; = j for 1 < j < 2l — 1. Suppose that the edges of Cyp2_; are

encountered in the order

€1,€2,...,€2121,€212_|4]1 = €1
as we proceed about the cycle in some direction. Then we define

( ) al,m/g] = |7<3/2] 1f1§k<4l*2,
cle =
g 4 i h=i(2—1)+j,2<i<l—1,and1<j<2 -1

438



It was shown in the proof of Theorem C that this coloring of the cycle Cyp2_; is
detectable. Furthermore, let c(vyu;1) = c(usius2) = 4 for 1 < 4 < k. Thus c
uses k colors. It remains to show that c is detectable. Note that the color codes
of the vertices of G consist of all possible color codes for vertices of degrees 1 and
2 together with all the k-tuples whose only nonzero entry is 3 occurring in the ith
coordinate for 1 < ¢ < k. Since each of the color codes described above occurs exactly
once, c is a detectable k-coloring for Gy. Therefore, det(Gx) < k and consequently,
det(Gk) =k.

Case 2. k is even. Then k = 2] for some positive integer [. If Kk = 2, thenn = 7.
Since the unicyclic graph G of order 7 in Figure 8 has detection number 2 (as shown
in that figure), the result holds for £ = 2. Thus we may assume that k£ > 4 and so
> 2.

Figure 8. A detectable 2-coloring of G2 in Case 2.

Let Cyz2: v1,va,...,092,v1 be a cycle of length of 212. For 1 < i < I, let Q; be
a copy of Ky with V(Q;) = {ui1,ui2} and for I +1 < < 20, let Q;: w41, Uiz, U3
be a copy of a path of length 2. Then the graph Gy is obtained from Cy32 and Q;
(1 <i < k) by adding the edges vo;u;1 (1 < < k). Observe that Gy, is a unicyclic
graph of order n = 2I? + 2] + 31 = 1(k* + 5k).

We now define a k-coloring ¢ for the edges of Gj. First, we color the 2/ edges
of the cycle Cy2 with the elements of V(Ky) = {1,2,...,2l} as follows. Let
Hy,Hs,...,H;_1 bel—1 pairwise edge-disjoint Hamiltonian cycles of Ky; and let F’
be the 1-factor of Ko with E(F) = {x;y;: 1 < i <1}, where x; = 2] = k. For each
integer ¢ with 1 <4 <! —1, suppose that H;: 1 = a;,1,a,2,...,a;,2;,1, where a;;
(1 < j < 2l) is the jth vertex of H; and Hy: 1,2,...,2l,1, say. Therefore, a1 ; = j
for 1 < 7 < 2l. Suppose that the edges of Cy2 are encountered in the order

€1,€2,... 7€2l27€2l2+1 = €1,

as we proceed about the cycle in some direction. For each integer k with 1 < k < 212,
either 1 < k < 4l or k = i(2l) + j for some integers ¢ and j with 2 <4 <[ —1 and
1 < j < 2l. We now define

(ex) aies2) = [k/2]  if 1<k <4l
cle =
’ i,j ifk=i2)+j,2<i<l—1land1<j<2L
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This coloring of Cy2 is detectable, which was shown in the proof of Theorem C.
Furthermore, for 1 < i <, let c(vgiui) = c(us1ui2) = z; and for [+ 1 <4 < 21,
let c(voiu;1) = x;—; and let c(u;1u;2) = c(u;2ui3) = yi—i. Thus ¢ uses k colors. It
remains to show that c is detectable. Note that in the coloring ¢ all possible color
codes for vertices of degrees 1 and 2 are used exactly once. The vertices of degree 3,
namely vy; (i =1,2,...,1), also have distinct color codes since vo; is the only vertex
whose code has an entry that is at least 2 in the ith position. Therefore, det(G) < k
and consequently, det(Gy) = k. O

With the aid of Theorem 3.4, we are now able to establish the following.

Theorem 3.5. For each integer k > 2, if

(k—1)2+5(k—1) Len< k* + 5k

2 2

then d,(n) = k.

Proof. First, weshow thatif $(k? +3k—2) = 2((k—1)2+5(k—1))+1<n <
%(k:2 + 5k), then d,(n) > k. Assume, to the contrary, that there exists a unicyclic
graph G of order n > $(k? + 3k — 2) such that det(G) < k — 1. By Theorem B, G
has at most £ — 1 end-vertices and at most %(k2 — k) vertices of degree 2. Therefore,
G contains at least n— (k—1)— 3(k* — k) > 2 (k* + 3k —2)— (k—1)— (k> — k) =k
vertices of degree 3 or more. It then follows by (1) that G has at least k end-vertices
which is impossible.

We next show that d,(n) < k if $(k? + 3k —2) < n < $(k® + 5k). Theorem 3.4
shows that this is true when n = 1 (k? 4 5k). Assume therefore that n = % (k? + 5k)—
p where 1 < p < £+ 1. We consider two cases, according to whether k is odd or
even.

Case 1. k is odd. Then k = 2] —1 for some integer [ > 2. There are two subcases,
depending on whether 1 <p<korp=~k+1.

Subcase 1.1. 1 < p < k. Construct the unicyclic graph G of order %(k2 +5k)—p
from the unicyclic graph G, described in Theorem 3.4 by suppressing the vertices u; 1
so that the edges vo;u;,1 and u; 1u;,2 become the single edge vo;u;,2 where 1 <4 < p.
Define a k-coloring c¢* of G by

‘(o) {c(vgiui,l) if e = voju; 2 for some ¢ with 1 <7 < p,
c*(e) =

c(e) otherwise.

The color codes for the vertices of G are all those of G}, except those (21 — 1)-tuples
for which 2 occurs in the ith coordinate (and 0 occurs everywhere else) for 1 < < p.
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Thus ¢* is a detectable k-coloring of G. Since G has k end-vertices, it follows that
det(G) = k. Consequently, d,(n) < k.

Subcase 1.2. p = k+ 1 and so n = 1(k* 4+ 3k —2). Consider the unicyclic
graph G of order $(k? + 3k —2) + 1 = 1(k* 4 3k) together with the edge coloring
described in Subcase 1.1 (that is, when p = k in Subcase 1.1.). We delete the edge
Vo V2k_1, identify the vertices vor, and wvor_1, and label this new vertex by v. This
gives us a unicyclic graph G’ of order n = 1(k? + 3k — 2). Observe that the color
codes of the vertices of G’ are those of G except for those of vgr, and voy_1, and that
v is the only vertex of G’ of degree 3 whose color code has 2 as the kth coordinate.
Hence, we have a detectable k-coloring of G’. Since G’ has k end-vertices, it follows
that det(G’") > k and consequently, det(G’) = k. Therefore, d,,(n) < k.

Case 2. k is even. Then k = 2I for some positive integer {. The result holds for
k = 2 (that is, | = 1) as the graphs in Figure 9 show. For k£ > 4 (and so [ > 2),
we consider three subcases, according to whether 1 < p < k/2, k/2+1<p <k, or
p=k+1.

Figure 9. Detectable colorings when k = 2 in Case 2.

Subcase 2.1. 1 < p < k/2. Construct the unicyclic graph G of order
%(k2 +5k) — p from the unicyclic graph Gy described in Theorem 3.4 by sup-
pressing the vertices u; 1 so that the edges vo;u;,1 and u; 1u; 2 become the single edge
v2;ui,2 where 1 <4 < p. Define a k-coloring c¢* of G' by

(o) {c(vgiui,l) if e = vo;u; 9 for some ¢ with 1 <4 < p,
c*(e) =

c(e) otherwise.

The color codes for the vertices of G are all those of G}, except those (21)-tuples for
which 2 occurs in the x;th coordinate (and 0 occurs everywhere else) for 1 < i < p.
Thus c* is a detectable k-coloring of G. Since G has k end-vertices, it follows that
det(G) < k. Consequently, d,(n) < k.

Subcase 2.2. k/2+ 1 < p < k. Construct the unicyclic graph G’ of order
3(k* +5k) — p from the unicyclic graph G of order % (k* +5k) — k/2 = $(k* + 4k)
described in Subcase 2.1 (that is, when p = k/2 in Subcase 2.1) by suppressing the

<
<

vertices u; o so that the edges u;1u;2 and u;2u;3 become the single edge wu; 1u; 3
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where k/2+ 1 < i < p. Define a k-coloring ¢’ for G’ by

@ { c*(uiou;3) if e =wu;qu;3 for some ¢ with k/2 +1 <@ < p,
d(e) =

c*(e) otherwise.

The color codes for the vertices of G’ are all those of G except those (21)-tuples
for which 2 occurs in the y;_j/oth coordinate (and 0 occurs everywhere else) for
k/241 < i < p. Thus ¢ is a detectable k-coloring of G'. Since G’ has k end-vertices,
it follows that det(G’) = k. Consequently, d,(n) < k.

Subcase 2.3. p =k + 1. That is, n = $(k* + 3k — 2). Consider the unicyclic
graph G’ of order 3(k? + 3k —2) + 1 = £(k* + 3k) together with the edge coloring
described in Subcase 2.2 (that is, when p = k in Subcase 2.2). We delete the edge
Vo Vak_1, identify the vertices vor, and wor_1, and label this new vertex by v. This
gives us a unicyclic graph G” of order n = %(k* 4 3k — 2). Observe that the color
codes of the vertices of G' are those of G’ except for those of va;, and v9;_1, and that
v is the only vertex of G” of degree 3 whose color code has 2 as the kth coordinate.
Hence, we have a detectable k-coloring of G”. Since G” has k end-vertices, it follows
that det(G"”) = k. Consequently, d,(n) < k. O

Solving for the smallest integer k for which n < 1 (k? + 5k), we obtain the follow-

ing.

Theorem 3.6.  For each integer n > 4,

du(n) = {—_Hém]

By Theorem 3.6, d,,(n) =~ v/2n for large values of n. We now determine all pairs
k,n of integers for which there exists a unicyclic graph of order n having detection

number k.

Theorem 3.7. Let k > 2 and n > 3 be integers. There exists a unicyclic graph
G of order n such that det(G) = k if and only if d,(n) < k < Dy (n).

Proof. By definition, if G is a unicyclic graph of order n such that det(G) = k,
then d,(n) < k < Dy(n). It remains to verify the converse. The result holds for
3 < n < 5 as the graphs in Figure 7 show. Furthermore, the graphs in Figure 10
show that the result holds for n = 6,7 as well.

We now assume that n > 8 and so £ > 3. In this case, we show that if

=5+ v8n+25
2

du(m[ ]<k<n3nu<n>,
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Figure 10. Minimum detectable colorings for graphs of order n =6, 7.

then there is a unicyclic graph G of order n such that det(G) = k. For each integer
¢ with i = 0,1,...,n — d,(n) — 3, we construct a unicyclic graph H; such that H;
has order n and det(H;) = dy(n) + i. Let H be the unicyclic graph of order n
described in the proof of Theorem 3.5 and ¢ the d,(n)-coloring described in the
proof of Theorem 3.5 as well. We first construct a unicyclic graph Hy from H as
follows.

(a) If vertex w11 € V(H), then delete the vertex wq 2; while if u; 1 ¢ V(H), then

delete the vertex vs and join the vertices vy and vy.

(b) Delete the edge v1v2, add the vertex v, and join v to v; and vs.

Then Hj has exactly d,(n) end-vertices and so det(Hp) > d,(n). Define the coloring
co: E(Hp) —{1,2,...,d,(n)} by

cole) =

cle) if ee€ E(H),
1 if e¢ E(H).

Then ¢y is a detectable d,(n)-coloring of Hy. Thus det(Hp) < dy(n) and so
det(Hp) = dy(n).

Observe that if [ = [d,(n)/2], then the girth of Hy is 2% — I, 212, 21> — [ + 1, or
2% + 1, depending on (1) the parity of d,,(n) and (2) whether the vertex u;; is in
H or not. In each case, if we denote the girth of Hy by ¢(I), then g(I) > 3 and so
Hy # K1 n,—1+ e. Note that the vertices v1,v and v, in this order, are consecutive
vertices in the cycle of Hy. For the purpose of notation, we relabel the vertex vy as
wop. Since Hy # K1 n—1 + € (as g(I) > 3), it follows that there exists a vertex z( in
Hy adjacent to wg such that degy, xo # 1 and 2o ¢ {v,v1}.

We now construct a unicyclic graph H; from Hj by deleting the edge woxg, iden-
tifying the vertices wy and x, labeling the new vertex by wj, introducing a new
vertex y1, and joining y; to wi. We note that H; has order n and has d,,(n) + 1 end-
vertices. Thus, det(H;) > d,(n)+ 1. To show that det(H;) < dy(n) + 1, we provide
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a detectable (d,(n) + 1)-coloring of Hy. Define ¢1: E(Hy) — {1,2,...,dy(n) + 1}
by
60(6) if ee E(H()),
cile) = :
dy(n)+1 if e=wiy.

Then ¢; is detectable (d,(n) + 1)-coloring of Hy. This implies that det(H;) =
dy(n)+ 1.

In general, we construct H;; from H; and obtain the edge coloring ¢;4; from ¢;,
where 0 < i < n — dy,(n) — 4, as follows:

(1) Let x; be a vertex in H; that is adjacent to w; such that degy x; # 1 and
x; & {v,v1}.

(2) Construct H;;+1 by deleting the edge w;x;, identifying the vertices w; and z;,
labeling the new vertex by w;11, introducing a new vertex y;;1, and joining
Yit1 tO wiq1.

(3) Define ¢ir1: E(Hiz1) — {1,2,...,dy(n) + i+ 1} by

© ci(e) if ee E(H;),
C; =
i du(n) +i+1 if e= Wi+1Yi+1-

Observe that for every integer ¢ = 0,1,...,n — dy,(n) — 3:
(i) H; is a unicyclic graph of order n with d,(n) + i end-vertices;
(i) ¢; is a detectable (d,(n) + )-coloring of H;;
(iii) Parts (i) and (ii) imply that det(H;) = dy(n) + .
Figure 11 illustrates how to construct the unicyclic graphs H; (0 < @ < 6) for n = 12.
In this case, d,,(12) = 3, D,(12) =9, and det(H;) = dy(n) +i =3+ for 0 < < 6.
(]
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(1]

2]

8]
[4]
[5]

(6]

Figure 11. Constructing unicyclic graphs in the proof of Theorem 3.7 for n = 12.
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