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Abstract. The concept of a 0-distributive poset is introduced. It is shown that a section
semicomplemented poset is distributive if and only if it is 0-distributive. It is also proved
that every pseudocomplemented poset is 0-distributive. Further, 0-distributive posets are
characterized in terms of their ideal lattices.
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1. Introduction

Grillet and Varlet [1967] introduced the concepts of 0-distributive lattice as a
generalization of distributive lattices.

A lattice L with 0 is called 0-distributive if, for a, b, c ∈ L, a∧ b = a∧ c = 0 imply
a ∧ (b ∨ c) = 0. Dually, one can define 1-distributive lattice.
In this paper, we define the concept of 0-distributive poset which is distinct from

the concept of 0-distributive poset defined by Pawar and Dhamke [1989]. It is proved
that a distributive poset is 0-distributive and the converse need not be true. But, if

we consider a sectionally semi-complemented poset then the converse is true. Fur-
ther, we have shown that a poset is 0-distributive if and only if its ideal lattice is

pseudocomplemented (equivalently, 0-distributive).

For undefined notations and terminology, the reader is referred to Grätzer [1998].

We begin with necessary definitions and terminologies in a poset P .

Let A ⊆ P . The set Au = {x ∈ P ; x > a for every a ∈ A} is called the upper
cone of A. Dually, we have a concept of the lower cone Al of A. Aul shall mean

{Au}l and Alu shall mean {Al}u. The lower cone {a}l is simply denoted by al and
{a, b}l is denoted by (a, b)l. Similar notations are used for upper cones. Further,
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for A, B ⊆ P , {A ∪ B}u is denoted by {A, B}u and for x ∈ P , the set {A ∪ {x}}u

is denoted by {A, x}u. Similar notations are used for lower cones. We note that
Alul = Al, Aulu = Au and {au}l = {a}l = al. Moreover, A ⊆ Aul and A ⊆ Alu. If
A ⊆ B then Bl ⊆ Al and Bu ⊆ Au.

2. 0-distributive posets

The concept of 0-distributive lattices is introduced by Grillet and Varlet [1967]

which is further extended by Varlet [1972] and also by Pawar and Thakare [1978] to
semilattices; see also C. Jayaram [1980], Hoo and Shum [1982]. Pawar and Dhamke

[1989] extended the concept of 0-distributive semilattices to 0-distributive posets as
follows.

Definition 2.1 (Pawar and Dhamke [1989]). A poset P with 0 is called 0-
distributive (in the sense of Pawar and Dhamke) if, for a, x1, . . . , xn ∈ P (n finite),

(a, xi)l = {0} for every i, 1 6 i 6 n imply (a, x1 ∨ . . . ∨ xn)l = {0} whenever
x1 ∨ . . . ∨ xn exists in P .

Now, we define the concept of 0-distributive poset as follows, without assuming
the existence of join of finitely many elements:

Definition 2.2. A poset P with 0 is called 0-distributive if, for a, b, c ∈ P ,
(a, b)l = {0} = (a, c)l together imply {a, (b, c)u}l = {0}.

��������� �
2.3. From the following example it is clear that these two concepts of

0-distributivity are not equivalent.

Consider the poset depicted in Figure 1 which is 0-distributive in the sense of Pawar

and Dhamke but it is not 0-distributive in our sense. Indeed, (a, b)l = (a, c)l = {0}
but {a, (b, c)u}l 6= {0}.

0

a b c

Figure 1

However, if P is an atomic poset then we have:
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Proposition 2.4. Let P be an atomic poset. If P is 0-distributive in our sense
then it is 0-distributive in the sense of Pawar and Dhamke.

!"� #$#&%
. Let (a, b)l = (a, c)l = (a, d)l = {0} and assume that b ∨ c ∨ d exists. To

show that P is 0-distributive in the sense of Pawar and Dhamke, we have to show
that (a, b ∨ c ∨ d)l = {0}. Assume to the contrary that (a, b ∨ c ∨ d)l 6= {0}. Since
P is atomic, there exists an atom p ∈ P such that p ∈ (a, b ∨ c ∨ d)l. This will
imply that (p, b)l = (p, c)l = (p, d)l = {0}, as p 6 a. By 0-distributivity in our sense,

{p, (b, c)u}l = {p, (c, d)u}l = {0}. Hence, there exist elements d1 and d2 in P such
that d1 ∈ (b, c)u, d2 ∈ (c, d)u and (p, d1)l = (p, d2)l = {0}. By 0-distributivity in our
sense, {p, (d1, d2)u}l = {0}. Again there exists d3 ∈ P such that (p, d3)l = {0} and
d3 ∈ (d1, d2)u. But then d3 > b, c, d and therefore d3 > b∨c∨d. Hence (p, d3)l = {0}
gives (p, b ∨ c ∨ d)l = {0}, a contradiction to p 6 b ∨ c ∨ d. The general case follows
by induction. �

��������� �
2.5. The converse of Proposition 2.4 is not true. The poset depicted

in Figure 2 is finite and bounded 0-distributive in the sense of Pawar and Dhamke
but not in our sense.

0

1

a1 a2 a3 a4

b1 b2 b3 b4

Figure 2

Henceforth, a 0-distributive poset will mean 0-distributive poset in our sense.

Throughout this section, P denotes a poset with 0.

The following result gives some more examples of 0-distributive posets. For that
we need:

Definition 2.6. A poset P is said to be distributive if, for all a, b, c ∈ P ,

{(a, b)u, c}l = {(a, c)l, (b, c)l}ul holds; see Larmerová and Rach̊unek [1988].

Let P be a poset with 0. An element x∗ ∈ P is said to be the pseudocomplement
of x ∈ P , if (x, x∗)l = {0} and for y ∈ P , (x, y)l = {0} implies y 6 x∗. A poset
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P is called pseudocomplemented if each element of P has a pseudocomplement; see

Venkatanarasimhan [1971] (see also Halaš [1993], Pawar and Waphare [2001]).
A poset P with 0 is called sectionally semi-complemented (in brief SSC) if, for

a, b ∈ P , a 66 b, there exists an element c ∈ P such that 0 < c 6 a and (b, c)l = {0}.

Lemma 2.7. A distributive poset is 0-distributive.
!"� #$#&%

. Let P be a distributive poset. Let a, b, c ∈ P be such that (a, b)l =
(a, c)l = {0}. By the distributivity of P , we have {a, (b, c)u}l = {(a, b)l, (a, c)l}ul.
But (a, b)l = (a, c)l = {0} and hence {a, (b, c)u}l = {0}. Thus P is a 0-distributive

poset. �
��������� �

2.8. It is well known that a 0-distributive lattice need not be distribu-
tive; see the lattice of Figure 3 which is 0-distributive but not distributive.

c

Figure 3

However, the converse of Lemma 2.7 is true in an SSC poset. Explicitly, we have:

Theorem 2.9. An SSC poset is distributive if and only if it is 0-distributive.
!"� #$#&%

. Let P be an SSC poset. Moreover, assume that P is 0-distributive.
Let x ∈ {(a, b)u, c}l and y ∈ {(a, c)l, (b, c)l}u for a, b, c ∈ P . To show that P is

distributive, it is sufficient to show that x 6 y. Suppose x 66 y. As P is SSC,
there exists z ∈ P such that 0 < z 6 x and (z, y)l = {0}. Since y ∈ (a, c)lu as

well as y ∈ (b, c)lu we have (a, c)l ⊆ yl and (b, c)l ⊆ yl. This yields, after taking
intersection with zl on both sides, (z, a)l = {0} and (z, b)l = {0}, as z 6 x 6 c.

Now, by 0-distributivity of P , {z, (a, b)u}l = {0}. But since z 6 x ∈ (a, b)ul, we
have zl = {z, (a, b)u}l = {0}, a contradiction to 0 < z. The converse follows from
Lemma 2.7. �

Theorem 2.10. Every pseudocomplemented poset is 0-distributive.
!"� #$#&%

. Let P be a pseudocomplemented poset. Let a∗ be the pseudocom-

plement of a. Moreover, suppose that (a, b)l = (a, c)l = {0}. By the definition of
pseudocomplement, b 6 a∗ and c 6 a∗, and this yields (b, c)ul ⊆ {a∗}l. Taking

intersection with al on both sides, we get {a, (b, c)u}l = (a, a∗)l = {0}. Thus P is a
0-distributive poset. �
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2.11. It is well known that a 0-distributive lattice need not be pseu-

docomplemented; see the lattice of Figure 4, which is 0-distributive but not pseudo-
complemented.

For a ∈ P , we denote by {a}⊥ = {x ∈ P ; (a, x)l = {0}}. Now, we characterize
0-distributive posets in terms of ideals. Halaš [1995] defined a concept of an ideal as
follows.

Definition 2.12. A non-empty subset I of a poset P is called an ideal if a, b ∈ I

implies (a, b)ul ⊆ I .

0

x1

x2

1

a

Figure 4

0

1

a1 a2 a3 a4

b1 b2 b3 b4

Figure 5

Venkatanarasimhan [1971] also defined the concept of an ideal as follows:

A non-empty subset I of a poset P is called an ideal if, a ∈ I , b 6 a ⇒ b ∈ I and

if the least upper bound of any finite number of elements of I , whenever it exists,
belongs to I .

The subset I = {0, a, b} of the poset depicted in Figure 1 is an ideal in the sense of
Venkatanarasimhan [1971] but not in the sense of Halaš [1995], as (a, b)ul = P 6⊆ I .

But if we consider the subset I = {0, a1, a2, a3} of the poset depicted in Figure 5,
then it is an ideal in the sense of Halaš [1995] but not in the sense of Venkata-
narasimhan [1971], as a1 ∨ a2 ∨ a3 6∈ I .

Theorem 2.13. A poset P is 0-distributive if and only if {a}⊥ is an ideal (in the
sense of Halaš) for every a ∈ P .

!"� #$#&%
. Let x, y ∈ {a}⊥. To show that {a}⊥ is an ideal, we have to show

that (x, y)ul ⊆ {a}⊥. Since x, y ∈ {a}⊥, we get (a, x)l = (a, y)l = {0}. By 0-
distributivity, {a, (x, y)u}l = {0}. Let z ∈ (x, y)ul. Then clearly, (a, z)l = {0}. Thus
z ∈ {a}⊥ which gives (x, y)ul ⊆ {a}⊥. Therefore {a}⊥ is an ideal.
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Conversely, suppose that {a}⊥ is an ideal for every a ∈ P . To show P is 0-

distributive, let’s assume that (a, x)l = (a, y)l = {0} for x, y ∈ P . Since (a, x)l =
(a, y)l = {0} we have x, y ∈ {a}⊥. Since {a}⊥ is an ideal, we have (x, y)ul ⊆ {a}⊥.
Taking intersection with al on both sides, we get {a, (x, y)u}l ⊆ {a}⊥ ∩ al. Clearly,

{a}⊥ ∩ al = {0}. Therefore {a, (x, y)u}l = {0} and the 0-distributivity of P follows.
�

For any subset A of P , we denote by A⊥ = {x ∈ P ; (a, x)l = {0} for all a ∈ A}.
It is clear that A⊥ =

⋂
a∈A

{a}⊥.
The following corollary is an easy consequence of Theorem 2.13.

Corollary 2.14. A poset P is 0-distributive if and only if A⊥ is an ideal for any

subset A of P .

The results similar to Theorem 2.13 and Corollary 2.14 are also obtained by Pawar

and Dhamke [1989] but they have considered the definition of ideal given by Venkata-
narasimhan [1971].

��������� �
2.15. It is well-known that the ideal lattice of a distributive lattice

is pseudocomplemented; see Varlet [1968]. However, the converse is not true; see
the lattice depicted in Figure 4 which is not distributive but whose ideal lattice is

pseudocomplemented. This example is due to Varlet [1968]. Further, Varlet [1968]
proved that a bounded below lattice is 0-distributive if and only if its ideal lattice

is pseudocomplemented. It is proved that the set of ideals (in the sense of Halaš)
of a poset P , denoted by Id(P ), forms a complete lattice under inclusion; see Halaš
[1995].

Now, we characterize 0-distributive posets in terms of their ideal lattice.

Theorem 2.16. A poset P is 0-distributive if and only if Id(P ) is pseudocomple-
mented.

!"� #$#&%
. Let P be a 0-distributive poset and A ∈ Id(P ). By Corollary 2.14, A⊥

is an ideal in P . We claim that A⊥ is the pseudocomplement of A in Id(P ). Clearly,
A ∧ A⊥ = (0]. Assume that A ∧ B = (0] for B ∈ Id(P ). To show that A⊥ is the
pseudocomplement of A, we have to show that B 6 A⊥. Let b ∈ B. If t ∈ (a, b)l for

some a ∈ A, then clearly t ∈ A as well as t ∈ B; hence t ∈ A ∧ B = (0]. Therefore
(a, b)l = {0} for every a ∈ A. Thus b ∈ A⊥ and we get B 6 A⊥ as required.

Conversely, suppose that Id(P ) is pseudocomplemented. To show P is 0-

distributive, assume that (a, x)l = (a, y)l = {0}. Hence (a] ∧ (x] = (a] ∧ (y] = (0].
Since Id(P ) is pseudocomplemented, we have (x] 6 (a]∗ and (y] 6 (a]∗. Thus we are
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led to (x]∨ (y] 6 (a]∗. Taking meet with (a], we get ((x]∨ (y])∧ (a] = (a]∧ (a]∗ = (0]
yielding {(x, y)u, a}l = {0}. Thus P is a 0-distributive poset. �

Theorem 2.17. A poset P is 0-distributive if and only if Id(P ) is a 0-distributive
lattice.

!"� #$#&%
. Suppose P is 0-distributive. By Theorem 2.16 and Theorem 2.10, Id(P )

is 0-distributive.

Conversely, suppose that Id(P ) is a 0-distributive lattice. To show P is 0-

distributive, let (a, x)l = (a, y)l = {0}. That means (a] ∧ (x] = (a] ∧ (y] = (0]. By
0-distributivity of Id(P ), (a] ∧ ((x] ∨ (y]) = (0], i.e., {a, (x, y)u}l = {0}. Hence P is

a 0-distributive poset. �

Now, we add one more characterization of 0-distributivity which is even new in
the lattice context.

Theorem 2.18. A poset P with 0 is 0-distributive if and only if it satisfies the
following condition D0.

(D0) If (a, b)l = (a, c)l = {0} and (a, b)ul ⊆ (b, c)ul for a, b, c ∈ P then a = 0.

!"� #$#&%
. Let P be a 0-distributive poset. To prove the condition (D0), as-

sume a, b, c,∈ P are such that (a, b)l = (a, c)l = {0} and (a, b)ul ⊆ (b, c)ul. By
0-distributivity, we have {a, (b, c)u}l = {0}. Since (a, b)ul ⊆ (b, c)ul, we get {0} =
{a, (b, c)u}l ⊇ {a, (a, b)u}l = al. Thus a = 0.
Conversely, suppose the condition (D0) holds. To prove that P is 0-distributive,

let a, b, c ∈ P be such that (a, b)l = (a, c)l = {0}. Let d ∈ {a, (b, c)u}l. Then clearly
(d, b)l = (d, c)l = {0} and (d, b)ul ⊆ (b, c)ul and (d, c)ul ⊆ (b, c)ul. By the condition

(D0), d = 0 which yields {a, (b, c)u}l = {0}. �

Corollary 2.19. A lattice L with 0 is 0-distributive if and only if it satisfies the
following condition D0.

(D0) If a ∧ b = a ∧ c = 0 and a ∨ b 6 b ∨ c for a, b, c ∈ L then a = 0.

')( �$*+#-,/.0�-1
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. The authors are grateful to the learned referee for many

fruitful suggestions.
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