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MODELLING OF SINGULARITIES 

IN ELASTOPLASTIC MATERIALS WITH FATIGUE 

PAVEL KREJCI, Praha 

(Received November 19, 1992) 

Summary. The hypothesis that, on the macroscopic level, the accumulated fatigue of an 
elastoplastic material with kinematic hardening can be identified from the mathematical 
point of view with the dissipated energy, is used for the construction of a new constitutive 
elastoplastic fatigue model. Its analytical investigation characterizes conditions for the 
formation of singularities in a finite time. The corresponding constitutive law is then coupled 
with the dynamical equation of motion of a one-dimensional continuum and the resulting 
hyperbolic problem is solved via space-discretization method. 
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INTRODUCTION 

The aim of this paper is to propose a model for the accumulation of fatigue in 

elastoplastic materials that enables us to predict the apparition of singularities (in 

space and time) as a result of oscillatory loading. The idea is based on the mathemat 

ical identification of the accumulated microscopical damage with the dissipation of 

energy. This hypothesis is experimentally justified by the so-called rainflow method 

of damage evaluation which is one of the most efficient and most successful engineer

ing methods of estimation of material fatigue ([12]). It has been shown in [4] tha t the 

rainflow method is based on a law of accumulation of relative damage (Palmgren-

Miner linear damage accumulation law) which is identical to the s tandard dissipation 

law resulting from the second principle of thermodynamics. 
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The rainflow method is a scalar method. Its extension to the vector (tensor) case 
seems to be rather difficult (cf. [1]). Even in the scalar case, the rainflow method 
does not explain the following experimental facts (cf. [11]). 

• the elasticity modulus decreases during the accumulation of fatigue, 
• singularities (cracks) occur after some critical time. 
Our model consists in introducing a constitutive operator e = F(cr) between the 

stress and strain tensors <r,£, respectively, such that F depends implicitly on the 
dissipated energy (identified with the accumulated fatigue). This constitutive law 
satisfies the requirements above, in particular it can develop singularities in a fi
nite time. Moreover, the operator F is a hysteresis operator (it is causal and rate 
independent) which is continuous with respect to the uniform convergence. 

We pay special attention to the uniaxial (scalar) case. We introduce a dimen-
sionless fatigue characteristic number Q depending only on material constants. It 
turns out that for small values of Q, closed hysteresis loops produced by a uniaxial 
loading and unloading are convex in the corresponding a — e plane. This is exactly 

what we need (cf. [10]) for solving for instance the equations of forced longitudinal 
or torsional oscillations of a beam 

( i) 

vt = <тx + g(x,t) 

єt =vx 

є = F(<т) 

with a given forcing term g and with suitable initial and boundary conditions. Let 

us note that the problem of convexity of the hysteresis operator F is related to the 

so-called strong form of the second principle of thermodynamics used in the theory 

of plasticity (see [2]). 

System (1) is hyperbolic in the sense of bounded speed of propagation. The only 

singularities which occur are those due to the fatigue (no shocks!). Here again (as in 

[10]), the convexity of loops (e follows a convex path when a increases and a concave 

path when a decreases) prevents the system from the formation of shocks. 

I. A MODEL OF ELASTOPLASTICITY WITH KINEMATIC HARDENING 

We start with a standard elastoplastic model with kinematic hardening defined by 

the relations ([11], [13]) 

(-) 
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e = ep + ee, <T = <Tp + <re, 

ep = A<Te, e€ = B<r, 

[<jp eZy (ép,<rp-tr)ž0 VtreZ, 



where ee, <re, ep, <rp are the elastic and plastic components of the strain and stress 
tensor, respectively, A, B are given positive definite symmetric matrices over the 
space of symmetric tensors T, Z C T is a given convex closed constraint, 0 £ Int Z 
(its boundary dZ represents the yield surface) and dot denotes the time derivative. 
The hardening rule <r »—• <re is then defined by the variational inequality 

(3) 

<J = <Te +<Tp, 

<rpez, 
(A<Te,<rp -a) ^ 0 VaeZ, 

<rp(0) = <r%eZ given. 

Let us note that the relation (i,f))A := (A£,n) defines another scalar product 
(•, -)A in T. The following result is an easy application of the standard technique of 
evolution variational inequalities. 

Proposition 1.1. ([8]) Let <r e VV11(0,T; T) be given. Then the problem (3) has 
a unique solution <re e Wll(0,T;T). 

The solution operator <re = f(<r) is called multidimensional play ([6]). The consti
tutive relation <r »—• e defined by (2) can then be written in the form 

(4) e = B<T + At(<r). 

Theorem 1.2. ([6], [8], [9]). The operator t 
(i) is continuous in W^'^O-TjT), 
(ii) admits a continuous extension to C([0,T];T), 
(iii) maps C([0,71; T) into C([0, T\, T) n BV(0, T; T). 
(iv) If <rn —> <T uniformly, <rn,<r G C([0,T],l), then \aTt(<rn) ^ const. 
(v) If moreover Z is bounded and dZ is smooth, then Var (̂<r„) —• Var/(<r). 

II. A MODEL OF FATIGUE 

In the constitutive relation (4) we modify the elastic law by putting 

(5) e(t) = (1 + aq2(t))B<r(t) + AC(<r)(l), 

(the spatial variable x plays the role of a parameter), where q(t) is the dissipated 
energy during the interval [0,/] and a > 0 is given constant. 

The motivation for (5) is very transparent. As mentioned in the introduction, the 
elasticity modulus decreases during the accumulation of fatigue. Having identified 

139 



the accumulated fatigue with the dissipated energy q, we are led quite naturally 
to the assumption that the elasticity modulus is a decreasing function of q. The 
quadratic expression aq2 has been choosen as a first guess because of its simplicity. 

We define the internal energy U in a standard form ([14]) 

(6) U := \((ee, c) + (e*,c°)) =\[(\+ aq2) (Be, <r) + (At(a), t(<r))}. 

The rate of dissipation q is defined by the formula 

(7) q = (£, a) - U = aqq (Ba, <r) + (At(<r), <r - £(<r)} . 

This yields the following ordinary differential equation for q 

f q(\-aq(B<T,a)) = (Ae(<T),<T-e(<T)), 

\ q(0) = o. 

The second principle of thermodynamics requires q to be nonnegative. 

Obvious observation. 
1. The constitutive relation (5) is well defined provided a is a solution of (8). 

2. The expression (A£(<T), <T — £(<r)) is nonnegative a.e. for <r G VV^^O.TjT) by 

definition (3) of the multidimensional play t\ therefore, the second principle of 

thermodynamics is satisfied provided aq(t) (Bcr(l), <r(t)) < 1. 
3. A singularity occurs as soon as aq(t) (B<r(t),<r(t)) = 1. 
4. The relationship a >—• q (and consequently also <r *—> e) is rate independent. 

More precisely, the following easy statement holds. 

Proposition 2.1. For every <r £ VVlrl(0,T;T) there exist T* > 0 and a unique 

nondecreasing absolutely continuous function q: [0,T*) —• [0,oo) satisfying (8); the 

maximal value ofT* is 

T* = sup{t e [0,T]', aq(t) (B<r(t),<r(t)) < 1}. 

In order to pass to arbitrary continuous inputs a we introduce for each <r £ 
W1,l(0,T;J) an auxiliary function 

VП(ł) := I* (AЄ(<T)(T), <T(T) - Є(<т)(т)) d 

= ľ(<r(т)-Є(<т)(т),áЄ(<т)(т))A. 
Jo 
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P r o p o s i t i o n 2 .2 . The operator V 

(i) maps continuously WlA(0,T\l) into Whl(0,T)} 

(ii) admits a continuous extension C([0, 7 ] ; T) —• C([0, T]). 

P r o o f . Part (i) is obvious. Part (ii) follows from Theorem 1.2. Indeed, the 

Stieltjes integral (9) is well defined for each a G C( [0 ,T] ;T) and V(a) is continuous, 

since C(a) G HV(0, T; T) f lC([0 ,F ] ; T) . Let {an} C C([0, T\\ T) be a given sequence, 

an —• a uniformly. By Theorem 1.2 we have Var^(<7n) ^ const., £(an) —* £(a) 

uniformly, hence by Theorem II.15.3 of [5] we obtain V(an)(t) —» V(a)(t) for all 

t G [0,F] . The sequence {V(crn)} is a sequence of nondecreasing continuous functions 

which converges pointwise to a nondecreasing continuous function, hence V(an) —+ 

V(a) uniformly. D 

Equation (8) can be rewritten in the form 

P r o p o s i t i o n 2 .3 . Let a G C( [0 ,T] ;T) be given. Put D := {(t,q) G [0 ,T)x[0 , oo); 

aq (Ba(t),a(t)) < 1}. Let (t0}qo) G D be given. Then there exists t\ > t0 and a 

unique solution q: [lo,^i] —* [0, oo) to the equation 

(10)" W^L-ЧтHwмтťW-
The function q is continuous and nondecreasing in [lo,^i] and (t,q(t)) G D for all 

te[h,t\]-

P r o o f . Put 6 := 1(1 - aqQ (Ba(t0), <r(t0))) > 0. We find tx > t0 such that 

(11) 
6aq0 | (Ba(t), a(t)) - (Ba(t0), a(t0)) | + a (Ba(t), a(t)) (V(a)(t) - V(a)(t0)) < 62 

for all t G [to,tx]. 

We next define a (convex) closed set Us C C([lo,*i]) and an operator A: Us —• 
C([t0,ti]) by the formulae 

Us := {u G c([/0, <i]); ti(<0) = go, i - «ti(0 ( M 0 > *(0) >«v* e [*o, *i]} , 

.4(«)(í) := «/o + Г ._.,..,.wL/,л _/-л. * ) • aw(r) (Ba(T),a(T)) 

Using (11) we check easily t h a t Us is nonempty (the constant function u(t) = q0 

belongs to Us), and that A is a contraction which maps Us into Us. T h e assertion 

now follows from a standard fixed point argument. • 
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Corollary 2.4. For every <r G C([0, 7];T) there exists T* > 0 and a unique 
maximal continuous nondecreasing solution q: [0, T*) —• [0, oo) to the equation (10), 
T* = sup{l £ [0,T\iaq(t)(B<r(t),*(t)) < 1}. 

The following Theorem is the most important result of this section. It states that 
q depends on a continuously with respect to the uniform convergence. 

Theorem 2.5. Let <r 6 C([0,T];T] be given and let q: [0,T*) — [0,oo) be the 
maximal solution to (10). For an arbitrary n > 0 put 

S := I max (1 - *q(t)(B<r(t),tr(t))) > 0. 
Z [O.T'-ij] 

Let {<rn} C C([0,T];T) be a sequence, <rn —> <r uniformly in [0,T], and let qn: 

[0, Tn) —• [0,oo) be the corresponding maximal solutions to (10). Then there exists 

no > 0 such that for all n ^ no we Aave 

( i ) T n * > T * - i / , 
(ii) 1 - aqn(t) (B<rn(t),<rn(t)) >6 VI 6 [0,T* - */], 
(iii) qn —* </ uniformiy in [0,T* — ?;]. 

R e m a r k . We have in particular liminfT! ^ T*. Time I = T* will be called 
n—»oo 

critical time for g. The proof of Theorem 2.5 relies on GronwalFs inequality in the 
following form. 

Lemma 2.6. Let w,U be nonnegative continuous functions in [0,7], U(0) = 0, 
U nondecreasing, and let M, N be nonnegative constants. Assume that 

w(t) ^M + N f w(T)dU(T) VI 6 [0,T]. 
Jo 

Then 
w(t) ^ MeNUW Vl€[0 ,T] . 

We just recall that Lemma 2.6 follows immediately from the integration-by-parts 
formula 

T e-NUMw(t) dU(t) = N [' e-NUW ( f W(T) d(/(r)>) dU(t) 

+ e-NVW f w(t)dU(t). 
Jo 

P r o o f of T h e o r e m 2.5. Let us assume that for some ?i there exists tn £ 
[0,T*) H [0,T* - rj] such that 

(12) l-aqn(tn)(Ban(tn),*n(tn)) < 6. 
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Put Ťn : = min{< € [0,T*); 1 - aqn(t) (B<rn(t),<rn(t)} ^ 6}. For t € [0,T* - i?] put 

Mn(t) := I / -; , ' , , , .. dV(<rn)(T) 

I jo l-aq(T)(B<r(T),<r(T)) 

-J0 l-aq(T)(lB<T(T),<T(T))dV{ff){T) 

+ 2 P / ' {B<T"{r)<ffn{T)) - {B<T{T)'a{T))' q{T) dV{<Tn){T) 

and 

!V := -^-sup{(ölтn(ť) )<тn(í)) ; n > l,ť € [0,T]}. 

A straightforward computation shows that the inequality 

M O - ?(0I < Mn(t) + N [ \qn(T) - q(T)\ dV(<Tn)(t) 
Jo 

holds for all . € [ 0 , f n ] . 

Lemma 2.6 then yields 

(13) M O - 9(01 ^ \\Mn\\l0,T--n]e
NVC»m 

for all t G [0,Tn]. We have indeed ||AIn||[o,T*-»?] —• 0 as n —• oo, hence (13) implies 
in particular 

a\\qn(B<Tn,<jn) -q(B<r,<r)\\[ofn] < 6 

for n sufficiently large. This shows that condition (12) can hold only for finitely 
many n. Consequently, for n sufficiently large we have 

1 - aqn(t) (B<rn(t), <rn(t)) > S V< € [0, T* - r,] 

and the uniform convergence of qn to q follows from (13). • 
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III. T H E SCALAR CASE 

In this section we study in detail particular properties of the constitutive relation 
(4) when £, a are scalar-valued functions. It is natural to assume that the material 
was not subject to any plastic deformation in the past. If £h is the scalar play 
operator defined by (3) for Z — [— /*,/i], where h > 0 is a given constant, the above 
requirement means 

(14) k(0) | < h, th(a)(0) = 0. 

The constitutive relation (4) has the form e — F(<r) with 

(15) F(<r):=±(l+aq2)<r + Ath(<r), 

where q is the solution of the equation 

AF • FAh 

w m = E.aq{tW{t) wo -<-(')<'» w o = £_ttg(0(,_(0ifr(*)(oi-
We will see below that in the one-dimensional case and under appropriate assump
tions, the operator F has a particular convexity property which plays a crucial role 
in the theory of hyperbolic equations with hysteresis (cf. [10]). 

Proposition 3.1. Let a E C([0,T]) be given such that |M| [ 0 ,T] ^ 2 / l ancj 0 4 ) 
holds, and let q: [0,F*) —• [0,oo) be the corresponding maximal solution of (16) 
in the sense of Corollary 2.4. Let us assume that a is monotone in an interval 
[t\,t2] C [0, T*). Then one of the following cases occurs: 

(i) a is nondecreasing and there exists a convex increasing function 

<l>+: [a(tx),a(t2)] —> R1 such that *'+(£) ^ ± for almost all £ E (<r(t\), cr(t2)) and 

F(<r)(t) = <fr+(<r(0) forallt€ [t\M]l 
(ii) cr is nonincreasing and there exists a concave increasing function 

$ _ : [(r(t2)y<r(ti)] -* R1 such that $'_(£) ^ ± for almost all f E (<r(t2),<T(ti)) and 
F(<r)(t) - <P-((r(t) for allt E [t\,t2]. 

R e m a r k 3.2. Condition ||<T||[0,T] ^ 2 A in the case <r E Wl>l(Q,T) is necessary 
and sufficient for the validity of the strong version of the second law of thermody
namics (see [2]) 

(17) ? - O 0 a . e . 
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Indeed, it suffices to notice that we have here ep = Aeh(<r) and (cf. [6]) 

(18) l|4(^)||[o,T] = max{0, |MI[o,T] - h}, and 

(19) eh'(<r)(t) > 0 => eh(a)(t) = <r(t) - A, 4 ( ^ ) ( 0 < 0 =» 4(<r)(0 = *(«) + A. 

Further discussion about the condition (17) in the context of Mroz' model can be 
found in [3]. 

P r o o f of P r o p o s i t i o n 3.1. We consider just the case of a nondecreasing 
using an alternative definition of eh(<r) (see [6]), namely 

eh(<r)(t) = max{«fc(<r)(Ji),<r(0 - h} for t G [tut2]. 

In particular, there exists a point r G [̂ 1,̂ 2] such that 

f eh(a)(ti), te[tUT], 

^ (-(<)-ft, <G(r , .2]-

We next define an auxiliary function R: [<T(<I),<T(<2)] —»• [0,co) as the solution of 
the problem 

( R(s) = q(tl) for «€[*(..),<r(r)] 
( 2 1 ) \ dR EAh t cf t \ t,v 

^dS = E^^R for se(<r(T)Mh)). 

The case r = t2 is trivial. In the nontrivial case r < J 2 we have <T(T) = eh(<r)(T)+h, 

hence <T(T) ^ 0 by (18). 

Comparing (21) to (16) and using (20) we see that we have 

q(t) = R(<r(t)) for all te[tut2]. 

Condition [̂ 1,̂ 2] C [0,T*) guarantees that the solution R of (21) is defined in 

M<1W<2)]. 
This enables us to give an explicit formula for <$+, namely 

(22) *+(*) = 7 ( l + a f i 2 W ) s + ^max{4( (T) ( / , ) , 5 - / i } 
hi 

for.se[<7(<i),<r(/2)]. 

The rest of the proof is an easy exercise of differentiation. • 
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We now formulate a sufficient condition for the validity of the strong version (17) 
of the second law of thermodynamics in terms of material constants. 

We first introduce the set 

(23) fi:={(s,r)€Rl x [0,oo); ars2 < E, -S0(r) ^ s ^ S0(r)}, 

where So . [0, oo) —> [0, oo) is the solution of the problem 

(24) - ^ = -^(E - nr50
2), 50(0) = h. 

Let us note that the equation arS^r) = E has a unique solution r0 > 0, hence 

SI = fi_ Ufi+, where 

Q- = {(s}r) e Rl x [0,r0]; \s\ $ S0(r)}ft+ = {(s,r) £ R1 x [r0,oo); cvrs2 < £ } . 

The function 5 0 is increasing in [0,r0]. This implies in particular 

(25) Q C [-50(r0) , 50(r0)] x [0, oo). 

Lemma 3.3. Let a € C([0, T\) be given such that (14) holds and let q: [0, T*) — 

[0,oo) be the max/ma/ solution of (16) in the sense of Corollary 2.4. Then the 

following statements hold for all t £ [0,T*). 

(i) q(t) < r0 => h - So(q(t)) ^ k(<r)(t) ^ S0(q(t)) - ft, 

(i\)(<T(t),q(t))en. 

P r o o f . It suffices to assume that o is absolutely continuous and piecewise 
monotone; the general case then follows from Theorem 2.5. 

We prove (i) by induction. Let 0 = f0 < i\ < . . . < ij4 = T* be a partition of 
[0,T*) such that er is monotone in [/*-i,<fc], k = 1,...,N. The assertion holds for 
t = 0. We prove the following implication: 

/ / (i) holds for t = t\ and a is monotone in [t\,t2\ C [0,T*). then (i) holds for 
t = t2. 

It suffices again to consider the case of a nondecreasing. Using (2), (21) we see 
that -?/i(0'), q a r e constant in [<i, r], hence (i) holds. In the nontrivial case T < t2 we 
have £h(<r)(t) = <r(t) - h and q(t) = R(cr(t)) for t € [r,*2]. 

The function R is increasing in [^(T),(T(<2)] and the inverse function 

S:=ITl:[q(T),q{h)]-*[°(T)Mh)] 

satisfies 

<26> S = ^ - ^ 2 ) -
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(27) (r(t) = S(q(t)), I 6 [ T , < - ] . 

We therefore have eh(<r)(t) = S(q(t)) - /i for < € [r,t2], and S(?(r)) = <T(T) = 
fh(«T)(r) + /»^5o(7(r)). 

The uniqueness property of the equation (26) guarantees 

4(<T)(<) + h = a(t) = S(q(t)) ^ S0(q(t)) 

for all / G [T, t?\, and (i) is proved. 

Part (ii) is an easy consequence of (i). Indeed, for q(t) < ro we have 

\°(t)\^M<T)(t)\ + h<^So(q(t)). 

For t < T* and q(t) ^ r0 we have by definition E - a<72(/)»7(/) > 0. 

Lemma 3.3 is proved. • 

Let us introduce a dimensionless fatigue characteristic number Q defined by the 
formula 

(28) Q:= E 

Лań 4 ' 

An "almost necessary and sufficient" condition for the validity of the strong version 
of the second law of thermodynamics reads as follows. 

Proposition 3.4. Let the assumptions of Lemma 3.3 hold. If Q ^ - ^ , then 

Ikllfo.T-] < 2*. 
Conversely, ifQ ^ ^ then for tr(t) = t we have ||<T||[O,T-] = T* > 2h. 

P r o o f . By Lemma 3.3 and (25), it suffices to prove the implications 

192 
(29) Q < — -=> 5 0(r 0) < 2/i, 

(30) Q > -4^-7 =* So(r0) > 2/». 
e- + 1 

We first transform the equation (24) into a dimensionless form by introducing new 
variables 

/ . Qih\ (Aah\l/3 E 2 

y(x) := aS0(bx), a := i—— I , b :=—a\ 
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The function y is the solution of the problem 

(31) 
2/(x) = 1 - xy2(x), 

y(Q) = Q- 1 / 3 . 

Let us first assume Q ^ ^f. Putting XQ -= ^^o and t/o = 2/(-Co) we check easily 

that £o2/o = -• 
For x G (0, £o) w e have 

hence 

and (31) yields 

y"(x)=-(y2(x) + xy(x)y'(x))<0, 

y(x)>Q-^3+^(У0-Q-^), 
XQ 

y Ч x X l - x f ø^ l з + ^ Í J /o -o - 1 7 3 ! 2 . 
- XQ J 

Integrating the last inequality from 0 to XQ we obtain 

Уo-Q-l/3 < XQ-XІ _ - < ? " 1 / 3 + lQ~i/3(yo - <T1 / 3) + \(y0 - g- 1 / 3 ) 2 

We rewrite this inequality using the identity zo2/o = 1 and an auxiliary quantity 

c = y0Q
1/3 in the form 

c 4 ( c - l ) < Q 3 2 _ 1 _ J_ 
4 C 6 C " l 2 

^ ^ [ 9 c 2 - 2 c - l ] , 

therefore 

(c - 2)(31c4 + 31c3 + 62c2 - 20c - 2) < 0. 

This implies c < 2, hence (29) holds. 

Let us assume now Q ^ pry* The function z(x) := -r-? satisfies the equation 

(32) 
(z'(x) + z2(x) = x, 

I 40) = Cjl3, 

hence z"(x) = 1 - 2z(x)z'(x) ^ 1 - 2ZQZ'(X) for x G (0, x 0). where z0 = z(x0) = y/xo~. 

We have Z\XQ) = 0, therefore 

- * ' ( * ) > 2 T ( e 2"° ( X 0"X ) - 0 f o r * € (0, *o). 
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After integration from 0 to XQ we obtain 

2Q 1 / 3 , e2^3 - 1 

2rj / 2 o 

2. 
Assuming zo ^ ^Q1^3 w e m ^ e r from this inequality 3 ^ e V * • The function / (p ) = 

4 

e ~1 is strictly convex and increasing in [0, oo); let po be the solution of the equation 

f(p) = 3. We have / ( 2 ) > 3, hence 

Q < n s 9 ^ 2 ) " 3 1 6 

4 ^ r u - - ^ ( 2 ) ~ e 2 - f 1' 

which is a contradiction. We must therefore have zo < \QX^, hence (30) holds. • 

R e m a r k . Propositions 3.1 and 3.4 guarantee that the condition Q ^ - ^ is 

sufficient for the convexity of the operator F. In fact, the convexity of F is preserved 

even beyond the domain of validity of the strong version of the second law of ther

modynamics. We conjecture (and this is to be verified by a detailed analysis of the 

equation (21)) that there exists a precise upper bound for Q ensuring the convexity 

of F of the order of Q « 200. 

Condition Q ^ ^ can be interpreted as a lower bound for admissible values 

of a . In the case of A316 stainless steel (see [11]) we have for instance E = 

196,000[MPa],/ i = 260[AIPa],-\- = 2, 100[A/Pa], hence a is not allowed to be 

smaller than approximately y-j [(MPa)""2]. 

The following energy-type inequality is a variant of Theorem 3.8 and Lemma 3.2 

of [10]. 

P r o p o s i t i o n 3 .5 . Let us assume Q ^ - ^ and let a £ I V 1 ' 0 0 ^ ^ ) be given. Let 

T* be as in Proposition 2 .1 . Assume that F(<r) e VV 2 1 (0 , f ) for some f < T* and 

put P2(<r)(t) := \F'(<r)(t)&(t) for t E ( 0 , f ) . Then 

(i)P2(<r)<EHV(0,f), 
(ii) for all tut2 € [0 ,7] , tx < t2l we have / / * F(v)(t)&(t) dt ^ P2(<r)(*2-) -

IM<x)(-r+). 
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IV. VIBRATIONS OF A BEAM 

In this section we construct a solution to the system (1) with F given by (15). We 
prescribe initial and boundary conditions 

(33) <T(X,0) = <r°(x), v(x,0) = v°(x), <T(0,0 = t>(l,«) = 0. 

We extend easily Corollary 2.4 to the case of functions a: [0,1] x [0,T] —* R1, 
where the spatial variable x G [0,1] is considered as a parameter. 

Proposition 4.1. Let <r G C([0,1] x [0, T]) be given. Then there exists T* G (0, T] 
and a unique continuous function q: [0,1] x [0,T*) —• R1 such that 

ft EAh 

<34> ^ ^ l t-^,,H».r)d''W'-r)' 
where V(<r)(x,t) = Var(£h(<r(x,.))). 

[o,t] 

P r o o f . Equation (34) is the integral form of (16). By Corollary 2.4, for each 
x G [0,1] there exists T*(x) > 0 such that q(x,t) is defined for t G [0.T*(x)). By 
Theorem 2.5, function x —• T*(x) is lower semicontinuous in [0,1], hence T*(x) 
attains its minimum T* = minT*(ar) > 0. 

[o,i] 
The continuity of q follows also from Theorem 2.5. If xn —• x, tn —• t are arbitrary 

sequences, xn,x £ [0, l],<n.< G [0,T*), then in the triangle inequality 

k(*n, tn) - q(x, 0 | ^ \q(xn,tn) - q(x, tn)\ + \q(x, tn) - q(x, t)\ 

we have q(xn,.) —• q(x,.) uniformly in [OjSup*/*] and the assertion follows easily. 

D 
Our main result for the system (1), (15), (33) reads as follows. 

Theorem 4.2. Let us assume Q < ^ , g,gt € Ll(0,T; L2(0,1)) and let <r°,v° G 
W1'2^, 1) be given, <r°(0) = t;°(l) = 0, ||<T0||[(M] < h. Then there exist T* > 0 and 
functions <r, v continuous in [0,1] x [0,T*) such that 

(i) CTU<TX,VX,VX,EX € L°°(0,T* - 6; L2(0,1)) for all 6 e (0,T*)t 

(ii) equations (1) are satisfied almost everywhere in (0, 1) x (0,T*), 
(iii) conditions (33) hold for all x G [0,1] and t e [0, T*), 
(iv) we have either T* = T or there exists x G [0,1] such that 

lim <xq(x, t)<r2(x, t) = E. 
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R e m a r k s 4.3. 

(i) Hyperbolicity in the sense of bounded speed of propagation for the system (1), 
(15) can be proved analogously as in [7], 

(ii) Assertion (iv) of Theorem 4.2 says that the solution exists globally until a 

singularity due to the fatigue occurs at some point x £ [0,1], 
(iii) We choose mixed boundary conditions in (33) in order to simplify the construc

tion. 

The rest of the paper is devoted to the proof of Theorem 4.2. The construction is 
somewhat awkward. We first discretize the system (1), (15), (33) in space, and for 
constructing a solution of the system of ordinary differential equations thus obtained, 
we discretize it in time. The time-space discrete system admits only weak estimates 
which are nevertheless sufficient for passing to the limit with respect to the time 
step. The space-discrete system enables us afterwards to obtain estimates of higher 
order (as in [10]) and to pass to the limit with respect to the space step. The main 
difficulty here is that we have to maintain the time of breakdown under control. 

Space discretization 
Let n > 0 be a given integer. For j = l , . . , , n — 1 and t G [0,T] put gj(t) := 

n . / i - i g(x,t)dx. We replace (1), (15), (33) by the system of equations for j = 
l , . . * , ? * - 1 

(35) (i) F'(<Tj)(t) = n(vj+x(t)-vj(t)), 

(ii) 6i(0 = n(^(0-^-i(0)-1-^(0 
where dot denotes the derivative with respect to t, with unknown functions 
a\,.. .,<rn_i, v\,..., vn_i, <To = vn = 0. We prescribe for (35) natural initial 
conditions 

(36) ";(0) = <r°(;Q, vj(0) = v° ( 0 . 

One cannot simply refer to the results of [10]. We have here no a priori information 
about the domain of definition of the solution and about the inverse of F. The 
method we choose here is based on a time discretization of the system (35), (36). 

Time discretization. For a fixed integer m > 0 and for all k = 0 , 1 , . . . , m we 
put r/ := ^ , gj := gj(kjj), j = 0 , . . . , n. Our system has the form 

(37) (i) ^^-e^=Ak+ln(vj+l-v^), 

(ii) i (»*+» - „ ' ) = Ak+l (n(*$ - **_.) + **) . 
(iii) vj = Vj(0), <-? = ^ ( 0 ) , <r? = £<-;?, A0 = 1, t,* = <-* = 0, 

k = 0,...,m- 1, j = l,...,n- I. 
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We have to couple the system (37) with an algorithm for determining the values 

of <rk.+x and v4jb+i. 

Let us suppose that vj, trj, e^, A{ are known for all j = 1 . . . . , n — 1, i = 0 , . . . , k 

and that Ai — 1 for all such i. 

For t G [t?/, (i + 1)//) and j = 1 , . . . , n - 1 put 

(38) 'F\t) = *) + li{t-iti)(<T?l-oi
J). 

Let <r. be the solution of (16) for <r = cr- . We stop the algorithm as soon as 

the critical quantity C-m (t) := aqj (t) [<Tj (O) attains the value E for some j . 

We therefore assume Cj(kn) < 1 for all j = 1 , . . . , n — 1. 

The induction hypothesis is complete if we assume 

(39) ej = F(^m))(ir,), j = l , . . . , n - l , i = 0, . . . , * . 

Let us note that the choice of initial data guarantees (cf. (14)) that q\ '(0) = 

Cjm)(0) = 0 and (39) holds for Jb = 0. 

Algor i thm. 

1. Try Ak+\ = 1 and compute <rj'+l from (37) (i). 

2. Try to find the solution s to the equation £* + 1 = &+(s) if £j + l ^ ek (and 
f̂c+i _ ^(s) if ^ + 1 < cj?) where &± are the functions from Proposition 3.1 

- Jm) »„л .,..* „*+- — for <i = fcr/ and cr = J , and put a 
j := s. 

The domain of definition of 4>^, <I>J_ is the interval Vj = [a^sf) (Vj = (sj , <r^], 

respectively) which is the maximal interval of existence of the solution R* to the 

equation 

(40) (i) ̂ j- = E^2Rf - dsm^{eh(^)(k,),s-h}, 

( i i ) ^ = i? f f%-< l s m i "W^ m W* + /<}, 
(iii) ft± (,-*) = 9j

mV-'/)-

By definition, the expression as2 Rf(s) tends to E as s —* s*. 

Functions <fĉ  are increasing and continuous in X>j, hence there are two possibilities: 

a) 4 + 1 G *4(I>i) for all j = 1,..., n - 1. 
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•-) if 4 + 1 > 4 , 
•+) if e * + l < e * . 

Then <r*+1 are determined uniquely by the relation £*+1 = *±(^*+ 1)- B v c o n " 
struction, (39) holds for i = k + 1. The values of v)+l are given by (37) (ii). We 

have as in the proof of Proposition 3.1 q^m\t) = R,f (<rjm)(0) f o r * € [*»;,(*+ 1)"], 

hence CJm) ((k + l)n) < £ and the procedure can continue for i — k + 2. 

b) £*+1 g f l ^ P j ) for some j . 

For j = 1,. . . ,n — 1 put 

BA+I :=-max< ;fc+i _ ^ ; 5 = l , . . . , n - 1 > . 

We now update -4*+i. ej '+ 1 by putting At+i := 7^-7, £*+1 being the solution of 
(37) (i) for this new value of /U+i for all j = 1 , . . . , n - 1. We have by hypothesis 
Ak+i € (0, 1]. The values a)+l are then defined by the equations e)+l = <&^((j£+l-) 
if^'+1 Ze) a n d ^ + l = ^ i ( ( T J r + 1 + ) i f 4 + 1 < 4 . For at least one j G { l , . . . , n - l } 

we have by construction ( T H 1 = sf and lim otqy1 \t) (<r[m)(m = E. 
J J (^(fc + l)r;- J \ J V V 

We now stop the algorithm by putting Ai := 0, e\ = e)*1, <rj = <rf+1, it} = vf"*"1 

J J 3 j 3 J 

for all j = I , . . . , n — 1, i = k + 2 , . . . , m. 

We have in fact proved the following result. 

Propos i t ion 4.4. For each choice of integers m, n > 0 there exist piecewise linear 
functions <rj. 6 C([0, T]), j = 1 , . . . , n — 1 such that 

(1) (38) holds for all i = 0 , . . . , m - 1, j = 1 , . . . , n - 1, 

(ii) there exists nT[m) e (0,T],nT{m) = (** + l)iy, such that the solution 

qjm) of (16) corresponding to <r]- exists in [0,nT*,) for all j = {,..., n — 1 

and we have either nT?m) = T or there exists j 0 £ { l , . . . , n — 1} such that 

f j ™ _««}r>(o(«{r)(o)'=^ 
(m) 

(iii) for k ^ t* there exist {e), v), Ak ; j = 1 , . . . , n - 1} such that Ak = 1, e) = 

F(<rjm))(il:n) for a// j = 1 , . . . , n - 1 and (37) ho/c/s, 

(iv) for k > k* there exist {e), v), Ak; j = 1 , . . . , n - 1} suc/i that A^.+i € 

(0,1], Ak = 0 for k ^ k* + 2 and (37) /10/ds. 

We now pass to the limit as m —• 00 keeping n fixed. 
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Estimates I. We multiply (37) (i) by (<-}+I - <-*) and (37) (ii) by (t£+1 - »}). 
This yields 

n—1m—1 1 ғ * — X ľf*— X 

E E И+ 1 - ФH+1 - • î )+<«í+ 1 - -7)al < 
' j = l jb=0 

n—1m—1 

o E E (i"/+>i + tfDI^+1 -4\+(Ki+W-ii + Wi\M+l-VJ\ 
j = l ib=0 

We have by Proposition 3.1 (^+ 1 - e*)(oj+1 - <r*) ^ £(<r*+l - ^ ) 2 and from 
the elementary Young inequality ab ̂  ^ a 2 + |62 we infer 

fiE,'21[>ri-^+(^1-^] 
j = l ib=0 

n—1m—1 

(41) { ^ E E [(4+1 - e;X^+1 - ";) + (»*+1 - »; )2] 
j = l ib=0 

n—1m—1 

< 2 , , £ £ [2n2£|^|2 + 4»Vjf+ |,,jf] 
i = i fc=o 

Estimates II. 
We multiply (37)(i) by v) and (37)(ii) by v), k = 0,1,..., k*. Using the identities 

(,}+» - vM = i(|t,*+1|2 - |t,}|2) - !(.*+» - t,*)2 

and 

(e}+1 - 4)<r} = / " F(«-<m))(.)«r<m)(0 dt 
Jfc-7 

~Z F(«r{m))(0(^+1-^)(.-t»,)d, 
'/ Jfcr; 

^ / F(<r^) (0^ m ) (0d<- (4 + 1 -4 ) (^ + 1 -^) 
Jfcrj 

we obtain for each £ € {0,.. . , &*}. 

"E [/0
(<+1)"-7Wm)X-)-'5m)(0d.+il«|+1la] 

(42) š±ï>Л2 + vnEÉtølИï+ 
^ ; = 1 Ј = l f c = 0 

+ £ £ tø+1 - Ф(°ґ ~ Ф + łW*' - Ф2} 
j = l k=0 
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Energy inequality (6) entails for all r £ (0,(^+ 1)17) 

f F(^m))(t)^m\t)dt > UJm\r) - U{m)(0), 
JO 

where 

UJm)(T) := i [^{l + a(q^\r)f)(^\r))\A(ek(e^)(r)Y 

is the internal energy. We therefore have 

UJm)(T) > ^ ( ^ \ T ) ) \ Ujm\0) = ±tf\\ 

Combining (41) and (42) we obtain 

[ h Z [BK+ 1I2 + l»i+1l2] * E1 [*Kla + Kl2] + I E 1 E IrfHl 
(43) 

n —1 m —1 

+ <WE E [l»na + Kla + líilal. 
Í = l fc=0 

By cn we denote here and in the sequel any constant dependent possibly on n and 
independent of m. 

Put 

Vj : = m a x { | t £ | ; * = 0,...,ib* + l} = max{|t£|; k = 0 , . . . ,m} , 

Sj :=max{|<r*|; k = 0 , . . . , k* + 1} =max{|<r*|; Ar = 0, . . . , m } . 

We have obviously 

n - l m - l / n - l m - 1 \ ! / 2 

Í E E WKÍTnuE Elffjf <*., 
j = X *=0 \ j = l t=0 / 

hence (43) yields 

n - l 

(44) 

I £ i S l + V?<cn\l+ maxV, + „ £ > / + 5?) . 
i= i *• j i= i j 

Taking m sufficiently large (i.e. n sufficiently small) we obtain the final estimates 

max Icrj I + max Itrj | < cn 

fc ' J' fc ' ^ l s 

155 



for all j = 1,.. . ,n — 1. 

Convergence as m —•• oo. We now define the function vj- by a formula analo
gous to (38), namely 

v<T\l) = vi+l-(i-iT])(v^ - „ j ) 

for i = 0 , . . . , m — 1 and t G [ir), (i + \)i)). 

Estimates (44) show that the sequences {vj } ~ = 1 , {<T™ }m=\ a r e bounded in 
1V1>2(0,T) for each j . Taking a subsequence, if necessary, we find <r.-, Vj £ VV1,2(0, T) 
such that <r{m) — crhv

{m) — vj weakly in VV!'2(0,T) and uniformly in C([0,T]). 
Functions <Tj, VJ obviously satisfy initial conditions (36). Let (jj be the solution of 

(16) for <r = <Tj and let T* be the critical time for </j,nT* := minT*. By Theorem 

2.5, we have liminfnT* . ^ nT* and F(<r{m)) converge to F(<Tj) in [0,nT*) locally 

uniformly as m —• oo. 

We want to show that Vj, <Tj satisfy system (35) in [0,n7'*). For t G [k?;, (k+ 1)7;) 

we define functions 

s{m)(.) := -$, ->{m)(0:=»t. *Jm)(0 := tf, 

ejm)(<) := e* + I ( i - *r,)(e*+1 - e*), t = 0 , . . . , f . 

Let K > 0 be arbitrarily chosen. System (37) can be rewritten for almost all 

t G (0,nT* — K) and for m sufficiently large in the form 

(45) 

í-}m)(0 = »(*ЙÌ(0-«im )(0), 

ř}m)(o = »(*}m )(o-*5ľi(o)+й m )(o, 
»jm )(0) = «á(0), <г{m)(0) = тДO). 

We just have to prove £j —• F(<Tj), VJ —> ty,?)- -* <7jy9j —• </j uniformly in 

[0, nT* - K] as m -> oo for all j = 1 , . . . , n - 1. 

We have for instance for t G [ki)y (k + 1)?;) 

m - 1 ч 1/2 

И m ) (o - ^ ( o i < И + 1 -»л ^ ( £ И + 1 - ^ i 2 ) ^ c»'»,/2, 

I^ÍO-ftЧOI^"/. j t M*,0M<d*. 

|£;.
m)(<) - ғfoXOI < kím)(0 - í̂m)(Ь;)l + II Ím))(*") - rЮ(Ь,)| 

+ |ҒK)(Ь ?)-Ғ(<r i)(<)|, 
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where 

| e ( m ) ( 0 _ c ( m ) ( j b i j ) | ^ | e ( m ) ( ( j b + 1 ) f / ) _ £ ( m , ( i b | j ) | 

^ IIV<m ))((* + 1)),,) - F(<Tj)((k + 1)»,)| 

+ |F(<-jm))(*r.) - F(tT,.)(*.,)| + |F(«T j)((t+ 1)1,) - F K ) ( ^ ) | 

and the convergence follows easily. We can summarize the results obtained so far in 
the following 

Proposition 4.5. Let n be a given integer and let <J°, v° be given functions satis
fying the hypotheses of Theorem 4.2. Then there exists nT* 6 (0,T] and absolutely 
continuous functions VJ , &j: [0, nT*) —* R l. j = 1 , . . . , n — 1 satisfying (35), (36) for 
t £ [0, nT*) and we have either nT* =T or there exists j G { 1 , . . . , w - 1} such that 

linî  oqj(t)(T?(t) = E, where qj is the solution of equation (16) for a = &j. 

To finish the proof of Theorem 4.2, we apply now the standard technique of hy
perbolic equations with hysteresis (see e.g. [10]), namely estimates based on Propo
sition 3.5. 

Estimates III. 
Functions Vj, (Tj, gj are absolutely continuous in [0, ri7"*), hence we can differentiate 

equations (35) with respect to t. Then, multiplying the derivative of (35)(i) by &j 

and the derivative of (35)(ii) by i)j we obtain from Propositions 3.5 and 3.1 for almost 
all <€(0 , n T*) 

^£(^i+^ 

where 
2 I ri±L 

F(" i ) (0)^(0) = E (r(<r,)(0)) = E n j . " v°(x)dx 

v](0)=\nj^(<7°'(x) + g(x,0))<\ 

I2 

IX 

and 

n-ì rt /n-\ ч l / 2 -t /n-l ч 1/2 

_Zl «(rtø(г)«»' < ( E Ж J | é - ( Г ) | l {£ÙЩ d 
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hence for all r G (0, nT*) we have 

(46) n 

^ E (*> (0 + *J(0) ^ « (||»°||^,., + \\*Yw>-> + ||»(-. 0)IU- + IWUw*--)) , 2n . 
J=I 

where c is a constant independent of n. 

Estimate IV. Analogously as in Estimate II, we multiply (35) (i) by <Tj and (35) 
(ii) by Vj. After integration we obtain from (6) for every t € (0,nT*). 

S E (l*JW + *0) < i i ! (i-J(O + * 0 ) ) + f£/W,.Wdr, 
j = l x ' j = l x ' .7 = 1 

therefore 

n - l 

(47) ^ E ( | * i (0 + WJ(0) < * (|k°|U. + ||»0||ta + ||pH.caco.T-.t->) • 

Convergence as n —• oo. 
Estimate (46) shows that <r;, Vj are Lipschitz continuous in [0,nT*), hence they can 

be extended to [0,T] by putting <T,(0 = °j{nT*-), *>j(0 = ^(n-T*~) for * € [nT\T). 
We construct for x G [£, i± i ) , t G [0, T], j = 0 , . . . , n - 1 linear interpolates 

<r(n)(x, 0 := *j(t) + n(* - £)(<r i + 1)0 - <r,(0)> 

t / n ) (x ,0 := vj(t) + n(x - £ ) ( t , i + i ( 0 - *i(0)-

Sequences { ^ n ) } , {V
( n )}, {<r(n)}, {v ( n )}, {<rin)} are bounded in L°°(0,T; L2(0,1)). 

Passing to subsequences, if necessary, we find functions v G L°°(0,T; L2(0, 1)), <r G 
C([0,1] x [0,T]) such that vt,<TXy<Tt G L°°(0,T;L2(0,1)) and v\n) — vt, v (n) — 
v, <rt

(n) - • <rt, <r£n) -v <rr in L°°(0,T; L2(0,1)) weakly-star and <r<n) - • <r uniformly 
inC([0 , l ]x[0 ,T]) . 

Let </(-M) be the solution of equation (34) and let T* be the critical time corre
sponding to q. Using once more Theorem 2.5 we infer that liminfnT* ^ T*, hence 

n—>oo 

equations (35) are satisfied in [0,T* - S] for arbitrary 6 > 0 for n sufficiently large. 
Moreover F(</n)) -> F(<r) uniformly in [0,1] x [0,T* - 6). 

For t G [0,T* - 6) and x G [£, *£*•), j = 0,.. ,n - 1 we introduce auxiliary 

functions #»)(*, 0 := FfoXO, t>(n)(*,0 := »j+i(0. £(n)(*>0 := « + i ( 0 -
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System (35) can be rewritten in the form 

(48) 

a.e. in (0 , l ) x (0 , r -6 ) . 
Let qf̂ n) be the solution of equation (34) for <r = <r(n). Since g(n) —* q uniformly in 

[0,1] x [0, T* - 6] and g<n) (£, <) = qj(t), j = 1 , . . . , n - 1, we infer that there exists 
a constant c > 0 dependent possibly on S and independent of n such that 

max qAt) ^ c, max -- , . _ ^ < c. 
i€[o,T'-fl *J W ^ i€[o,T'-q £ - aaj(t)<T](t) ^ 
j = l , . . , n - l j = i , . . . ,n-t 

Relations (47), (15) then imply 

max / | 4 n ) ( x , 0 | 2 d i r ^ c , hence max / \vin)(x,t)\2 dx ^ c. 
t6[o,T--«]j0 te [o ,T^] j 0 ' * v " 

Consequently, w<») — t; uniformly in [0,T* - <*],tin) — vX} ^n) — u; in L°°(0,T* -
6; L2(0,1)) weakly-star (we pass to a subsequence, if necessary). 

To prove that w = F(<r)t a.e., it suffices to verify that ^ n ) —> F(<r) uniformly in 
[0,1] x [O-T* - 6]. We have for x 6 [£, *±L) 

|^)(x,0 - F(^))(x,0| = |F(<T<»))(± «) - F(^))(x,0 

and the assertion follows from the uniform convergence F(a^) —> F(<r). 

Mean Continuity Theorem yields /0 fQ \g(n)(x,t) — flf(x,<)| dxdt —• 0 as n —> oo. 
It is easy to check that (7, V satisfy initial and boundary conditions (33), hence u, <r 
are solutions to (1), (15), (33). 

Let us note that 6 > 0 has been chosen arbitrarily, hence the proof of Theorem 4.2 
is complete. 
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