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Summary. The following three гesults for the geneгal multivariate Gauss-Markoff model 
with a singular covaгiance matrix aгe given or indicated. 1° deteгminant гatios as products 
of independent chi-square distributions, 2° moments for the deteгminants and 3° the method 
of obtaining appгoximate densities of the deteгminants. 
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1. INTRODUCTION 

We are interested in the multivariate general linear Gauss-MarkofF model MGM 

(1.1) P , I 5 , ( T 2 E ® n 

with a known matrix V ^ 0, where <g> is the symbol of the Kronecker product of 

matrices, B is a matrix of unknown fixed parameters, X is a given known design 

matrix, U is a random matrix of observations with the expected value e(U) = XB 

and with a fixed nonsingular matrix E, a2 is an unknown positive scalar. Let T = 

V + XMX' where M = M' is an arbitrary matrix such that R(X) C R(T). The 

symbol R(X) is used to denote the vector space spanned on the columns of the 

matrix X. 

Let -A~Wp(n,E) denote that a p x p random matrix A is distributed as the p-

dimensional Wishart distribution with n degrees of freedom and a covariance ma­

trix E. Determinant ratios as products of independent chi-square distributions under 
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the assumption V*~Wp(n, E), where V* and E > 0 are p x p matrices, have been 
given by Srivastava and Khatri [9] p. 82,3.38; Rao [7] p. 540, X; Muirhead [4] p. 447. 

By applying this result and that given by Oktaba and Kieloch [6] for MGM three 
theorems are established (Sec 2). 

Moments of determinant ratios I V * ! ^ " 1 under the assumption V*~Wp(n,H) can 
be found in Anderson [1] or Rao ([7], p. 540). Their forms in the case of the MGM 
model are deduced by using results of Oktaba and Kieloch (loc cit) (Sec 3). 

In very many papers and books the confidence intervals are given, e.g. S.N. Roy 
[9], Anderson [1]; Browkowicz and Linnik [2]; Muirchead [4]; Rao [7], Srivastava and 
Khatri [9]; Wani and Kabe [10], and some others. Using the procedure of Srivastava 
and Khatri, the method of approximate density of determinant rations is suggested. 
In this way we get a generalization of Wani and Kabe results [10] from the standard 
model (U, XB,Y,®I) to the MGM model. It creates a possibility for constructing an 
approximate simultaneous confidence region for a pair: a set of parametric estimable 
functions L*B and the determinant |o"2E|. 

2. DENSITIES OF DETERMINANT RATIOS IN MGM MODEL 

The following theorem (Srivastava and Khatri [9] pp. 82, 3.38; Rao [7], p. 540, X; 

Muirhead [4], p. 447) will be used in this section. 

Theorem 2 .1 . Let us consider a p x p matrix V*"Wp(n, E), where E is p x p 

matrix, pxp matrix E > 0. Then the determinant 

(2-1) \W\=[—±=Z1-Z2...ZP = XnXn-1 • • • Xn-p+1, 

where Zi,i = \,...,p are independently distributed as Xn-t+i w^n ft — * + 1 degrees 
of freedom. 

Let r(A) denote the rank of the matrix A. The symbol (A:B) is reserved for the 
matrix involving two submatrices A and B. 

The additivity of central p-dimensional Wishart distributions is stated in the fol­

lowing theorem. 

Theo rem 2.2 (Srivastava and Khatri [9] p. 82; Muirhead [4] p. 446). If p x p 

matrices V-*,..., Fr* are stochastically independent and V*~Wp(v{, E), i = 1 , . . . , r, 

then 

(2.2) ZUM-wJ £«,•£). 
^ t = i ' 
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Theorems 2.3, 2.4 and 2.5 of Oktaba and Kieloch [6] will be applied in this section. 
Let L*B be a set of linear estimable parametric functions, where L* is an a x m 

matrix. The following quadratic forms are of interest: 

(2.3) SH = {L*B - tl>)'L-(L*B - ^) = (L*B - iP)'(L*C4L*')-(L*B - X/J), 

(2.4) Se = U'CiU, 

where 

(2.5) B = (X'T~X)-X'T-U = C2U = CW, 

í d = T- - T-X(XT-X)-Í'T- = T-(I - Xo3) 

[c£ =C3 = (X'T-X)-X'T-, 

(2.7) L = (L*C*3)v(£*C3)' = L*C4L*' 

(2.6) 

(Oktaba [5], (2.1), 179). 
The symbol L~ is reserved for any choice of the ^-inverse, i.e. the following relation 

holds: 

(2.8) LL~L = L. 

We recall that 

\xf o) \c3 -cj-

Theorem 2.3 (Oktaba and Kieloch [6]). If 

(2.9) U~Nnp{XB,a2?:®V), 

where Nnp(, ) denotes an np-variafce norma/ distribution Nnp with parameters de­
fined in Introduction, L*B is a set of estimable linear combinations of parameters 
and the hypothesis L*B = ip is true, then 

(2.10) S*~Wp[r(L),<72E]. 

Theorem 2.4 (Oktaba and Kieloch [6]). Subject to the assumption (2.9) we have 

(2.11) Se~Wp[rCX)-r(X)}a
2X], 

where Se is defined in (2.4) 
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Theorem 2.5 (Oktaba and Kieloch [6]). If the assumptions of Theorems 2.3 and 
2.4 concerning the matrices SH and Se are fulfilled, then SH and Se are stochastically 
independent. 

As a consequence of the above five theorems we almost immediately obtain the 
following three theorems. 

Theorem 2.6. In the model (1.1) let the p x p matrix Se satisfy 

(2.12) Se = U'C!U^Wp(ve,a
2E), 

where the px p matrix E and the scalar a2 are positive, 

(213) ve = r(V':X)-r(X), 

C\ is given as in (2.6). Then we have 

<2 i 4> i^i=n^ 
where & are independently distributed as \l _ i+1 > * = 1. • • •»V\ w^n Ve-i + l degrees 
of freedom. 

P r o o f . We observe (2.11) in model (1.1), where Se and ve are as in (2.12) and 
(2.13). Replacing in Theorem 2.1 V*,E,n and Z{ by Se,a

2T,,ve and &, respectively, 
we get (2.14). D 

Theorem 2.7. In the model (1.1) let the px p matrix SH (Oktaba and Kieloch 

[6]) in (2.3) satisfy 

(2.15) SH~Wp(vH,a2X) 

under the true hypothesis 

(2.16) H0:L*B = xl>, 

where the px p matrix E and the scalar a2 are positive, 

(2.17) C4 = {X',T-X)--M, uH=r{L), 

L, B and C% are as in (2.7), (2.5) and (2.6), respectively; the matrices T and M are 
defined in Introduction. 
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Then 

1 ' 1 = 1 

where Wi are independently distributed as xl _i+1 with vH—i+l degrees of freedom, 

i = l , . . . , p . 

P r o o f is analogous to that of Theorem 2.6. • 

Theorem 2.8. Under the true hypothesis (2.16) in the model (1.1) let the pxp 
matrix Sy satisfy 

(2.19) Sy = SH + Se~Wp(vH + i/c,<72E), 

where the pxp matrix E and scalar o2 are positive. Then 

' ' t = l 

where mi axe independently distributed as xl _i+1 with vy—i + l = Vh + ve—i + l 
degrees of freedom, i = 1 , . . . ,p. 

Proo f . By virtue of (2.10), (2.12) (Oktaba and Kieloch [6]) and the additive 
property of Wishart distributions given in Theorem 2.2 we conclude that (2.19) 
holds. Applying Theorem 2.1 where we put V* = Se + SH = Sy and replace n by 

vy = ve + vH= r(V:X) - r(X) + r(L), we obtain (2.20). • 

A particular case of the model (1.1) is the multivariate standard model 

(2.21) ( l / , l V , £ ® / n ) , 

where U is a n x p matrix of observations, 1—the vector n x 1 involving unities, 
p! = (p\,..., /xp), the pxp matrix E is positive, 

(2.22) Se =U'(l- - 1 1 ; ) U = V*~Wp(n - 1, E) 

and 

(2-23) \W\ = ^=xl-p...xl-2-xl-i, 

where W = 5 € S _ 1 (Anderson [1], (17), p. 171). 
To prove (2.23) it is sufficient to set in (1.1): X = 1, B = / / , V = In, a2 = 1, 

vt = n - 1. From (2.14) we get (2.23). 
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3. MOMENTS OF DETERMINANT RATIOS |Sc|/(|cr2£|) AND |5#|/(|a2£|) 
IN THE M G M MODEL WITH SINGULAR COVARIANCE MATRIX 

For a general p a closed form density of the product of p independent central chi-
squares is not available. It is possible to give the ft-th moment of the determinant 
|W1 = |V*||E|-1, where 

(3.1) V-Wp(n,E). 

Its formula is as follows (Anderson [1]; Srivastava, Khatri [9], p. 83: 

/IV*I\'* .Tplf + lO 
(3.2) E(\W\h) = E(^) =2** V / , 

v |E| J rp(f) 
where n denotes the number of degrees of freedom of V* in (3.1), 

(3.3) rpQ)=ni^>T^(^^) 
t = l 

is the multivariate gamma function (James, [3], p. 483), 

(3.4) T(r)= ry
r-le-v&y 

Jo 

is the complete gamma function. 

Theorem 3.1. The h-th moments of ISelfl^EI)-1, |S,
jF/|(|cr2.S|)-1 and |Sy | x 

(I^EI)""1 in the MGM model of the form (1.1) with a singular covariance matrix 
are 

<3-5> E(wm) "2
 F p( t) • 

where Se and ve are given as in (2.12) and (2.13). 

™ E{\^\) "2
 r p ( ^ ) < 

where SH and vH are given as in (2.3) and (2.17). 
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Moreover 

where 

(3.8) vy = ve + vH, Sy = Se + SH-

Proof. Results of Oktaba and Kieloch [6] yield that Se and SH are distributed 
as Wp(i/c,a

2E) and Wp(i///,a2E), respectively. Formula (3.2), in which we replace 

V*, n and E by Se, ve = r(V:X)-r(X) and a2E respectively implies (3.5). Similarly, 
replacing V*, n and E by S#, VH = r(L) and <r2E, we get (3.6). As a consequence 
of additivity given in Theorem 2.2 we state that Sy -= Se+ Sn~Wp(ve + I/JJ,a2E), so 
by formula (3.2) we have (3.7). • 

4. SIMULTANEOUS CONFIDENCE INTERVAL FOR L*B AND |<72E| 

IN MULTIVARIATE MODEL (1.1) WITH SINGULAR COVARIANCE MATRIX 

Let us consider the problem of constructing a simultaneous confidence region in 
model (1.1) for a set of estimable parametric functions L*B and a determinant 
|a2E|. Applying Oktaba's and Kieloch's [6] results we state that in (1.1) under the 
assumption 

(4.1) U~Nnp(XByo
2?l®V) 

and the estimable true hypothesis 

(4.2) H0:L*B = rl>, 

the matrices SH and Se in (2.3) and (2.4), respectively, are independently distributed. 
Prom (2.20) we know that the density of the random variable 

(4.3) \Wy\ = |Sy| 
vl ~ |<72E| 

is the same as the density of p chi-squares independently distributed (cf. Warn and 
Kabe [10], p. 18). 

The density of the random variable \Wy\ can be used to construct simultaneous 
confidence regions for the pair (L*B, |<r2|) under the assumption of estimability of 
L*B in (4.2) (Wani and Kabe, [10], p. 18). 
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R e m a r k 4 .1 . The moments of \We\ = $±\, \WH\ = ^ and | w v | = 

are given in (3.5), (3.6) and (3.7), so under the assumptions that 5 e , SH and Sy 

are distributed as Wp(i/e,a
2E), Wp(,v//,cr2£) and Wp(vy,a

2E) we can obtain an 

approximate density of variates \We\, \WH\ and \Wy\ applying the method which is 

described by Srivastava and Khatri ([9], chapter 6.3). It is known that density is 

determined uniquely by the moments (loc. cit. p. 176). 
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