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NONLINEAR ERROR PROPAGATION LAW 

LUBOMÍR KUBÁČEK, Olomouc 

(Received September 6, 1995) 

Summary. The error propagation law is investigated in the case of a nonlinear function 
of measured data with non-negligible uncertainty. 
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1. INTRODUCTION 

One of the frequently occuring problems in experimental sciences is the following. 
A value /(A-I, . . . , /xn) of a function / ( . ) : Un (n-dimensional Euclidean space) -* IR1 

must be determined. However, the values /ii,... ,\xn are unknown and only their 
estimates are at our disposal. What is the bias and the variance of the random 
variable f(fi), where fi -= (fix,... ,fin)' (' denotes the transposition) is an estimator 
Of fi = (LAi,...,/i n) '? 

The exact solution is well known when e.g. the joint density function h(.): Rn -> 
(R1 of the random vector fi is given and the following procedure is justified (in more 
detail cf. e.g. [5], p. 51): 

Let f = (/, / 2 , . . . , / n ) ' : Rn -> Rn, where /(.) is the considered function and 
/2> • • •, /u are auxiliary functions such that 

\J(y)\ = \l/det[Әf(x)/дx']\y=Ңx)\, y 
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is nonzero and continuous. Then the density function hi(.) of the random variable 

/(A) is 

hi(yi)= / h[xx(y),..., xn(y)]\J(y)\ dy2 . . . dyn, 
JR— i 

y = (Vi,--- , tf«) /€Rn 

and the bias b and the variance V are 

b= yihi(yi)dyi - / ( / x i , . . .,/xn), 
JR1 

=/["-/ 
JR1 L JR1 

V = / !/i - / 2/1^1(2/1) dyi hi(yi)dyi. 

If the structure of the function /( .) is not simple and/or the number n is great, 
then the outlined procedure cannot be used in practice. The procedure is complicated 
even in the case of the known jacobian |J(y)|, since the integration must be performed 
in numerical way; this is tedious and sometimes not sufficiently reliable. 

The best way how to solve the problem seems to be simulation. However, the 
results should be checked in another way to ensure their numerical reliability. 

In many cases, the value V is substituted by 

v = df(x)idx'\x=^(^)df(x)idx\x=[i 

and the value b is neglected. 

The last relation is called the error propagation law; cf. [1], [2], [3], [7] (18.5-6.(c)). 

Results obtained in this way may serve as a check of the simulation. However, in 
the case of nonlinearity of the function / ( . ) , results obtained by the error propagation 
law are approximate. It need not be clear whether differences between the result 
obtained by the simulations and the result obtained from the error propagation law 
can be explained by the approximate character of the error propagation law or not. 

To give some comments on this problem is the aim of the paper. Formulae given 
in the paper enable us sometimes to solve the problem without simulations. Even if 
some of them seem to be huge, they enable us to develop an algorithm for numerical 
evaluation of them or, at least, to use several of the first terms of the series in order 
to check the reliability of the simulations. 

330 



2 . NOTATION AND PRELIMINARY STATEMENTS 

Let /( .) : IRn -» IR1 be either a function which can be expressed by an infinite 
Taylor series on some domain H, or a polynomial of an arbitrary (finite) degree. 

Let the notation As/(/i), 5 = 1,2,... have the following meaning: 

n 

AVO.) = £ (df{x)ldxi\x=i) AW , 
1 = 1 

A2/(M) = £ (d2f(x)/dx2
i\x=i) (A/x,)2 + £ (d2f(x)/dxidxj\x=ii) A^Afij, 

i= i ift 

A3/(M) = | £ (d3f(x)/dx?\x=ti) (A^f + ^ (d^m/dx^dxjl^) 
-=1 i^j 

x(Afn)2A^ + YTY7IT D ( ^ / W / ^ ^ i ^ L ^ ) ^ ^ i ^ * 

... etc 

Let <g> denote the Kronecker multiplication [6] while a-7® means a <g> a <g> ... <g> a 
(j-times). 

Let (d/dx)s®f(/j,), 5 = 1,2,... have the following meaning: 

(d/dx)^f(fi) = df(x)/dx\x=fi = g, 

(d/dx)2®f(vi) = [(d2f(x)/dx1dx',d2f(x)/dx2dx\... ,d2f(x)/dxndx')\x=)]' 

= vec(H),... ,etc 

The symbol g denotes df(x)/dx\x== and H means | ^ f r | x : = • 

Lemma 2.1. Let fi,n + ee1l. Then 

1 / f) \3& 

/(M + e) = /(^) + £ - ^ j /(M) 

Proof. With respect to the assumption we can write 
oo 

/(M) = /( /X) + ^ 7 T A J / ( ^ ) -

pi<S» 

* — ' 7 
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Let a,be Rn. Since (a'b)j = (a')'®^"®, we have 

Ә д 
я—ei + . . . + - — e n oxi дxn 

= ДV(м) = дx\' ' дxn 

/W|-=м 

/(*)U« 

The symbol Tr(.A) means the trace of the matrix A; in the following the relation
ship Tr(A ® JB) = Tr(A) Tr(£) will be utilized. 

Corollary 2.2. The expressions Asf(/j,), s = 1,2,3,4, can be written also in the 
form 

ax x=p 

A 2 / ^ ) = Tr [d2f(x)/dxdx'\x=fiee'] 

A '^)=^([^®(^)]/(«)U{e®M}) 
A*'M = * ([(££) ° (ra)] 'WU«rfHl) • 

Let s Є Rn, s's = 1 

(2.1) 

0 0 1 [/ /) \i® 

*-<ť) = /G.) + Ej i [ (a* j / ( p ) sj®tj,tє R1, 

and let D(s) be the radius of convergence of the function <D(.). 

E x a m p l e 2.3. (i) Let f(x) = \Jx, x G [0,oo) and /J, G [0,OO) be fixed. The 

domain 1Z for the function 

ip(e) = f(ii + e) = yfc+l = V£ J £ ( " / ) ~J 

is H = ( - / / ,+/ i ) . 
(ii) Let /i(a;i,rr2) = f£, a?i G R1, x2 G R1 - {0} and fi\ G R1, /x2 G R2 - {0} be 

fixed. The domain 1Z for the series 
2 

<p(eue2) = / ( | i i + ei,/i2 + c2) = — ( l + — ) ( l - — + % - . . . ) 
Џ2 Џ2 

is 7£ = (-oo, +oo) x (-/z2, M2) for ji2 > 0 and (-00, +00) x (/i2, - IA 2 ) for /x2 < 0. An 
exception occurs for 5 = (cos a, sin a) ' , where tan a = l/2/Lii; here ^(5) = (—oo,+oo). 
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j<8> 

If eo is a point where the series 

§*[(») m 

converges, then the series 

converges uniformly on the domain 

{u: ue Un,\ui\ < |e0ft|,i = l , . . . , n } . 

(in detail cf. [4], Chpt. 12). 

Assumpt ion: Let either (i) or (ii) be satisfied: 

(i) A function / ( . ) : IRn -> IR1 can be expressed by an infinite Taylor series on a 

domain 

ll={u:ue W1,\\U\\<Q(UI\\U\\)} 

and Sj is the support of a probability measure, given by a distribution function Fj(.): 

Ul -> IR1 of the jih component of the random vector e = p, — /J,. Let Sj C [o^bj], 

where —oo < aj < bj < oo, j = 1 , . . . n and S = Xn
=15j C 71. 

(ii) A function / ( . ) : IRn —•> IR1 is a polynomial of an arbitrary (finite), degree and 

all statistical moments of the random vector ft exist (in this case S can be even IRn). 

As a consequence of Assumption the random variable f(p) possesses all statistical 

moments and the series 

Ž1 (-) 
t í j ! [\дx'J 

j® 

f(џ) 

converges uniformly on 5, converges absolutely for any e G 5, can be integrated and 

differentiated (with respect to e) term by term, put to the second power and the 

resulting series converges on 5 as well. This follows from the consideration in [4], 

Chpt. 12. 

In the following the symbol E denotes the mean value under the probability mea

sure considered. Let (in more detail cf. [9]) 

and 

E(є) = 0, E(єє') = S, E[є ® (єє')} = џ>, E[(єє') ® (єє')} = ф 

E(єj®) = 6ś, j = l,. 
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The notation vec(-Amjn) means the (mn)-dimensional column vector given by the 
columns of the ra x n matrix A ordered one under another. 

Under the given notation we have 

62 = vec(E), 63 = vec(ip) = vec(cp'), 64 = vec(ijj). 

If e ~ Nn(0, E), i.e., the random vector e is normally distributed with the mean 
value E(e) = 0 and with the covariance matrix E(ee') = E, then {^>}ij = (Jij, 
i,j = 1 , . . . ,n. Then 

62 = vec(E), <53 = 0, {6^}ij,k,i = <Ti,jVk,i + °i,k°j,i + cn,i0j,k' 

Here {64}^^,! = E(eiSj{ee}k,i), i,j,k,l = l,...,n (in more detail cf. [8], p. 75). 

3 . DETERMINATION OF THE BIAS AND THE VARIANCE OF / ( / } ) 

Taking into account Lemma 2.1 and Assumption we can write 

00 

(3.1) /(A) = /(M + e) = E a i £ i ®' 
3=0 

where a/- = 4f (j^r)3 f(x)\x= . ao = /(/*), £0<8) = 1 (if (--) from Assumption holds, 
then obviously a'j = 0 for j greater than an integer N). 

Lemma 3.1. Let e be the random vector considered and let Cij = cov(et<8>, £j®). 

Then vec(Cij) = 6i+j — <$» ® 6j. 

P r o o f is obvious. • 

Lemma 3.2. Let A and B be any r x (ni) and s x (nj), respectively, matrices. 

Then 

vec[cov(A£l®,B£j®)] = (B ® A)(6i+j -6{® 8j). 

P r o o f . Since vec(UVK) = (X' <g> U) vec(V) for any matrices U, V, X of proper 
dimensions, we can write 

vec[cov(Aei®,Bej^)] = vec[kcov(ei® ,ej^)B'} 

= (B®A)(6i+j -6i®6j) 

in view of Lemma 3.L O 
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T h e o r e m 3.3. Under the given Assumption 

(i) 

ь =5ľ o í í i> 
І = 2 

(Ü) 

V = Y Y(a'r ® ajKÄj+r - íл- <8> í r ) . 
Г = l j = l 

P r o o f , (i) By virtue of (3.1) we can write 

oo 

b = E[f(jl)] - /(/i) = a'0 + a i* ! + 5 > i * i - / ( M ) . 
i=2 

Since a 0 = /(AO and 6r = 0, (i) is proved. 

(") 

Var[/(£)] = cov £ a j Є ^ , f > ' * £ k<S> 

vi=- fc=l 

= 2 z y * ® ai)(<*i+fc - *i ® <**)• 
i = l fc=l 

Here Lemma 3.2 and (3.1) are taken into account. 

R e m a r k 3.4. The terms a2o*2, a'3S3 and a'AS± can be rewritten as 

1, a2á2 = - T r ( t f £ ) 

a'3íз = І T r ) 

a'J4 = r r Tr 
24 

'•(̂ )HJ')-
[(ž^)®(žé)/(a • 4, 

D 

In the case of normality ((ii) from Assumption must be satisfied) a'35$ = 0 and 

, . 1 v ^ ( d 4 j » \ , 

l,j,k,l J 

Corollary 3.5. Let / ( .) be a polynomial of the fourth order and fi ~ Nn(n, E). 

Then the exact formula for b is 

< Ч Ћ < я s > + è£ д*f(x) 

24 fr£i \dxidxjdxkdxi 
) Wi,3Gk,l + O'i.kO'j.l + &i,lO*j,k)' 

z=ß) 
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Corollary 3.6. If the function /(.) is a polynomial of the second order, then the 

exact formula for V is 

(i) in the general case 

V = д"Ľд + 

ә ә 

д д 
— ® — 
дx' дx' 

x—џ 

7) /(*)] 

{V>-vec(S)[vec(S)]'} 

дf(x) 
V~я— x=џ аx 

,dx'^ dx')f{x) 

(ii) in the case of normality 

V = g'Eg + - ^2 HijHkjfakVjj + <7i,i°j,k). 
i,j,k,l 

x=/z 

д Ә \ ,. ' 

д?® )f{x\ 

4 . DETERMINATION OF THE BIAS AND THE VARIANCE OF V 

Let f = ^ ^ 1 ^ - and 77 = f - E(£). Then V = £'££ is an estimator of Var[/(//)]. 

The bias b(V) of the estimator £'Ef is 

Ь(V) = E(t'Ъt)-Vai\J(џ)]-

Let 
1 

3 j \ 
A', = 4r 

Obviously 

A, df(x) 

Ә \3®дf(x) 
дx' ì дx x=џ 

, j = 0 , l , 2 , . . . 

дx _ =g,A[ = H,Í = Y,AieÍ® and ^ E ^ í ^ ® - ^ 
i=o j=l x=џ 

Lemma 4.1. E(€'EZ) = £(£ ')££(£) + Tr[E Var(0]. 

P r o o f is obvious. 

Lemma 4.2. 
00 

(i) E ( 0 = £ -4#, 
0 0 0 0 

(ii) vec[Var(0] = E E (K ® ^) (<5 i + r - Sj ® 6r). 
r=l j=l 

P r o o f is obvious. 
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Theorem 4 .3. The bias b(V) = E(£X£) - Vax[/(/i)] is 

oo oo 

6W) = EE*i^iEX~*fc 

j = 0 fc=0 
oo oo 

+ E E $ ( 4 - ® 4 ) - °r ® °iK*i+-- - *i ® *»•)• 
r = l j = l 

P r o o f . It follows from Lemma 4.1, Lemma 4.2, the relationship 

oo oo 

Tr[E Var(0] = [vec(E)]' vec[Var(0] = 6'2 ^ ]£( .A r ® i4j)(*i+r - *i ® <Jr) 
r = l j = l 

and Theorem 3.3 (ii). • 

Corollary 4.4. If the function /( .) is a polynomial of the second order, then the 
exact formula for the bias b(V) is 

(i) in the general case 

b(V) = Tr(HSHE) - 1 y ® [vec(ff)]'} <53 

- i {[vec(tf)]' ® 5 ' } *3 - j {[vec(/f)]' ® [vec(ff)]'} (8A -S2® 52), 

(ii) in the case of normality 

b(V) = Tr(ffEffE) - J E HiJHwi?i,kOj,i + *..i*i,fc)-
i,j,fc,/ 

Lemma 4.5. 

Vax(<f Efl = [vec(E) ® vec(E)]'£(£40) - {[vec(E)]'£(f20)}2 . 

P r o o f . By the definition we have 

Var(V-) = £(<fEtt'£0 - [E^O? 

= £[Tr(Etf') Tr(Etf)] - {£[Tr(E#')]}2 

= E{[vec(S)]'<;2®((;
2®)'vec(E)} - ({[vec(E)]'£(£2®)})2 

= [vec(E) ® vec(S)]'£;(<e4®) - {[vec(E)]'£(£2®)}2 . 

D 
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Lemma 4.6. 
(i)£(£2®) = [£(£)]2®+-E(r?2®), 

(ii) 

Etf4®) = [E(()]4® + E(r,2®) ® [E(0]2® 

+E[ij ® E(0 ® r? ® E(0] + E(0 ® E(rf®) ® £ ( 0 

+£(r?3®) ® E ( 0 + E {r? ® [£(£)]2® ® r?} 

+£[£(£) ® r? ® E(0 ® r?] + £[r?2® ® E(0 ® r?] 

+ [£ (O] 2 0 ® £(r?2®) + E[V ® E ( 0 ® r?2®] 

+£?(0®^(»?S®) + S(»?4®). 

P r o o f is straightforward. • 

Theorem 4.7. 

Var^ 'EO = 2{vec[XE(OE(OX]}'E(r1
2®) 

+ 2{[E(OX]®[E(OX]}E(r1
2®) 

+ 2{[^')E]®[vec(E)]'}£(r?3®) 

+ 2{[vec(E)]'®[^')E]}£(r?3®) 

+ [vec(E) ® vec(E)]'{£(r?4®) - [£(r?2®)]2®}. 

P r o o f . By virtue of Lemma 4.5 we have 

Var(i>) = [vec(E) ® vec(E)]'£(e4®) - {[vec(E)]'£(£2®)}2. 

Due to Lemma 4.6 the expression [vec(E) ® vec(E)]'£'(cf4®) consists of 12 terms; it 
is necessary to rearrange several of them. 

As an example let the expression 

[vec(E) ® vec(E)]'E[r? ® £(£) ® r? ® £(£)] 

be taken into account. Then 

[vec(E) ® vec(E)]'£'[r? ® £(£) ® T? ® E(0] 

= £{[vec(E)]'[r? ® £(0][vec(E)]'[r? ® E{$]} = 

= E{[vec(S)]'[r? ® E(0]W ® E(£)] vec(E)} 

= [vec(E)]'[£(r?r?') ® E(Z)E(?)] vec(E) 

= Y,Yl
E(™J)<iE(i;KJE(0 = {vec[^E(0E(O^]}'E(V

2®). 
- 3 
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The other 11 terms can be rearranged in a similar way. Then it is sufficient to take 

into account the relationships 

{[vec(E)]'£(£2®)]2 = {[vec(E)]'[£(£)]2® + [vec(S)]'E(r,2®)}2 = 

= [vec(E) ® vec(S)]'[£(0]4® + 2[vec(E)]'[£(£)]2®[vec(E)]'£(r?2®) 

+[vec(S) ® vec(S)]'[E(7?
2®)]2® 

(Lemma 4.6.(i)) and 

/ Г ŕ \ l 2 V a r ^ E O = E(?Щ?Щ) - [EtfЩ)] 

where Lemma 4.5 and the rewritten expressions from Lemma 4.6 (ii) are used. • 

The expression for Var(V) from Theorem 4.7 cannot be used directly. The vector 
-i k<8> 

o o 

J2 A'jSj must be used instead of [E(£)] , k = 1,2, and 
i=o 

E-
.7=1 

k®У 

instead of E(rik®), k = 1,2,3,4. 

Lemma 4.8. 

яfo2®) = £ £ ( 4 - ® 4.)tø+* - íj ® ífc) 
j = i k=i 

(cf. Lemma 4.1) and 

oo oo oo 

--Vв) = £££(4®4.®4)[ҙi 
i = l k = l 1=1 

where 

ЗJ = ój+fc+z - fy (g) 4+/ - ( I (8) Sk ® I)ó"j+z - Æi+fc 0 5/ + 2^- ø í f cøĄ ; 

oo oo oo oo 

җyø) - [EO,-®)]
 2 = £ £ £ £(л;. ® җ ® җ ® л;®)[JJ, 

j = l fc=l / = ! r=l 
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where 

IT] = Sj+k+L+r ~ Sj 0 Sk+l+r ~ (I 0 Sk 0 I 0 I)Sj+l+r + 2o"j 0 ( ^ 0 <5,+r-

- ( I 0 I 0 (J, 0 I)<$j+fc+r + (o"j 0 I 0 5, 0 I)Sk+r + (I 0 4 0 Si 0 I)Oj+r~ 

- 4 ^ 0 0** 0 * r ~ Sj+k+l 0 0+ + Oj 0 4 + / 0 Sr + (I 0 5h 0 I 0 <5r)£j+/ 

+ 2oj+A; 0 <J, 0 O"r ~ Oj+fc 0 0/+r-

P r o o f . Since 

(Am,n 0 Bp>r 0 CM)(.Dn,a 0 F;r,6 0 Ft,c) = (AD) 0 (BF;) 0 (CF) 

for any dimensions m, n, p, r, 5, t, a, 6, c of matrices A, I?, C, .D, E, F, we can 

write 

ej® 0 <5* 0 e / 0 = (I i n , i n 0 Sk 0 I/n,/n)(e
j0 0 1 0 e1®) 

=• F^-7'0 0 4 0 £/<8)) = ( / i n J n 0 sh 0 I/n,/n)^+/. 

Now it is sufficient to use the equality 

0 0 -j fc(g> 

, fc = 1,2,3,4 Г)к® E 4 ( £ І Ø - * І ) 

and the above given rule for proving the assertions. The procedure is elementary 

though tedious and therefore it is left to the reader. • 

Theorem 4.9. Let Assumption be satisfied. Then 

00 00 00 00 

Var(£'EO = 2 E E E E ^ i ® W * ® ^ ( E ® EX4 ® 4-)(*+r - *i ® *r) 
j=0 /e=0 /=1 r = l 

00 00 00 00 

+ 2 E E E E $ ® s'kKAi ® Afc)(s ® E M ® ^ ) ^ + - - * ® *»•) 
j = 0 fc=0 /=1 r = l 

j y 00 \ j o o o o o o 

+2 \ ( 53 ^ E ) ® [vec(E)]' I E E E ^ ' * x 4 ® ^ ® 
^ ^ j=0 ' J fc=l / = 1 r = l 

0 0 0 0 0 0 

+2 {[vec(E)]' ® (53 бџғ) \ 5 3 E E ( ^ x A > Ar)H 
j=0 J А;=l / = 1 r = l 

0 0 0 0 0 0 0 0 

+[vec(E) ® vec(E)]' 53 E E E<4 ® A'k ® 4 ® ^ S 
j = l fc=l / = 1 r = l 

P r o o f . The expression can be obtained directly from Theorem 4.7 and 

Lemma 4.8. • 
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Corollary 4.10. Let / ( . ) be a polynomial of the second order. Then 

(i) if ji is normally distributed, then the exact formula is 

V a r ( ^ U ^ U ) =VEFE//Eff + 2Tr[(/tEn. 

(ii) In the general case, 

Var ( ^ M | x = A E ^ | x = A ) = 4</EHEHE<? + 4[vec(E)]'(H ® H)<pHH9 

+[vec(E)]' ® [vec(E)]'H4®((54 - J2 ® <52). 

5. SOME COMMENTS TO THE DETERMINATION OF THE STANDARD DEVIATION 

The expressions \/Var[/(/i)] and >/£'££, respectively, are required more frequnetly 
than Var[/(/i)] and £'££. Thus it should be stated something on the statistical be
haviour of \/£'X.f. 

Lemma 5.1. Let <ps(t), t € U1, be the series from (2.1). Let for a given function 
<p(.): U1 -» IR1 the radius of covergence of its Taylor series 

<p(z) = h0 + hiz + 1i22;2 + . . . 

be K, > 0. Let \<ps(0)\ < K. Then 
oo 

(i) the series <p[<ps(t)] = J ] hj[<ps(t)]
j converges on the interval (t\(s),t2(s)), where 

j=0 

h(s)= w£{t: \<ps(t)\<K}, 

t2(s) = sup{t: \<ps(t)\ < n}. 

(ii) Let 

Tip = {x:xe Rn,x = (1 - a)ti(a,/||a,||) + at2(x/\\x\\),0 < a < 1} 

and 5 C H^. 

Then <p[f(x)], x € S, can be expressed by a series which converges uniformly on 
S and absolutely for any x0 € S. 

P r o o f . It follows from the consideration in [4], p. 488. • 
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Under the given Assumption, since (cf. Theorem 3.3) 

Var[/(Д)] = £ £ ( a r ® ĄЩ+r - ðj ® ðг) 
Г = l j=l 

oo oo 

= g'Zg + E ^ Ҝ ® a!j){ðj+r - ój ® ár), 
r=2 j=2 

we can write 

/ . O O O O V 

Vv^iml=y/y^i 1 + -7=- E E « ® °i)(*i+- - *i ® *r) 
\ ^ ^ r=2 j=2 7 

00 / i / 9 \ 1 °° °° 

= v^E i j"-EE^®*-M« 
A;=o ^ / y y _ ^ 9 „-_0 

and this series converges iff 

1/2 

г=2 j=2 

Уar[/(Ą)]-ff'Sff 
5'SЗ 

< 1 

(cf. Example 2.3 (i)). 
For the first orientation the following formulae can serve. For the sake of simplicity 

the quadratic function /(.) and the statistical moments up to the fourth order only 
are considered in the following. 

Thus 

a = W= yjg^g + Tr[(g' ® H)tp] + J{Tr[(H ® H)tl>] - [TV(HE)]2}; 

in the case of normality, 

c = -JV = Jg'Sg+±T,(HEHZ) 

Analogously 

(5.1) & = VY = vtTĚíf = y/ipĚgy/TTU 

= v ^ ( i + f-^ + ...), 
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where 

1 
u = g'Zg 

g'Ľg £ Л'fce*® + ̂ (є^УAjĽg + £ ^®)'ApA'kє
k® 

k=l j=l j=l k=l 

Since U = (£'££ - g'EgVg'Eg, thus Var(U) = Var(V)/[(^'E^)2]. 
The series (5.1) converges in the case that the support S\ of the distribution of 

the random variable U satisfies the condition 

P{\U\ <!} = !. 

R e m a r k 5.2. In some situations Assumption is not satisfied; e.g. ji is normally 
distributed and 1Z C IRn and 7Z ^ (Rn. In this case the given formulae for the 
bias and variance are not valid. Nevertheless, they can be of some use in the case 
P{jl £ It) < £, for e > 0 sufficiently small. 

E.g. in the case f(x) = ^, x G (R1 - {0}, let ft ~ Ni(/i,O"2), where Lt > 0 and 

- < 1. Then the expressions (two first terms from the expressions given in Theorem 

3.3 are taken into account only) 

/ 1 \ 1 O-2 , , / 1 \ O2 2O-4 

\nj [i L*3 \fij fi4 M6 

are in good agreement with results obtained by the simulations (5.000 trials) for any 

,7<0 .1 . 
Analogously as in the case of ytVar[/(/i)], the quadratic function /( .) and the 

statistical moments up to the fourth order only are considered in the following. 

Thus 

V = g'Zg + 2e'HT,g + e'H'ZHe, 

V a r ( V ) = 4 f l ' E # S # E f l + 4 T r { [ ( f l ' S # ) ® ( # E # ) ] ^ } 

+ Tr {[{HVH) ® (HEH)]i>} - {Tr[(tf E)2]}2 , 

* = ^ I1 + T^9'^ + *k£'H E*£" 2(?W£'HS95'Si/£+ 

+ ( " 0 ^^^'HEHe+^^e'H^ge'HEge'Hllgg'^He 

+ ( 4 ) ^ ' ™ ~ ' ^ 
+ ^e'HXgg'i:Hee'HVgg'XHe - ^^e'HXgg'XHee'HXgg'XHe , 
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E(õ) = y/g^g 1 + 2 ^ Ћ ( Я E Я E ) " 2 ( ? W 5 ' E Я E Я E ^ + • •; 
6(a) = E(a) -a= ^==== 1 V ( E # E # ) -

- ̂ hrf2^11^+mm*{Tr [m)2] }2+• • • ' 
.. ,_. ff'S/fSJJSg 
Var(CT) = ~1^~ 

Tr [(US) 4 ] o'SffSffSffSffSff 5 (g'ZHZHZg)2 

+ 2g'Hg ( f f 'S f l )
2 + 2 (g'Vg)* + - " 

E x a m p l e 5.3. (Assumption is not satisfied, cf. Remark 5.2.) Let Y 

Nn(X/3,a2V), /3 G Uk, r{Xn,k) = k<n, r(V) = n. Then 

v 2 , 
a2 = Y'[V~l - V-lX(X'V-1X)-1X'V-1]Y/(n - k) ~ a 2 ^ - . 

n — k 

Thus 

^=V i+(^H-
Let 

v 2 

Ч = ^ Ľ ± _ 1 . 
n - fc 

Then E(n) = 0 and Var(n) = ^ - . If ^ f ^ 2 . 5 = 0.5, i.e., n - k = 50, then with 
respect to the Tchebysheff inequality P{|n| < 0.5} ^ 0.84 (in fact P{ |n | < 0.5} = 
P{25 < xio < 75} = 0-99). With respect to the approximation 

d = „^Tj=a(l + \n-1-rli+
1-v3-^-8V

i + ..) 

and the well known relationship 

^-4S<-*G)G)''(H-
(/ = n — k), we obtain 

£(£) = a x 0.9948 

(the terms up to the fourth order including). The exact well known formula is 

г(.f)_ 
•»~JЩf-a x 0.9950. 

The agreement seems to be good for practical purposes. 
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