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Summary. Continuity conditions for a biquadratic spline interpolating given mean values
in terms of proper parameters are given. Boundary conditions determining such a spline
and the algorithm for computing local parameters for the given data are studied. The
notion of the natural spline and its extremal property is mentioned.
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1. QUADRATIC SPLINES—BASIC RELATIONS
Let us have an increasing sequence of spline knots
(Az):={zi;a=20 <71 < ... < Ty < Tpy1 = b}, hi = 2341 — 5.

We call a function s(x) a quadratic spline on the knot set (Ax) if it has the following
properties: '
1° s(z) € C! (a,b);
2° s(z) is a quadratic polynomial on every interval (z;, z;41), i = 0(1)n.
Let us denote by % (Az) the linear space of such splines; we have

dim ¥ (Az) =n+ 3.

Quadratic splines interpolating function values, mean values or values of the first
derivative were described in [2]-[7]; we recall here only the necessary relations.
Let us denote s; = s(z;), s; = s'(2:), 9: = ,—}— :‘_"“ s(z)dz. We can use various
local representatiaons of s(x) on the intervals (x;, ;41 )—e.g. with the local parameters
’.

Siy ;¢

. 1
(1) s(x) = 8 + (x —x3)s; + 3 (2 — z;)%s!  with s = F(sgﬂ,_1 —st)
1
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or
(2) s(z) = (1= ¢%)si + @sipa + (1 — Qhisl, g =(z —z:)/ha.

We can obtain a representation with parameters s;, g; substituting

2 2
st = 7;(3g; — Siy1 —28i), Siy = 7;(—39.' + 2si41 + 8i)

or
3) 38t = 3(sip1 — 20 + ).

The continuity condition 1° at the knots z;, i = 1(1)n can be expressed as
1 ’

) v .
4) E(sﬁ_l + ;) = h——-(s,- —s;-1) via parameters s;, s;
-1

or through parameters s;, g; as
(53) hisi—y + Z(h{_l + h.-)s.- + hi—ls_i-i-l = 3[’!.;'_(],'..1 + h,'_ly,']; _

or in some slightly modified more symmetric form as

1 1 1 1 1 1 .
) erz(c 4 D) 4 e =a[ g+ gl
( ) h,'_.l Si-1t (h,'...l + h,' + h,'S1+l h,'_lg 1+ h,'g
or by means of the parameters s!, g; as
(6) hic18i_y + 2(Rio1 + hi)si+ hisiyy = 6(gi = gi-1).

The continuity conditions (4) completed by one (initial) condition can be used to
find all local parameters of the spline interpolating given function values or the first

derivative values on (Az) (see [1], [4]).

The continuity conditions (6) were used to calculate local parameters of the spline
interpolating given mean values g; under two additional (boundary) conditions (sce
[7]). Let us mention the feature of error propagation without damping which is
connected with splines interpolating function values or the first derivative values at
the knot mesh (Az), but not with splines interpolating mean values (see [3], [7]). The
instability in function values interpolation can be overwhelmed by a proper choice of
the points of interpoiation t; different from the knots of the spline x;. Such quadratic

splines with z; < t; < z;4+1 were discussed in [2], [3].
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2. BIQUADRATIC SPLINE

Let us have a rectangular domain D = {(z,y); e < < b, ¢ < y < d} with the
knot set

(A) = (Az) x (Ay) = {(z:,y;); i =0(1)n+ 1, j =0(1)m + 1},
where (Ay) ={yj:c=9yo <y1 < ... < Ym < Ym+1 =d}, kj = yj41 — ;.
We call s(z,y) e biquadratic splme on the knot set (4), if
1° s(z,y) € CVY(D) (continuous first derivatives s*7, sk = g*t7s/dz*oy",

k,r=0,1);
2° s(z,y) is a biquadratic polynomial on each subrectangle

Dij = (zi, zig1) X (Y5, Y541) -
Let us denote by (A) the linear space of biquadratic splines on (A); then
dim & (A) = (n + 3)(m + 3).
Corollary.

s(z,y;), j = 0(1)n + 1 are quadratic splines on the mesh (Ax),
s(xi,y), i =0(1)n + 1 are quadratic splines on the mesh (Ay).

There are various local representations for s(z,y) on D;;:

(T) s(z,y) = Z ay (x - (y - y;)"
k,r=0
with
1 1 6k+r
t] - k(.. I Y . .
(7) » ag . = ms (xuyJ) = kit 6:1:"6_1;’ s(xtayJ)
(the Taylor polynomial, s;; = s0 0),

s(z,y) = (1 — v )(1 —-v )s.J +u*(l-v ).s..g.;,J +(1-u )v i j+1

(SD) + s i +u(l — w)hy [(1 - v2)s +v23,130+1]
+o(1 —v)k;[(1-u ) 1y uzs?zl J] + u(l — u)v(1 — v)hik; s‘] ,
(8) (:'C,!j) € Dijs u= (:C _a:t)/hi) v= (y - yJ)/kJ’ u,v € (O: 1)
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(the tensor product technique applied to (1), (2)).
Both these representations work with nonsymmetrically distributed local paramn-
eters (at one point (z;,y;) for (T), at the vertices of D;; for (SD)—see Fig. 1a).
Local parameters (SD) arc used for interpolation of function values at knots in
[8]; the interpolation at different points P;; = (z; + uihi, yj + v;k;), ui,vj € (0,1) is
studied in [5], where the appropriate choice of local parameters is used (see Fig. 1b)
to obtain storage economy (symmetry, common parameters for neighbouring rectan-

gles).

s, s40 s sbl $0i1 sbil
gl0 Sij g0
D,‘j:
5,810, 0.1 gLl s, sO1 shil $0:1 shil
Fig. 1a Fig. 1b
In the algorithm for splines interpolating mean values
1 1
9 9= o s(z,y)dzdy = 5(45,-1- + 28541, + 285541 + Sig1,5+1)
LiRkj D;; .
hi 10, 10 Kj 001 01 1 11

we will use other local parameters (one-dimensional mean values)

. _ 1 [T 1 1 (1.0

) 9i; = E -, s(x,yj) dz = 5(231']' + Sit1,5 + §hisij )
1 [yt 1

giy]. = — s(zi,y)dy = (2855 + Sijg1 + %k‘].s?]'l)
5y, 3

(the right-hand sides in (9)-(10) were calculated using (8)).

As the local parameters of the spline s(x,y) on (A) we can now use the following
nine values shown in Fig. 2a, which are symmetrically dispersed over D;; (common
values can be used for neighbouring rectangles).

Theorem 1. A biquadratic spline s(z,y) is uniquely determined on D;; by the

nine parameters shown in Fig. 2a:

Y Yy T T .
(P) Sijy Sitljs Sij+ly Si+l,j+1y 945,955 Jig1j0 Jijr 9ij+15
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T 1,0 0,1
Si,j+1 9ij+1 Sit1,j+1  s0, 501 s10 g
Yy .. Y ..
93 9ij 9it1, 9ii
Sij gfj Sit1,5 Sl,O’SO,l 31,0,30,1
Fig. 2a _ Fig. 2b

the corresponding local representation can be written as

(SG) s(z,y) = (1 —u)(1 —v)(1 — 3u — 3v + Juv)s;;
+u(l —v)(—2 + 3u + 6v — Juv) sty ;
+ (1 = u)v(=2 + 6u + 3v — Juv)s; j41
+ uv(4 — 6u — 6v + Juv)siy1 j41
+6(1—u)(1 —v)[ul - 3v)gi; +v(1 -—3u)giyj]
+6uv[(1 —u)(Bv —2)gF;,, + (1 - v)(3u — 2)g?_;_1,]-]
+ 36u(l — u)v(l — v)g;j

with w = (x — 2;)/hi, v = (y — y;)/k;.

Proof. There are four common function values in the representations (SD),
(SG). The relations (9), (10) can be viewed as a one-to-one mapping between the local
parameters of this two representations with a regular triangular matrix. Substituting
(9), (10) into (SD), we obtain the representation (SG). O

Remarks. 1°1tis possible to show explicitly the relations between the param-
eters of representations (T) and (SG) (here we write a}). = akr, hi = h, kj = k for
short):

(11) $ij = Qgo,
Sit1,j = oo + a0l + azx 3N, siji1 = ago + aotk + ao2 3k,
Sit1,j41 = Qoo + a1oh + ap1k + %(amh2 + 2a;1hk + agak? + a1 h2k
+ahk? + a22%h2k2),

— 1 172 y _ 1 1.2
9i; = Qoo + arozh + axgh®, g¥; = aco + ao1 3k + a2 gk,
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9741 = Q00 + ajo3h + a0tk + azoth? + ay 11k + agy 1K
+ay sh k+a2g 1hk? + a9y lzhzl»2
gfﬂd ago + ayoh + aoy 2k + azoih + auﬁhk + a021L2
+ az 1%k + ara LhE? + aga 50K,
9ij = ago + aro3h + ao1 3k + azo 1h? + a1 hk + ag2 1K?
+ a1 52k + ara g5 hA? + ana e h?K2.

The inverse relations can be expressed in the following way:

(12) app = Sij,
a0 = #(395 — siv1,5 = 28i5),  aon = £(39%; — sij+1 — 285),

az = ;%(—29?} + 8i41,; + 8ij), Qo2 = :6!(—29;3',- + 8ij4+1 + Sij),

a1y = 75 (99i5 + 4845 + 28i41,5 + 280 j41 + Sit1j41
=693 — 39741 — 693; — 39741,5),

az1 = — 7%(6g:j + 28ij + 28it1,j + Sij+1 + Sig1,j+1
- 49;'15 - 29:?,]'-1-1 - 3.(]?]' - 3g?+1,j)s

a1z = — 3 (6ij + 2845 + Sigr,j + 285541 + Siv1,i41

T T y vy
=395 — 39 ;41 — 49;; — 2gi+1,j)1
36
ax2 = 7az (4935 + 8ij + Sit1,5 + Sij41 + Sit1,j+1

— 295 — 297 41 — 29%; — 2941 )-

2° Every quadratic function s(z) is determined on the interval (z;,z;41) by the
values s}, si,,, gi (mean value). However, the biquadratic function s(z,y) is not
uniquely determined on the rectangle D;; by the nine parameters (Fig. 2b)

1,0 1,0 1,0 1 ,0 0,1 0,1 sO,l O 1
Gijr Sij» Sije1r Sitrir Sikli+n Sij > Sik1j Sijt1 Sikni41s

the matrix of the system of the relations between these parameters and the param-
eters (T) has its rank equal to eight.
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3. CONTINUITY CONDITIONS

Let s(x,y) be a biquadratic spline on (A). The functions of z,

1 Yji+1
13 = — x,y)dy
(13) g¥(z,y;) = /; s(z,y) dy

“i Jy;

10

win ?-.

2[(1 = u?)sij + ulsipr,j + hiu(l — u)sy;
[(1 - )s,- j+1 + u? Si+1,5+1 + h,-u(l u)s, J+1]

ki[Q-wu ) +uzs?+l1 (1 - u)s,.j ],

+ +
O O

are quadratic splines on (Az) with function values at * = z; equal to

1 Yi+1 v
g¥(zi,y5) = ZT/ s(zi,y)dy = g;
) Jy;j

(see (10)). Similarly, the functions of y,

Ti41
1) =g / s(z,y)dx
_2

[ 1—v?)sij + v%s; i1 + kju(l — v)s ?Jl]

+3[(1 - )s,+1_, +v%sip1, 41 + Kjo(1 = v)sPpy ]
+ i1 = 0?)si + vzs:;)+l + kjv(l - v)s}jl ,

are quadratic splines on (Ay) with function values at y = y; equal to
1 Tit1
o) =g [ stow)de=gj
Il,' z;
(sce (10)). Finally there is a connection with the given mean values g;;:

Ti4 Yi4+1
(15) miMk L s(z, ) dedy
i+1

hi/x. 9¥(x,y;) dx

1 Y41
= F/ 9% (zi,y) dy
J

Yi

—the valucs g;; can be then considered as one-dimensional mean values of the splines
9¥(x,y;) (with function values gj;) or of the splines g*(z;,y) (with function values
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g%). We can therefore use the continuity conditions (5b) applied to the following
subjects shown in Tab. 1

spline function function values mean values
s(x:,y) 8ij 9
s(z,y;) 8ij 95
9¥(z,y;) 9 9ij
9°(zi,y) 95 9ij

to prove the following theorem.

Theorem 2. Let us have a biquadratic spline s(z,y) on the knot set (A) which
interpolates given mean values

1
gij = ok -/v/D.-j s(z,y)dz dy.

Then the continuity conditions s(z,y) € C1'!(D) can be expressed as the following
system of linear relations between the parameters si;, g3;, g;, gi; (see (10), (13),

(14)):

(16) Bi—18i5-1 + 2(Bj—1 + Bj)sij + Bjsij+1 = 3(Bj—19% ;-1 + Bigl;),
i=01)n+1, j=1(1)m;
(17) @i_18i-1,j + 2(@i-1 + 04)8ij + @isiy1; = 3(@i-197_1 ; + @igi)),
i=1(1)n, j = 0(L)m + 1;
(18) Qi-10;_; ; + 2(i-1 + i) gf; + aiglyy ; = 3(ai-19i-1,5 + @igij),

i =1(1)n, j = 0(1)m;
(19) Bi-19% ;-1 + 2(Bi-1 + B;)gi; + Bigi j+1 = 3(Bi-19i,5-1 + Bjgij),
i =0(1)n, j =1(1)m,

where a; = 1/h;, B; = 1/k;.

Remarks. 1° The relations (18) {or (19)} form for each j = 0(1)m {i = 0(1)n}
the system of n {m} equations for n + 2 {m + 2} unknown quantities g¥; {g%;}
with a band matrix. To complete it to tridiagonal systems we need some boundary
conditions for the spline under consideration. With known values g%;, g; the relations
(16), (17) tighten together the function values s;; on horizontal or vertical lines of the
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knot set (A)—also some additional information is needed for computing all s;;—but
only mn + 2(m + n) relations are independent; one can choose all vertical and two
boundary horizontal lines—or vice versa (see the algorithm).
2° The partial derivatives
2,.1,0

0 1,1
sY0(zi,y) = (1 - "’2)3:1' + v Hkjv(l —v)sit,

oz, yi) =1 - ur")s?;l + u2s?+'_ll,j + hiu(l - “)3}}1

(20)

are also quadratic splines (in variables y, =) with mean values

1 Yi+1
1,0 —2.10 1.1,0 17...1,1
— sz, y)dy = 55,5 + 38541 + gkis

ki J,. N
Y
(21) 1 2 0,1 0,1 1,1
F/ s%V(z,y;) de = 357" + 387y + shisi)
1 T

Inserting them into (6) we can obtain continuity conditions for s(z,y) as relations

1 . .
between sbl and s%}o, s?} . We could obtain some other relations between s':!, s1:0,

s%! using (4):
1 11 1,1 1 01 .01
§(si-1,j +s;5) = his (sij —$il1,5)s
1 11 1,1 1 o1 .01
§(si,j—1 +si)= ks l(sii = $ij-1)-
i

3° The continuity conditions (16)—(19) can be obtained also in an elementary (but
more cumbersome) way using the Taylor representation (T).

4. BOUNDARY CONDITIONS

For a biquadratic spline s(z,y) on the knot set (A) we have altogether 4mn +
6n + 6m + 9 local parameters in the representation (SG). The given mean values
gi; and the continuity conditions (16)-(19) represent together 4mn + 4n + 4m + 1
linear independent relations between these parameters. Therefore we need additional
2n +2m + 8 = 2(n + 1) + 2(m + 1) + 4 conditions (e.g. boundary conditions) for
the unique determination of the local parameters. The type of boundary conditions

is to be chosen in such a way as to complete the continuity conditions (16)—(19) to
solvable systems of linear equations.
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4.1. Mean boundary values. Given the one-dimensional boundary mean values
(see (10), (13), (14)) ‘

g;"i()’ .q':ili',n-}-l) i = O(l)n

(22) .
gg,jv gz+1,jz J=0(1)m

{2(n + 1) + 2(m + 1) conditions},

we can write (18), (19) as a system of m + 1 resp. n + 1 linear equations with fixed
tridiagonal matrices and compute all local parameters gf;, gfj

4.1.1. Given further four function values at the vertices of D
(23) S Sij, i=0n+1, j=0m+1,

(a) we can use thesc values with (17) {or (16)} for the indices j = 0,m + 1
{i = 0,n + 1} to compute the values s;; on all horizontal {vertical} boundary lines
by solving two systems with the same tridiagonal matrix;

(b) then we can use (16) {(17)} with all indices i = 0(1)n + 1 {j = 0(1)m + 1}
to compute the values s;; on all vertical lines z = z; {horizontal lines y = y;} using
the boundary function values from step (a)—altogether n + 2 {m + 2} systems of
cquations with the same tridiagonal matrix.

4.1.2. It is possible to prescribe four values of derivatives
1,0 . . .01
(24) i s i=0,n+1, j=0m+1 {or s;;"}.
In this case we use a onc-dimensional algorithm which uses (6) (see [7]) to comipute

10 .10 . ‘
8$i0 1+ Simt1s i =1(1)n,

and then
8i0, Si,m+1, t=0(1)n+1,

e.g.
1,0 1,0 . .
(25) Sij = 9§ — %hi(siHJ +2s;7), i=0(1)n, =0,m+1,
Sn+l,j = Yno + %hi(si’f + '25:1’21,].), j=0,m+1.

- .01 0,1
Similarly we can determine sy}, s, ; and Soj, Sn+1,j-

In this way we can obtain the same boundary values s;; as in the stage (a) of
the foregoing algorithm in 4.1.1; we can finish our computation using its stage (b)—
solving the systems for the remaining parameters s;;.
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4.2. Function boundary values. It is also possiblc to prescribe the boundary
function values

8i0y Sim+1, t=0(1)n+1

26 .
( ) SOJ', S,H.],]', 1= 1(1)777,

{2(n + 2) + 2m values}.

The remaining four values for the unique determination of s(z,y) can be chosen for
- example from the values of s19, s%! at the vertices of D in several combinations
ensuring the existence of such a spline. We shall discuss briefly only one of these
cases:

. . 1,0 1,0 01 01
(27) given (26) and  Spp, Sp'm41> 5001 Sni1,00
then using (4) we can calculate uniquely from given s;o {or s; m+1} and s(l,bo {s(l,:?n +1
the parameters of the interpolating spline s(z,yo) {s(z,ym+1)}. Similarly we can
obtain splines s(%o,y), s(Tnt1,¥). Now we are able to compute explicitly (using (9))
the mean values g%, 97,,+; and gg;, g, ;- Further we can proceed as in 4.1 to
compute all values gi;, g7;, sij-

Let us summarize the results obtained in the following theorem.

Theorem 3. Given a knot set (A), mean values {gij; i = 0(1)n,j = 0(1)m} and
one of the boundary conditions
- (22) and [(23) or (24)] (boundary mean values + corner values),
- (26) and [(27) or some proper variation of it} (boundary function values + corner
derivatives).
Then there exists a unique biquadratic spline s(z,y) determined by these condi-
tions.

5. DESCRIPTION OF THE ALGORITHM

We describe the algorithm for computing the parameters (SG) of the biquadratic
spline s(z,y) determined on (A) by the prescribed mean values {g;j; i = 0(1)n, j =
0(1)m} and the boundary conditions (22), (23) in more detail.

Algorithm BQSIMV.
1° Compute numbers h; = xi41 — 4, i = 0(1)n, k; = yj41 — yj, j = 0(1)m.
2° Calculate the coefficients

a; = 1/h;, i =0(1)n, B; =1/k;, 3 =0(1)m
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50

60

350

and form the tridiagonal matrices

[2(ap + 1), a;
A= ai, 2(01 + a3), az
L Qn-1, 2(an-1+an)
[2(Bo + B1), I 1
B, = b1, 2(B1 + B2), P2
! Bty 2o+ ).

Calculate the corresponding vectors of the right-hand sides according to (18),
(19) (including the terms with g%, 97,41, 901 9n41,; from the left)

3[aogoj + @1915] — @0gp;,

3[Bogio + B1gi1] — Bogios

3[ai—19i-1,; + @igi], i=21)n-1,
3[Bj-19i,5-1 + Bjgij], ji=2(1)m-1,
3[an—19n-1,j + Angnj] — Angpiy ;5

3[ﬂm—lgi,m—l + ,Bmgim] - ﬂmgf,m.ﬂ .
Using the decomposition algorithm for tridiagonal systems, solve

m + 1 systems with the matrix A, for the values g},

n + 1 systems with the matrix B, for gjj.

With g; computed in step 3° and function values s;; at vertices form similarly
the right-hand sides in (17) for j = 0,m + 1, solve two systems with the matrix
An to compute the values s;; on horizontal boundaries.

With values giyj computed in step 3° and boundary values s;; from step 4°, form
the right-hand sides given in (16) and for ¢ = 0(1)n + 1 solve the systems with
the constant matrix B,, to compute all remaining values s;;.

When needed, we can pass from the representation (SG) of the spline to the
Taylor representation (T) using relations (12), or to the representation (SD)
using relations (9), (10) (e.g. for graphic visualization of results).



6. EXAMPLES

Example 1. The biquadratic spline corresponding to the discrete data g;;
given in Tab. 2 and to the boundary conditions

ggj = 9oj, yg, = 9g5j, gio = 9io» 9ie = 9?6’ Sij = 9ij» 1=0,5,j=0,5

is shown in Fig. 3.

z; 0 2 3 4 6 9
0] 1 2 2.5 1.5 1
1
1.5 2 4 3 2
2
vj 1 2 3 2 3 i
4
2 1.5 15 2 2.5
5
1 1.5 2 2 15
7
10| 05 1 1.5 2 1
Tab. 2

Fig. 3

Example 2. We can see the biquadratic spline approximating the function
f(z,y) = 50zy(1 — 2)*(1 - )% 2,y € [0,1], hi = k; = 0.2 with gf; = g}; = si; =0
on the boundary and mean values g;; calculated from f(z,y) in Fig. 4.
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7. NATURAL BIQUADRATIC SPLINE

It was shown in [7] that the extremal property connected with the “natural”

splines

s(x) is attained by the spline with zero values sg, ;.. Taking account of this and

of Remarks (2) in Sections 2, 3, we introduce the following definition of the “natural

biquadratic spline s € /(A) on D”.

Definition 1. Let the rectangle D with the knot set (A) and mean

values

{9ij; i=0(1)n, j =0(1)m} be given. We call s(z,y) € S (A) a natural biquadratic

spline interpolating given mean values, if it fulfils the boundary conditions

51’0(101 UJ) = 51’0($1L+11yj) = 0, ./ = 0(1)7” + 17
(31) 9N (zi, m0) = s%N (@i, Yma1) = 0, i=01)n+1,

s (zo,y0) = 0.
Corollary. For the natural spline s(z,y) € &' () we have

(32) s (@, y0) = 0= % (2, Y1) for all x € {a,b),
B $1%20,y) =0 = s"%(xny1,y) forally € (c,d).

Proof. We have

s10wo,y) = (1 - 1!2)3530 + v2,9(1):?+1 +v(1 - v)l-:js(l,}-l for y € (y;,yj+1)

2 0,1

’

sO(x,y0) = (1 — u?)s%' + Siv1.0 tu(l = w)lisig' for @ € (Ti, Tip1) -

0 0,1

Hence, (31) implies the vanishing of s1'° on the vertical parts and of s

horizontal parts of the boundary dD.
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As a consequence we have
(33) sV (z,y) =0 - on the whole boundary 9D.

O

Theorem 4. The natural biquadratic spline is uniquely determined by the mean
values {gij; ¢ = 0(1)n, j = 0(1)m} and the boundary conditions (31).

Proof. According to (9), (10) we have

3gi0 = 3(4sw0 + 2501 + 2si41,0 + sip1,1) + $hi(2sig” + 537

17. 0,1 0,1 1 . 1,1
+ 31\0(231-0 + $i+1,0) + Tjhil‘osio y
1

295 + gfl = %-(4&’0 + 2851 + 28i110 + S:’+l,1) + %/I,i(Zsido + S:l'o).
Taking into account zero boundary conditions (31)-(33), we can write

295 + 95 =390, i =0(1)n

34
(34) and similarly 294, + g7; = 390;, j=0(1)m follows.

In a similar way we obtain

(35) g.z?m + 2g§,m+l = 3gim, 1= 0(1)""
9o +295,15=38mj,  §=0(1)m.

These relations suitably combined complcte the continuity conditions (18)—(19) to
tridiagonal systems with a diagonally dominating matrix for computing ¢, g,y]
Similarly, we complete the continuity conditions (16)—(17) by the reclations

2si0 + si1 = 3¢9, t=0(1)n or 2s0; + 515 = 3955, §=0(1)m

(36) -
Sim + 2Si,m‘}-l = 3.(];/7", Snj + 25u+1,j = 3!/,1;]

which follow from (10) and (31). In such a way we can uniquely determine all local
parameters of the spline in the representation (SG). a




8. EXTREMAL PROPERTY OF THE NATURAL SPLINE

It is well known that the construction of a smoothing cubic spline is based on the
extremal property of natural cubic splines (see [1], for bicubic spline [9]). Quadratic
splines interpolating the function values at spline knots or different points of inter-
polation generally do not have such simple extremal property. For quadratic splines
s(x) interpolating mean values such extremal property with respect to the functional
J(f) = If'I3 was proved in [7] for splines with s; = s),,,; = 0 and then used to the
construction of the corresponding smoothing spline. We shall show such an extremal
property for the natural biquadratic spline described in Section 7.

Theorem 5. Let the knot set (A) = (Az)x(Ay) and mean values {g;;; i = 0(1)n,

j = 0(1)m} on the rectangle D = U; ;D;; be given. Let us denote
(37)

V= {f(a:,y) € W) (D); hikjgi; = // fz,y)dedy, i =0(1)n, j = O(l)m}
D,‘j
and introduce the functional
2
(38) 1 1= [[ M.

Then the natural biquadratic spline interpolating the mean values g;; (sce Def. 1)
minimizes the functional J(f) on V.

Proof. For the natural spline s € S(A) and f € ¥ we have

@) 0<af-9 =116 -2{ [[ [/ =@ azay }

Applying repeatedly the integration by parts rule to the last term and using the
continuity of the derivatives, we obtain

(40) //D [s"1(ft = s"D)](z,y) dady

_ /ym+1 {/:3"“ [Sl'l(fl’l _ 51,1)] (z,y) dx } dy
= /ym+l {[S"l(s = N (@ny1,y) = [V (s - f)O’I](IO’y)} dy

Y41 Tyl
—/ / [s*'(s - £ (z,y)da dy.
Yo o



Repeating integration by parts in the last double integral, we obtain (with s(z+0) =
lim{s(x + h); h —» 0, h > 0})

Z {32'1 (xi + 0, ym+1) /““"‘l (S - f)(m’y’7"+1) dz

i i
i+1

— s 0) [ (5= Nl de )

+ZZS2’2(%’+0,91’+0)// (s — f)dzdy.
i j D;;

The first terms and the simple sums vanish because s''!(z,y) = 0 on dD. The
last double sum vanishes as a consequence of zero value of the double integral (as
s, f € 7). The orthogonality relation

J[ st - @ dsay =0
D

implies the inequality
J(s) + J(f = 5) < J(f),

which proves the theorem. O

Remarks. 1° We have not succeeded in extending the functional (38) analo-
gous to the bicubic case (see [9]).

2° Applications to the construction of the smoothing biquadratic spline will be
dealt with in a forthcoming paper.

Example 3. Thenatural biquadratic spline corresponding to the data g;; from
Example 1 is shown in Fig. 5.
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