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ON A LINEARIZATION OF REGRESSION MODELS 

LUBOMÍR KUBÁČEK,1 Bratislava 

(Received September 2, 1993) 

Summary. An approximate value of a parameter in a nonlinear regression model is known 
in many cases. In such situation a linearization of the model is possible however it is im­
portant to recognize, whether the difference between the actual value of the parameter and 
the approximate value does not cause significant changes, e.g., in the bias of the estimator 
or in its variance, etc. Some rules suitable for a solution of this problem are given in the 
paper. 

AMS classification: 62J02, 62J05 

Keywords: nonlinear regression model, linearization, parameter effect curvature, intrinsic 
curvature 

INTRODUCTION 

There exists many papers and also books (cf., e.g., [5]) on processing experimental 

data when linear statistical models can be used. They are applied even in nonlinear 

cases since the theory of linear procedures is thoroughly elaborated and the methods 

are simple in a comparison with nonlinear methods. However, in a nonlinear case 

a statistician must be convinced that the model can be linearized; cf., e.g., the 

procedure given in [3], p. 45. 

The aim of the paper is to find a simple way how to attain a decision whether the 

model can or cannot be linearized. 

1 Supported by the Alexander von Humboldt-Stiftung and the grant No. 366 of the Slovak 
Academy of Sciences 
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1 NOTATIONS AND PRELIMINARIES 

Let a nonlinear regression model Y ~ IVn[/(/3),£] be considered. Here Y is 
an 7i-dimensional random vector normally distributed with mean value E(Y\/3) = 
/(/3),/3 is an unknown fc-dimensional parameter which can be any element of R* 
(k-dimensional Euclidean space), / ( . ) : Rk -> Rn is an n-dimensional vector function 
and £ is known covariance matrix of the vector Y, i.e., Var(Y) = £. The aim is 
to find an estimator J3(Y) of the parameter 0 in the case when it is known that 
/? G 0(A)), where (30 E Uk and its open neigbourhood O(/30) are given. As the 
problem, how to choose /?o is not solved here, the following consideration cannot be 
applied within situations with unknown p0. 

It has to be stated in andvance also that the models with a low nonlinearity 
characterized mainly by the curvature of them (see Definition 2.2) are studied only. 

The problem of existence and uniqueness of the least squares estimator (in more 
detail cf. [3], p. 101) is neglected here as well, since this is not necessary with respect 
to the problems solved. 

Let 
/Sf3'HxSf3\ 

fi<$/? = • , 

\SP'HnSp) 

where <*/? = / ? - /3b, .ff* = d2fi(/3)/df3dp'\0=pQ, i = 1,... ,n, /*(.) is the i-th compo­
nent of the function /( .) and fio is the mentioned element of Rk. 

If, for example, fio is so close to the actual /3 that the vector K$p can be neglected, 
then the commonly used procedure leads (under some condition of regularity) to the 
estimator 

$ = & + 60, W = (F,E-1F)-1F'E-1(y - /0), 

where 

F = df(P)/d/3'\l3=l3o, fo = f(0o). 

If a function /i(/3), (3 € R^, is to be estimated and the term 

l-80'{d2h(0)/d0d0X=0o)^ 

can be neglected, then 

M$) = KM + (dh(/3)/d/3'l=Po) 60 

is the minimum variance linear unbiased estimator. 
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The problem is how to recognize that the vector Ksp and the value 

1 
-6/3' (d*h(P)/dl3d(3%=f3o) 60, 

respectively, can be neglected. For the sake of simplicity in the following only a linear 
function h(.) is considered and thus the first problem is investigated only. 

Assumption 1.1. Let the covariance matrix £ be positively definite (p.d.) and 

/( .) have the following properties: 
(i) the rank of the n x k matrix F(/3) = df(/3)/d/3 is r[F((3)] = k < n for any 

/3 £ O(/30), where O(/30) is an open neighbourhood of 0O € R*, 
(ii) the second derivatives 

d2fi(t3)/d/3jdl3i, i = l,...,n, and j,l = l,...,k, 

are continuous at any /3 6 0(/3o), 
and 

(iii) the terms 

{d^f^/dfi^d^^S^S^S^, i = l,...,n and j,l,s = 1,... ,k, 

can be neglected for all /3 = (30 + 60 € O(f30)-

Furthemore the following notation will be used: 

Kh = (tiH1h,...,tiHnh)', 

where h is any vector from R*, 

Hi = d2fi(/3)/dpd/3'\0=0o, i = l,...,n, A = M : | , 

\6FHn) 

i.e., \KS0 = AcJ/3, and C = F'E^F. 
The mean value E(Y\0) of the vector Y, under Assumption 1.1, is 

(1.1) E(Y\P) = f0 + FS/3 + l-KS0 = fo + (F + A)60, 

The BLUE (best linear unbiased estimator) of 6/3 in the model Y — jb ~ 
Nn(F6(3,X) is _ 

6/3(Y,0) = ( F ' S - ^ J - ^ ' S - 1 ^ - /o) 
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and the BLUE of 6(3 in the model Y - f0 ~ Nn[(F + A )<*/?, E], where the matrix A 

is known and satisfies the condition r(F + A) = fc, is 

S0(Y, 60) = [(F + A / E - H F + A ) ] " 1 ^ + A / E - ^ y - /0) 

(in more detail cf. [5]). 
The statistic 

R% = min{(F - / 0 - F6P)'Z~1(Y - f0 - F<J/J): 5/? G R*} 

= (Y - /o - Fws-^y - /o - F33), 

where 53 = (F'E^F^F'^-^Y - f0) (cf. [5]), enables us to verify whether the 
model Y = /o + F5/3 + £ (without the term \KSP) is adequate to the measured data 
or not (whether 6/3 = /3 — /3o is such small that the term ^ K ^ can be neglected). 

The statistic R0 can be written in the form 

B* = (Y - / 0 ) ' (M F EM F )+ (y - /o), 

more suitable for the following consideration; here 

MF = I - F(F'F)~lF' 

and ( M F E M F ) + is the Moore-Penrose inverse (cf. [5]) of the matrix MpEMf. 
The relation 

(M F EM F )+ = E" 1 - E - ^ F ' E - 1 * 1 ) - 1 ^ - 1 

can be easily proved. 
I f i 

then i?o ~ Xn-fe(^)' where the noncentrality parameter 

6 = i/c^(MFSMF)+/c<5 /3 

and the probability of the rejection of the adequacy is 

l = P{xl-M^xl-k%l-a)}, 

where xn-fc(0>l ~ a ) *s ^^e (1 ~ «)-quantile of the central chi-square distribution 
with n — fc degrees of freedom. 
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With respect to [2], p. 27 the approximation of the noncentral Xf($) by the random 
variable 

f + 26 2 
XT/+.,- (0), f+6A^m 

Jii-s 

freedom (they need not be integers), 

where \</-n)2 (0) is t n e central chi-square random variable with f^~ degrees of 
/+2* 

7 = ^ X ^ ( 0 ) ^ / ^ ( 0 , 1 - a ) } 

where / = n — k. 
Regarding this consideration the model (1.1) can be linearized at the point /?0 if 

the value of the term \K&P (i.e., the noncentrality parameter 8) does not influence 
significantly the value 7 = a (for (5 = 0). 

Definition 1.2. The model (1.1) is da-linearizable with respect to its adequacy 
(to measured data) if 

(a) 
|(/ + *)a 

f + 26 
-f < 0.5 (the degrees of freedom do not change) 

and 
(b) 

A7 = \P{X}(0) Ž j^Y5X
2f(0,1 - a)} - a\ < da. 

Let h be any fc-dimensional vector and let 

b*h(60) = E[h'60(y,O)\60] - h'S0,0o + 50 € O(0O), 

d*h(60) = Var[h'60(Y,60)\Z] - Vat[h'60(Y,O)\Z],0o + 6/3 6 O(0O), 

U*h(60) = h'60(Y, 60) - h'60(Y, 0), 0O + 60 G O(0O), 

u*h(60) = h'60(y,60) - h'60(y,O),0o + 60€ O(0o), 

where y is a realization of the observation vector Y. 
Let 

dh(60) = ^f^yS(3,/3o + 6/3e O(0O), 

Uh(60) = dg^Sl3,0o + 6/3G O(f3o), 

UH(6(3) = ^^-60,00+60 G O(0O). 
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Let cb(h) (> 0), c2
d(h), Cl(h) and cu(h) (> 0) be such constants and Ob(/30), 

Od(Po), Ou(Po) and Ou(/30) such neighbourhoods of /30 that 

(b) \b*h(S(3)\ ^ c^VtiC^^o + Sp E Ob((30), 

(d) \dh(6(3)\ ^ c2
d(h)tiC-lh,(30 + SP e Od(Po), 

(U) Var[C/*(*/J)|E] ^ C2u(h)tiC-lh,Po + Spe Ou(Po), 

(u) \uh(SP)\ ^ cu(h)Vh'C-ih,(30 + S(3 e Ou((30), 

respectively. 

Definition 1.3. The model (1.1) is c&-, Q - , CU- and cu-linearizable with respect 
to a function h(.) in the set Ob(Po), Od(Po), Ou(Po), and Ou(f30), if the inequality 
(b), (d), (U) and (u), respectively, is satisfied. 

2 CRITERIA OF A LINEARIZATION 

In the first step the problem of the adequacy of the model (1.1) (cf. Definition 1.2) 

will be investigated. 

Let 

h(S) = j^,Se(0,oo), 

f2(S)={-t±^,Se(o,<*). 

If S «C / (only this case is taken into account), then 

/ . ( « 5 ) « l - | , f2(6)af+Sj, 

in a consequence of which the condition (a) of Definition 1.2 can be written in the 

form 0 ^ S ^ JL. It will be shown (cf. Example 2.4) that for any reasonable da in 

(b) of Definition 1.2 the condition (a) is satisfied in each case when (b) is satisfied. 

Let X/(0> I — a) = q and 4r^Q = Q+ dq. With respect to the approximation 

- £ ± ^ « 1 - j , w e h a v e dq=-^q. 

Now the condition (b) can be written in the form 

A 7 = |P{X/(0) ^ Q + dq} - P{x2
f(0) > q}\ < da. 
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Let hf(u) = u^eS l[22T(L)],u > 0, and Hf(q) = f*hf(u)du. If the approxi­
mation 

A 7 = \Hf(q + dq) - Hf(q)\ a = ^ - dq = hf(q) dq < da 

is used, and dq = — jq is taken into account, then 

hf(q)jq<da 

what implies 

(±K'S0(MF*MF)+KSI3 =) S < - ^ d a . 

By this the following lemma is proved. 

Lemma 2.1. The model (1.1) is da-linearizable if 

^ ( M F E M F ) + ^ < J \2)da. 
qie 2 

Definition 2.2. The Bates and Watts [1] parameter effect curvature at the point 
/(/?o) in the model (1.1) is 

K^=s\ip{K^:seRk}, 

where 

i f (par) (PF Ks)'^ lPF *>s 

V (s'F'Z-^Fs)* 

is the parameter effect curvature at the same point in the direction of the vector 
5 € Rfc; here PJT* = F(F'H~1F)"lF'Jl~1 is the projection matrix in the norm 
||x||E-i = y/xfnE~lx1x e Rn, on the column space M(F) (tangential space of the 
mean value surface f(/3),0 € R*, at the point f(/30) ) of the matrix F. 

The Bates and Watts intrinsic curvature is 

tf(int) =sup{.fi:(int):seR*}, 

where 

(int) Uмf^KtУĽ-iMjґкs 
V (*'-?'E--Fa)-
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is the intrinsic curvature at the same point in the direction of the vector s G R*; 
hereMjT1 = I - PjTl. 

As K$%) < K(int) and 

K'^M^Mri+Ksp < mycs^K^w 
the following theorem is a direct consequence of Lemma 2.1 and Definition 2.2. 

Theorem 2.3. If 

(S/3) CS/5 ̂  K(int) , 

where r ( / ,a ,da) = 2y/f2ir(^)eiq'ida) q = X/(0,1 - a), the model (1.1) is da-
linearizable at the point (3Q. 

E x a m p l e 2.4. Let a = 0.05. Then the values of r(/;0.05;da) for da = 
0.01 and 0.05, are given in the following table. 

/ da = 0.01 da = 0.05 
2 0.7308 1.6342 
10 1.1880 2.6565 
20 1.4506 3.2437 
100 2.2576 5.0482 

For the first orientation the following relations can be applied 

r(/; a = 0.05; da = 0.01) » 1 + 0.013/, / = 2 , . . . , 100, 

r(/; a = 0.05; da = 0.05) « 2.1 + 0.030/, / = 2 , . . . , 100. 

k 
R e m a r k 2.5. Let ~~ A»/i/t', Ai ^ . . . ^ A* > 0 be the spectral decomposition 

i = i ^ 

of the matrix C~l = Var[<J/3(y, 0)|E]. Thus the region where the actual value of the 
vector /? (= Po + S(3) must be located is the ellipsoide 

f=|^:J8 = A, + «$/3,(Wô  = E ^ l 3 ) 2 < ! : ^ ^ } 

and the values of the semi-axes of it are yir£(£;fQ\ i = 1 , . . . , A;. The variances 
Var[c5/3(y, 0)|E], i = 1 , . . . , k, occur in the interval [A*, Ai], the values of the function 
r(.; a = 0.05; da = 0.01) are in the interval [0.5; 2.5] (for / = 2 , . . . , 100) and thus 
#(»-*) has to be significantly less than 1 in order the semi-axes of the ellipsoide £ to 

be significantly greater than the standard deviations \/Var[<$/3(y,0)|E] of the linear 
estimators. The situation may appear to be less restrictive if da, and the value 0.5 
in the condition (a) of Definition 1.2 are enlarged. 

68 



Lemma 2.6. In the model (1.1) the bias 

b(60) = E[60(Y,O)\60]-60 

can be expressed as follows 

b(60) = E[60(Y,O)\60] -60 = C ^ F ' S " 1 ^ . 

P roof is obvious. • 

R e m a r k 2.7. If in the model (1.1) 6(3 ^ 0, then the bias b(6(3) can be considered 
as nonsignificant if it is covered by the covariance matrix C""1 of the estimator 
6/3(Y, 0) in the following sense: 

6'((5/3)C76((5/3)(Mahalanobis distance) ^ *£(1 - a)rf, 

where 76 (0 < 75 < 1) is a constant chosen by a statistician, x*(l ~ a) is t n e 

(1 — a)-quantile of the chi-square distribution with k degrees of freedom and a is the 
level of the significance chosen also by a statistician. 

Lemma 2.8. Let W be k x k p.d. matrix. Then 

V{/i G R*} \tiy\ < \c\y/tfWi <* y'W-ly ^ c2. 

Proof . Cf. [6], p. 69. • 

Theorem 2.9. Let cb = 76\/x*(1 - «) (cf. Remark 2.7J. If 

6ffFhETlF6P ^ tf (par) ' 

then 
V{h € R*} |6J(*/J)| ^ chy/h'C~lh. 

Furthemore 

Oh{fio) = {0:0 = 0o+60,60'C60 < 2- -g- -} . 

Proof. With respect to Lemma 2.6 

= ^ P Г W - ^ P F W 
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Since 

к 

then 

*"бß - y (6ß'FЧ)-*F6ß)~ ' 

(Pғ^кsßУЯ-ЧŞ^кsß = '(6ß)F'Ъ-lFЪ(5ß) 
^ (6ß'F"Ľ-'F6ß)2(K(pлt))2. 

(5ß'F'T,-lF6ß)2(K(p&t))2 < 4cg, 

ť ^ f ^ E - ^ F б í í / î ) -̂  cg. 

With respect to Lemma 2.8 

b'(6ß)F'Yl-'Fb(6ß) < cg <*• 

o V{/i € R*} \h'b(6p)\ = \bh(50)\ < cbVh~~d~~~h. 

R e m a r k 2.10. If only one function h(6(3) = h'5/3, 60 G Rfc, is taken into 
account, then obviously 

l&fc(*0)l < cWh'C-^h 

if and only if 

k 1 

wheie L'h = h'C-1F'Z-1. 

Let 
ťiЩ 

Hľ=\ : ] , i = l,...,fc, 

where ej € R\ e. = (0,.. . ,0, l i ,0, . . . ,0) ' , 

K[h) = 

,h'c-~'-(Hiyz-'-
and ^ f c ) = 

.vc-Ҷíяг)'--1 

2L'hЩ ' 

> 2LhHk • 
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Lemma 2 .11 . Let in the model (1.1) v = Y - J0 - F6/3(Y,0), where 6(3(Y,0) = 

C - i F ' S - ^ Y - Z o ) . Then 

Sßf 
,dh'S/3{Y,S0)\ — AfíilK-M = ðß'[K\h)v - K[

2
n>ðß(Y,0)]. Wí 

d(6/3) \sp=o 

P r o o f . Le tC(A) = (F + A)'E- 1 (F + A). Then 

d[h'60(Y,6l3)} 

д(ðßi) 
= Һ'——— 

Sß=0 д(6ßi) 
[C-ҶД)(F + Д ) ' E - Ҷ У - / o ) ] | í / 3 = 0 

= tí 
ðC-ҶД) 

д(6ßi) 
(F + Д)' s-ҶY-/o) 

Sß=0 

+ tí ^-WÏ s-ҶY-/o). 
6ß=0 

Since 

ďД 
д(бßi) 

/e'iHl\ 

\e'iHn) 

= -Щ, i = l,...,k, 

dC(A) _ 1 [ ( f í - » y _ - i ( F + A ) + ( F + A ) ' E - i # ?], 
d(6pi) 2' 

ac-^A) - -c-ҷд^^c-Ҷд), 
d(S0i) v 'd(60i) 

C(A)\sp=o = C M d A U = o = 0 ' 
it is obvious how to finish the proof. 

| =-6/3'(K[h)F + K^)C-xh. W\^-ij 

Lemma 2.12. In the model (1.1) 

d{VM[h'60(Y,6(3)\X)} 
P 36/3 '«= 

P r o o f can be performed analogously as the proof of Lemma 2.11. 

Theorem 2.13. If in the model (1.1) /? € Od(/30), where 

h'C~xh 
Od(ß0) = { 6ß'6ß < c2

d 

y/h'C-x(к[h)F + K{

2

Һ))'(K[Һ)F + K(Һ))C-XҺ } 

D 

then \dh{6(3)\ ^ c2

dh'C~lh. 

P r o o f . With respect to Lemma 2.12 the quantity \dh(6/3)\ attains its greatest 
value if 5(3 is paralel to the vector (/__ *F + /_"_ ')C~1h. Since this value must be 
less than c_/i'C_1/i, it is obvious how to finish the proof. D 
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Lemma 2.14. If the power of components of the vector 6/3 greater than two is 
neglected, then in the model (1.1) 

Uh(S(3) ~ Nx {tib(S0),SpwWS0} , 

WW = [#(*)(- _ FC-lF')(K{h))' + K{
2
h)C-l(K(

2
h)Y] . 

where 

Proof. It is implied by Lemma 2.11 and by the stochastical independence of 
the vectors v = Y - f0 - FS0(Y,0) and SJ3(Y,0) = C-lF'Y,-l(Y - / 0 ) . D 

Theorem 2.15. Let the notation W^ from Lemma 2.14 be used. 

If 

0 € Ou(0o) = {/?: /? = /3b + ShSffW^SP ^ C^h'C^h}, 

then ^Var[%(*/3)|E] ^ Cvy/hfC-lh. 

Proof. It is a direct consequence of Lemma 2.14. D 

Corollary 2.16. If the criterion from Theorem 2.15 is too restrictive for some 
realization <5/?(y,0) of the random variable S/3(Y)0)) i.e., if a realization vrea,\ of 
the rezidual v and the vector 6/3(y,0) (Lemma 2.11J makes the value uh(S0) = 
6f3'[K[ ^reai — K\ )S/3(y,0)] small, then it is reasonable to calculate the value 

cWh'C-^h 

V ^ f V e a . - KÍh)60(y,O)]>[K[h)vre&l - K(
2
h)60(y,O)] 

IfsfWIJ < T, then \uh(60)\ < cWh'C^h. 

If the region 

covers the region 

{/?: p = /Jo + SPJPWWSP ^ CltiC-lh}, 

then in the actual case the value T is to be preferred. 
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3 . AN APPLICATION AND COMMENTS 

E x a m p l e 3.1, Let 

N3 ßih + ßißitl I ,o2I 
' /?i*i+/wr 

In this case the mean value surface M = < /(/?i,/?2): f } ) G R2 > is the two-
t 4-2 \ 

ll 
dimensional subspace generated by the vectors [ t2 ] and | t\ ] , which causes that 

the intrinsic curvature KT(|nt) is zero. Nevertheless the model is non-linear and thus 
the parameter effect curvature is non-zero. 

Let the design of experiment be characterized by t\ = — l,t2 = 1,̂ 3 = 2 and let 

0o = (A,o, 02,oY = (1, ^ Y ( - - f - - = 0.485). 
In such a case 

/ -0 .515 > 

/o = I 1.485 
V 3.940 

1 
' -4.633; 9 

F = - 13.367; ! 
35.468; 36 > 

c = a-i( 18; 16-734 \ 
V 16.734; 18 j ' 

/ 0.409; -0-380\ ? 

V-0.380; 0.409 ) l ^K ' H J' 

g- ( ° \ (-0591Y1 + 0.227Y2 + 0 .09ir 3 \ 
V 0.641) + V 0.605Y1 - 0.156Y2 + 0.138Y3 ) ' 

-( . .»-••--(: a-
Criterion for the bias (Theorem 2.9): In this case the restriction on S/3 is charac­

terized by the inequality 
Sß'C6ß < 2 

AГ(paг)-

For our input data 
„(par)_ \S0iSP2\y/Ť2 

*P ~G D ' 
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where 

D = (6 + 1602,o + 18/?|i0) (Jft )2 + (16A,o + 360i,o02,o)<50i<$02 + 180i2,o(J02)
2. 

For /3i,o = 1,02,0 = 0.485 we have 

6 + 1602,o + 18/%0 = 18# i 0 

( \ / cos ot \ 
and the maximum of K^' is attained for 58 = ( . 1, a = —K/4. op \ sm a ) 

Thus 

#<*"> = sup { t fg a r ) : J/3 € R2} = 3.351c/, 

what, with respect to [1], can be considered as an extremaly great value. 
The considered restriction can be now rewritten as follows 

J _ / 30.159; 28.038 \ 
^c6ťT V 28.038; 30.159 j 

Í Ø ^ l . 

The domain Ob(Po) in the parametric space R2, characterized by this relationship, 
is the ellipse with the centre at the point (1; 0.485)' and with the minor semi-axis 
equals to y/CbcrO.131 in the direction of the vector ( l / \ /2; l/x/2)' and the major 
semi-axis equals to /̂CfccrO.687 in the direction (—1/\/2; l/>/2)'. Thus, with respect 
to relatively large value of the parametric effect curvature, this domain is small. 

Nevertheless the situation need not be so pesimistic in the case of a single function 
(Remark 2.10). 

Let h(fi) = /?i, /? € R2, i.e., the vector h = I J. In such case 

Ľh = tíC-lҐЪ-1 = - i-(-Ц7;45;18) 

and 

therefore no restrictions occur 

„--» -'2x2; 

In the case of the function h(f5) = 02, 0 £ R2, i.e., h = I J, we obtain 

1 
396 

or equivalently 
\5/3i6p2\ ^ <JC60.639. 
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It is obvious that the estimator for 602 is significantly more sensitive to the non-
linearity of the model than the estimator of 60i. 

As far as the variance is concerned, we obtain the restriction on the vector 60 for 

/i = ( ) in the form - G ) 
y/tíC-1 (K[h)F + KÍh))'(K[h)F + K^C^hópóp < c^tíC^h. 

As 

9; 9; 36 

and 

we obtain 

(1>0)< _ ì_ ( -8.367; -8.367; -33.468' 
1 ~ 44 V 9; 9; 36 

K* " U OP 

(\\ъ)c-\к{h)ғyк[h)ғc-1 (lЛ =0 

and 

and again no restrictions on 60 regarding the variance of the estimator of the first 
parameter 0\ occur. 

For the other parameter h = (0; 1),' 

K(o,i)' = J . ( 9 ; 9 ; 3 6 ^ 
1 44 V-8.367; -8.367; -33.468,/ 

K(o,iY _ JL f °; 197.880 \ 
2 44 V 197.880; 0 / ' 

Thus the restriction is 
60'60 < c_2.32 

(relatively rigorous; it is the similar situation as in the case of the bias for 60). 
Regarding the criterion (U) for the function h(0) = 0X, 0 e R2, we obtain (Theo­

rem 2.15) 
H-d.0)' = a2 ( 0.0222; -0.0239 \ _ 2 (1>0), 

V-0.0239; 0.0257 J 

(since i_"_1,0' = 0) and thus the region Ou(0o) is characterized by the relation 

60'V^'60 ^ C#0.409. 

This region is a degenerate ellipse (the determinant of V^1,0) is zero) with the minor 
semi-axis of the value CV2.922 in the direction of the vector (-0.681; 0.732)' and the 
other semi-axis is infinite. 

75 



In the case of the function h(0) = /?_, /? £ R2, we obtain 

W(o,iy=a2( 0.1278; -0.1189\ 
V-0 .H89; 0A244 ) 

and thus the Ou(Po) is characterized by the ellipse with the minor semi-axis equal 
to Cu 1.292 in the direction of the vector (-0.712; 0.702)' and the major semi-axis 
equal to Cc/2.383. 

R e m a r k 3.2. As the model from Example 3.1 is of the zero intrinsic curvature, 
it is useful to reparametrize the model (cf. [5], [6]). A natural reparametrization 
seems to be 9\ = (5\, 02 = fi\&2 and thus 

3 / L \ ^, • * / 

The BLUE of (^i; 02)'is 

(9i\_( -0.591Y! + 0.227Y2 + 0.091Y3 \ 
\02) ~ \ 0.318Y1 - 0.046Y2 + 0.182Y3 / 

and the variance matrix is 

y л Г l _ 1 ; 1 

Г 2 ~лr3 1 5 
1 

үj LV 2 ; 4 

,, / î-v 2 / 0.409; -0.182\ 
V ^ I S > = * (-0.182; 0.136 j 

We can see that 0\ = J3\. If in the reparametrized model the parameter /?2 is 

estimated by the statistic 

~ 02 0.318^ - 0.045y2 + 0.182y3 
P2 = ~T = £9_ -0.59iyi + 0.227y2 + 0.09iy3' 

then fa 7- lh = 0.641 + 0.605^ - 0A56y2 + 0.138K3. Nevertheless, if at the point 

( /, ' ) = ( / , ' ) = I r, .,-.- ) t n e approximate formula for the variance of the V02,o/ V/W V 0.4857 
statistic P2 is used, we obtain 

'____) £___)" 
д ^ ' ә 2 

= <r20.409_Var(/32|_). 

« 0 

/ 0.409; -0.182 \ 
V-0.182; 0.136 ) 
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and 

R e m a r k 3.3. The design of experiment, characterized in our case by the points 
t\ = — 1, £2 = 1, fa = 2, can influence the curvature of the model significantly. Let 
us change the design as follows: *i = —10, £2 = 10, £3 = 20 and let ^i,o, /?2,o be the 
same as before. 

The mean value surface in the new model is unchanged and thus the intrinsic cur­
vature remains zero. However the parameter effect curvature is changed drastically, 
what has a great influence on the restriction on 6/3 in the linearization. 

For the new design we have (the upper index "2" means the new design) 

(2) _ / 0; 100 \ _ (2)< (2) _ / 0; 400 \ . 
Hl ~ VlOO; 0 ) ~H2 ' Hz " V400; 0 J ' 

K g = 1 0 0 ^ f ( i ^ - 1 ) < a > = i f " 1 . 

Thus 
(K(P*r)\W= 10>/72|W/fr|  
\ *P ) °50700.5(i/3i)2 + 190600(J/?KJ/32 + 180000(6(32)

2' 

(tf(p~))(2) = sup { ( ^ a r ) ) ( 2 ) :60 e R 2 } = a0'1S4 

. - „ . . „ / c o s a \ / - 0 . 8 8 3 3 \ m l . . 
is attained for op = . = . «« 1 • The new curvature is thus 18.210-

V s i n a / V 0.4688/ 
times smaller than the original one. 

The aim of the consideration of this section is to demonstrate that even in the 
case of a relative great non-linearity there exist functions for which the linearization 
is possible without any rigorous requirement on the a priori information on the value 
of the vector parameter /?. 
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