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ONE-STEP METHODS FOR TWO-POINT BOUNDARY VALUE
PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS
WITH PARAMETERS

TADEUSZ JANKOWSKI, Gdansk

(Received May 11, 1990)

Summary. A general theory of one-step methods for two-point boundary value problems
with parameters is developed. On nonuniform nets hy,, one-step schemes are considered.
Sufficient conditions for convergence and error estimates are given. Linear or quadratic
convergence is obtained by Theorem 1 or 2, respectively.
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1. INTRODUCTION.

We study the first order nonlinear system of ordinary differential equations

(1) y(@) = f(t,y(t),r), tel=[ab], a<b,

with the boundary conditions

(2) y(a) = ya € RY,
3) B1) + Bay(b) = bo € R?,

where f: I x R? x RP — RY is continuous and A € RP is a parameter. Here B, is
a matrix of dimension p X p and B3 is a matrix of dimension p X ¢. By a solution
(%, A) of the BVP(1-3) we mean a function ¢ € C'(I,R?) and a parameter A € R?
that satisfy the BVP(1-3) (C'(I,R?) denotes the space of all continuous functions
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from I into R? with a continuous first derivative). Conditions under which (1-3) has
a solution were determined in many papers (for example, see [4, 9, 10, 11]).

Indeed, y(t) = y(¢; ). It is well known that if f has continuous first order partial
derivatives f, and f\ with respect to the second and third variables, then

Oy(t; A)
oA

=Y (¢ A),
where the ¢ x p matrix Y is the solution of

@ {Y'(t; A) = f,(Ly(E; ), Y (60 + Aty 0),h), te,

Y(a;A) = 0gxp-

Let y(t) = y(t;A) be a solution of (1-2). It is also a solution of the BVP (1-3)
provided (3) is satisfied, that is if A is a root of the equation

(5) ®(X) = B1A + Bay(b; A) = bo.
Since
(6) ®'(\) = By + ByY(b; )),

Newton’s method can be used for finding the root of (5).
In the present paper we discuss the numerical solution of the BVP (1-3) using a
variable step size h, > 0. On the interval I we place a net of points {¢,} with

(7) to = a, tn+1=t"+h", n=01,....N—1 and tn = 0.

Our analysis refers to a family of such nets in which N — oo while h — 0 where

h = OrlnaxN . h,. Now the numerical solution (yx, Anj) of (1-3) at each point t,
n=0,1,...,0N—=

may be defined by

t;Aj = Ya,
®) {yh(o h) =

Yn(tnt1; Ans) = Yn(tn; Anj) + haF(tn, b, yn(tn; Anj), Anj),

Ya(to; Anj) = Ogxp’
(9) Yh(tn+l ) /\hj) = [I +h, Fy(tn, hn,yn (tn; ’\hj), '\hj )]Yh(tn; Ahj)
+ ho Fa(tn, hn, Yn(tn; Ahj)/\h_i),
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and

(10) Aro = Ao ERP,
Anj+1 = Mnj — [Br + B2Ya(b; Anj)) " [B1Anj + Baya(b; Asj) — bo)

forn=20,1,...,N—1and j = 0,1,.... Here the increment function F has first
order partial derivatives Fy and Fy with respect to the third and fourth variables,
respectively. Taking FF = f we have the Euler scheme. Sometimes it is useful to
write (9) in the following way:

n-1 n-1
(91) Yh(tn;/\hj) = Z ( H An+,‘_,'j) B,’j,

1=0 \r=i+l

where

Anj =T+ hoFy(tn, hn, yn(tn; Anj), Anj),
Brj = ha Fa(tn, hn, yn(tn; Anj), Anj)-

Assume for a moment that p = ¢ and the matrix B; + B is nonsingular. In such
a situation we can determine another sequence {/\;.j} by

(11 hi+1 = Wi — (B4 B2) ' [Bid; + Bayn(b;05;) — bo),  i=0,1,...

It means that in this case we do not need the approximate solution Y of (4). Now
the method (8,11) is convergent to the solution (¢, A) of the BVP(1-3) if we suppose
among other that the condition

(12) By + B2)~1 By [1 + 22 oxp(y 0 ) - 1)] <1

holds where M;, My > 0 are Lipschitz constants of F with respect to the last two
variables. This was obtained in [5] for the constant step size h. The condition (12)
does not differ too much from the corresponding Keller result [7] (see also [2, 12]).

The condition (12) is superfluous for the convergence of the method (8-10). As-
suming that the derivatives F, and F) satisfy the Lipschitz condition we can prove
the convergence of (8-10) if )p is not too far from A. The location of Aq is one of the
problems in computations. The estimates of errors are given, too. The result of this
paper extends the corresponding Keller result [8] to boundary value problems with
parameters.
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2. DEFINITIONS

We introduce the usual definitions.

Definition 1. Wesay that the method (8-10) is convergent to the solution (¢, A)
of the BVP(1-3) if

N—oo n=0,1,
J—o0

lim ”/\hj - /\” = 0.
h—o0

J—o0

lim max lya(tn; Anj) — ¢(ta)ll = 0

Definition 2. We say that the method (8-10) is consistent with the problem (1-
3) on the solution (¢, A) if there exist functions y1,72: I x H — R}y = [0,00), H =
[0, A*], * > 0 such that

(i) lhn F(tn, ha, @(tn), A) + @(tn) = ¢(tns1)]| € 11(tn, bn),

(i) | (I + BaFy(tn, ha, 9(ta), A)) Y (tn; A) + ha Fa(tn, hn, 9(tn), A) = Y (tn41; M)
< 72(tm hy)
forn=0,1,...,N—1and
N-1
(iii) lim 7,(h) =0, 7,(h) = Zo Yo(ti,hi), s=1,2, h=max h,
where Y is the bounded solution of the IVP(4).

The method (8-10) is said to be H-consistent with (1-3) on (g, A) if only the
conditions (i) and (iii) (for s = 1) are satisfic

Remark 1. Because (p,)) and Y are solutions of (1-3) and (4), respectively,
the conditions (i) and (ii) can also be written in the following way:

[An F(tn, o, o(ta), A) - / ™ i 0(r), N T || < (s ha),

|Bn [Fy(tn, hn,@(tn), MY (tn; A) + Fa(tn, ha, ¢(tn), Al

—/ ™ [fo (. 0(), MY (150) + fa(r, 0(7), M7 || < 72(tn, hn).
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It is known that our method is consistent with (1-3) on (¢, A) if

lim F(t,h,9,3) = f(t, 4, 3),
;ll’no Fy(t, h, Yy, /\) = fy(ty Y, ’\))
lim Fa(t, h,9,0) = fa(t,9,3)

for all (¢,y,)) € I x R? x RP.

3. CONVERGENCE

We are now in a position to establish the main convergence theorems and the
associated error estimates.

Let
0< zp41 < D[A22 + Bz, +C), A,B,C,D>0, =n=0,1,....
We will need the following lemma.

Lemma 1 (see [6]). Assume that there exists d such that

D
d- DB’

DB<d<1, 4p°AC <1, wherep=

If 20 < e =DC/(1 —-d) <1/(pA) then

1-a"

n<d'e+ D
z €+ Cl—d’

n=01,....

Remark 2. It is easy to see that 2z, <¢, n=0,1,...
Proof of Lemmal [6]. We can write
Q(z) = D[Az® + Bz + C] = Dq(z) + dz, where ¢(z) = A2%2-z/p+C.

The quadratic function ¢ has two distinct positive zeros z_ and z4, where z; >

z_ > 0. The function Q is increasing for z > 0 so if zg < € then ¢(z) < C for
0 £ z < € and by induction z, < e forn=20,1,.... Now

Zn4+1 < DC +dz,, n=0,1,..

and hence we have our estimate for z,. a
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Now we can formulate the theorem.

Theorem 1. Let the following assumptions be satisfied:

1° there exists a unique solution (¢, A) of the BVP (1-3),

2° the function F: I x H x R? x R? — R is continuous and has first order partial
derivatives Fy and F» with respect to the third and fourth variables, respectively,

3° there exist constants Ly, L, (1, Ky, K3 > 0 and functions €1,¢62: I x H — R4
such that for (t,h,z,Z,pu,5) € I x H x R x R? x R? x R? we have

(l) "Fy(t:hyfyllnsl/h "F,\(t,h,l‘,ﬂ“SLz;

(ii) " Fy(t,h,z,pn) - Fy(t,h,i:,p)" <K, ”x - :E" +€1(t, h);

(iii) "F)‘(t,h,a:,p) - F',\(t,h,:i,ﬂ)" < Kg";r - :E" + l\"3";t - /'t" + ea(t, h),

and
N-1
lim 6,(h) =0,  &i(h) = ZO hies(ti,h), s=1,2, h=max h;,

where the matrix norm is consistent with the vector norm (see [12]);
4° the method (8-10) is H-consistent with the BVP(1-3) on the solution (¢, A);
5° the matrix By + B2Yx(b; Anj) is nonsingular for j = 0,1, ... and there exists a
constant D > 0 such that

”(Bl +B2Y"(b;’\"j))—132" <D, j=0,1,....

Then for sufficiently small h there exists a positive constant d < 1 such that the
method (8-10) is convergent to the solution (¢, ) of the BVP (1-3) provided

(13) "/\o - ,\" < uo(h) = sup DC(a:), h < h.
Moreover, the estimates
(19) A5 = Al < wih), i=0,1,...

(1) max_[lys(tn; dnj) = e(ta)]| < clLa(b = a)uj(B) + Ta(h)], §=0,1,...
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hold for h = maxh; < h with
3

; 1—d
uj(h) = & Ao — A|| + DC(h)l_—d, i=12,...
and
K
C(h) = cy1(h) [—;l(b — a)cg,(h) + c61(h) + 1] , c=exp(Ly(b— a)).
Proof. Put

vh = yn(tas Mnj) —e(tn), Vi = [lvd],
2‘,’;=/\hj——A, Z;’;:"d;",

wh = Ya(tn; Mj)7, —vh, Wi = |lwd],
Cn = hnF(ta, hn, @(tn), X) + ¢(tn) — ¢(tn41).

The mean value theorem yields the relation

(16) Vo1 = vl + Ra[F(tn, hny 9 (tn; Asj)Ans)
= F(tn, hn,¢(tn), Mnj)
4 F(ta, hn,0(tn), Anj) — Ftn, hn, 9(tn), N)] + Can

1
= [I-I-h,./ Fy(tn,h",so(l,.)+1'v;il,/\hj)d1']v',i|
0

l . .
+ h,,/ Fx(tn, hn,@(tn), A+ 72})d7 2}, + Cy,
0
n=0,1,...,N—1,

or
Vi S (W4 ha L)V 4 holaZ] + 7i(tn,hn), n=0,1,...,N—1.

Hence we get

n-1 n—1
Vig ( II (1+h,L1)) (hiL224, + m(ti, hi))

1=0 \r=i4l
L S
forn=0,1,...,N, j=0,1,...(here Y. =0,[[=1,ifr >s, or
r r

(17) Vi cl(b—a)LaZ] +71(h)], n=0,1,...,N.
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Now we need some relation for zfl By the definition (10) we have
(18) A1 = (By + BaYa(b; Mnj)) "' Bawdy, j=0,1,...
By (9) it is easy to see
Whyy = Anjwh + Anjvh — Vi1 + Bajzl, n=0,1,.. N -1,

where A,; and B,; are defined in (9'). According to 3° and (16), the last relation
implies
Wit S (14 b L)Wi + 8},

with

¥ = hy, [ﬁ(w)’u(zv,{z{ K“(Z’)]

+ T (tn, hn) + hn [5l(tn) hn)V,'.’ + Ez(tm hn)Z}J;]

forn=0,1,...,N -1 and W} = 0.
Using now (17) we have

i(l’[(uh L,) ¥, n=0,1,...N—-1, j=0,1,...,

r=i+l
and hence
(19) Wi < A(ZL)? + B(h)Zi + C(h), j=0,1,...,
where
A=clb-a) { B - a0y + Kaclo - )t + 52

B(h) = c{(b—a)c[Kic(b — a)Ly + Ka]¥1(h) + c¢(b — a)L261(h) + 62(R)} .
Combining this with (18) we see that

(20) ZItY < DIA(ZL)? + B()Z + C(h)], j=0,1,...

Now for a sufficiently small k there exists a positive constant d < 1 such that
DB(h) < d< 1,

(21) 4p%(h)AC(h) < 1, p(h) = D/(d — DB(h)),
DC(h)Ap(h) +d < 1

hold for h = maxh; < h. Hence by Lemma 1 we can get (14) and (15) for h < h.
13
The proof is completed. O
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Remark 3. Let p=¢=1and
Fy(t, bz, w) = ho(|sin(z)])'/2 + (¢, h, p),

where & > 0 and §: I x H x R — R. The function F; does not satisfy the Lipschitz
condition with respect to the third variable but it satisfies (ii) with K; = 0 and
€1(t,h) = 2h*. Hence 6,(h) < 2h*(b — a) and 6,(h) — 0 as h — 0.

Now we try to formulate some conditions which guarantee that 5° of Theorem 1
holds. We have

Lemma 2. Let the assumptions 1° — 3° of Theorem 1 hold with (ii) replaced by
|Fy(t, h,z,pu)— Fy(t, h, % pg|| < Ki|lz—Z||+ Kollp — il + €1 (¢, h), K,,Ko > 0. Let
the method (8-10) be consistent with the BVP(1-3) on the solution (¢, A). Moreover,
let the matrix By, + B,Y (b; A) be nonsingular and

I(By + B2Y (5;A) 7M1 < By, [1B2ll < Ba-

Then for sufficiently small h < I the condition 5° of Theorem 1 holds if \q is not
too far from .

Proof. Put
Qn(u) = By + ByYi(bu) Q(u) = By + B2Y (b; u).

Note that for j = 0,1,...

(22) Qu(Mni) = QM) {1+ Q7' (N [@u(Anj) — Q(N)]}
and

(23) Qu(Mj) — Q) = Bagly,

where

@ = Ya(tn; Anj) = Y(ta;A), n=0,1,...,N, j=0,1,...

Now we need an estimate for q-’N By the definition of Y,, we have

Thpr = [+ haFy(tn, hn, yn(tn; Anj), Anj)] [Ya(tn; Anj) = Y (tn; N)] + Y(Ea; A)
+ ho [Fy(tn, hn, ya(tn; Anj)s Anj) = Fy(tn, hn, 9(tn), A)] Y (tn; A)
+ han(tm hn, ‘P(tn)v A)Y(tn; '\) + hnFA(tm hn, ‘P(tn): ’\) - Y(tn+1;'\)
+ hn [Fa(tn, hn, yn(ta; Anj), Anj) = Fa(tn, hn, @(tn), A)] -
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Our assumptions yield
Q':H-l < (1 + hnLl)Q':g + hy [I<1V,{ + I\’OZ;, + El(tm hn)] Y, 4'72(tn, hn)
+ho [KaVE + KsZ) 4 eata,ha)] . @4 = il

where Y is bounded by Y;, VJ and ZJ are defined in the proof of Theorem 1. Now
using the estimate (17) we get

Q{;+1 < (14+hn L)@} +hy [PIZ{; + Poy1(h) + Yeer(tn, hn) + 52(tn7hn)] +72(tn, hn)

forn=0,1,...,N—1,57=0,1,... where P, and P, are some nonnegative constants.
Hence

Qu < c(b—a)P1Z] +n(h),
and for B = B, 8, we have
(24) Q71N [@a(Arj) — QN || < BQYy < cB(b — a)PyZ] () + Bn(h),
where :
n(h) = c[(b — a)Py71(h) + Y361 (h) + B2(h) + 72(h)] -

Let
[Ao = All € @ =sup DC(h)/(1 —d) and cB(b—a)Pre< a1 <1,
hgh

where £ is sufficiently small that (21) holds. It means that there exists a such that
for sufficiently small h < h we get

cf(b—a)Pre+ fn(h) < a< 1.

By Lemma 4.4.14([12]), p. 180) we conclude that I + Q~1(A)[@n(Xo) — Q(})] is
nonsingular. Now by (22), Qx(Xo) is also nonsingular and

(25) I o)l < T2

Hence the condition 5° of Theorem 1 is true for j = 0 with D = 8/(1 — «).
Put ug(h) = ¢. By (20) and Remark 2 we have Z} < o. Moreover, (24) yields

Q7)) [@s (M) = Q)] [ < 1.
It means that [ + Q~'(A)[@x(An1) — Q(})] is nonsingular and

IR )l € 2,

-«
and hence the condition 5° of Theorem 1 is true for j = 1. Now by induction with
respect to n we can prove that 5° holds.

This completes the proof. a
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Theorem 1 says that under some assumptions the method (8-10) converges to
(¢, A) provided that Ag is not far from A. This convergence is linear. Under a little
stronger assumptions we can get quadratic convergence of (8-10). To this end Ao
must be nearer to A than it was in Theorem 1. We have

Theorem 2. Assume that the assumptions of Lemma 2 are satisfied with
e1(t,h) =e€2(t,h)=0,t € I, h€ H. Then

(26) Inger = Mnill S TUQRF N 1Ams = Anj—all?, G=1,2,...
where

To = ¢(b— a)[K2(b — a)Lac + K3)/2+ c(b— a)? L[ K1(b— a)Lac + Ko)/2,
T =||B:||To, Qnj = Bi + Ba2Ya(b; Mnj).

Moreover, for a sufficiently small h and ||Any — Anol| < € < 1/(T D) the method (8-10)
is convergent to (i, A) and the estimates (14-15) hold for h = maxh; < h with
1

uj(h) = TIB(TDe)"’j_l +mh), j=1,2,...,
uo(h) = m(h),

where ||Q;jl|| < D and

_ C(h) _ 1-DB(h)
mh) = 2 @ —aacy® P D
Proof. Let

knj = yn(tn; Anj) — Un(tn; Ani-1),

1
Anj =1+ hn/ Fy(tn,hn, yn(tn; An,j=1) + Tknj, Anj—1 + T(Anj — Ap j—1)) dr,
0
1
Bnj = h,,/ Fx(tn, hnyyn(tn; Anj=1) + Tknj, Anj—1 + T(Anj — Anj—1)) dT.
0

forn=0,1,...,N, j=1,2,.... Then we have

n-1 n-1
II Ansi-rill < T] Q+hasisLi) <e, i=0,1,...,n=1, n=1,2,...,N.
r=i+1 r=i+l
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Moreover, forn = 0,1,..., N we have

kny1,j = knj + ho [F(tn, hn, yn(tn; Anj), Anj) — F(tn, hatn(tn; Anj-1), Anj-1)],
and by the mean value theorem this yields

kny1,j = ank,,j + Enj(/\).j = Mj-1), n=0,1,...,N-1 j=1.2,....

Hence
n-1 n-1
knj = Z( II A,.+,-_,,,-)B.-,-(A;.,- —Anj-1), n=0,1,..,N, j=12,...,
i=0 “r=i41l
or

lknjll < e(b = a)La||An; = Anj-all, n=0,1,...,N, j=1,2,....
We can also get an estimate for B;; — B;;, where B;; is defined in (9'). We have now
_ 1
1B = Bill < hi [ a1 = )l + K1 = )l = dnsoaldr
0

h;i . .
< 7[1&2(6 — a)Lac+ K3)||Anj = An,j-1ll,
i=0,1,...,N, j=12,...

and
N-1 N-1 _
(27) u ( I1 AN+f—r,j) (Bi; - Bij] |
1=0 r=i4l
< %(b —a)[Ka(b— a)Lac + K3]||Anj = Anj-all, §=1,2,....
Put
N-1 N-1
&i= [] Ansiori— [I ANtiorjr i=0,1,..,N=2, j=12,..,
r=i41 r=i+l

En-1,j = Ogxq-

We will prove that

N-1 N-1

(28) New—oill < Klng = il D T Q+hLohs,
i=N-s+lr=N_s41
r#i .
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where
K = %[1(1 (b - G)ch + ]{o]

Indeed, it is true for s = 1. For s = 2 we have

én-2,ill = 1AN-1,; — An-1,4ll

1

< hna / [K1(1 = 7)|lkn=1,5ll + Ko(1 = 7)||Anj = An i1} d7
0

< AN K|[Anj = Anjj-all-

so (28) is true for s = 2.
Now we assume that (28) is satisfied for some s < N. Then we see that

NEN-s-1,ill = 1AN-1j X .- X AN-s41jAN=sj = AN=1,§ X ... X AN—s41jAN=s,j
- ZN..]J X...X ZN_,+1,J'AN_,J
+ AN=1 X o X ANot1,j AN-a il

SIAN=-1 X .- X AN ,jll NAN=s, — AN=sjll + 1N =il 1AN=s 5l
N-1
< I Q+heL)Khnglln; = M-l
r=N-s+1 '
N-1 N-1
+ (L 4+hvo o LOK I = gl Y. [ (W +heLi)hs
i=N=s+l p=N_s41

r#i
N-1 N-1
= K||Anj — /\h,j—lll 2 H (14 heLq)h;.
i=N-8,=N_s
r#i
Hence (28) is true for any valueof s =1,2,...,N, j=1,2,.... Moreover, from

(28) we may get the estimate

N-1 N-1

Nen—oill < Kldns = Mng-all Do [T (4 heLo)h

l'=N—s+l‘r=N—:+l
< cK(b—a)llAnj = Anjall, s=1,2,...,N, N=12,...

and hence
N-1 , N-1 N-1 N-1

(29) h Z( II Awsiori— II AN+.-_,,,-)B.-,- < Y 11 1Bl
i=0 ‘“r=i4l r=i+l i=0

< cK(b—a)szllz\;.j —’\’l.j—lna i=12....
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By the definition of As j4+1 and by (9') we have

(30) X541 = Ansll = 11QR} I 1By (Anj = Mnj—1)
+ Baknj — Qn,j-1(Anj — Anj-1)l|
= 11Q5; [H1An5 = Anj-all

N-1 N-1
Bi+By) ( II AN+i—r,j)Bij = Qnj-1
1=0 r=i+1
=0

H Anti- ,,>

r=i+l

= 11Q%; H1As = Aniall l|Bel

—NZ_:I ( Iﬁl AN+i—r,j)B

1=0 r=i4l

Using (27) and (29) we find

o [ECH A5 (o)l

r—t+1 t= r=i+l
|| ( it Awsices ) (B = By)
i= r..x+l
N-1 - N-1
” ( H Angiori— [] AN-H-—r,j)Bq
r=i+1 r=i+1

< TO"'\hj = Anji-all, J=12,...

Combining (27), (30) and (31) we have (26).
By Lemma 2 we know that for sufficiently small h the matrix Qp;j is nonsingular
and ||Q;jl|| < D. It means that

IAnj41 = Anjll S TDIARj = Anjall®, i=1,2,....

and )
1 27 .
IAni+1 = Anjll < TE(TDIII\M - Moll)”, i=0,1,....

We see that all assumptions of Theorem 1 are satisfied, so (20) yields
Zi*' < DIA(Z})* + B(W)Z}, + C(h)) = Dpa(Z}) + 2},

where

pr(2) = Az2 —zpz + C(h).
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The quadratic function ps has two distinct zeros z* and 2% where 2% > 2% > 0. If
IAro — All € min [2%, max DC(h)/(1 — d)] then [|An; — Al| € 2%, =1,2,.... Hence
h<h

HA8i4+1 = A< Wi 41 = Anjll + 1 Anj = Al
1 5 .
< 75 (T Dl ~ Mol)¥ +2t, i=0,1,...

so we have (14). The rest follows from Theorem 1.
This completes the proof. a
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