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LINEAR MODEL WITH INACCURATE VARIANCE COMPONENTS
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Summary. A linear model with approximate variance components is considered. Differ-
ences among approximate and actual values of variance components influence the proper
position and the shape of confidence ellipsoids, the level of statistical tests and their power
function. A procedure how to recognize whether these diferences can be neglected is given
in the paper.
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INTRODUCTION

Let a linear model (Y, X3, £(¥9)), B € R*, 9 € 9, be under consideration. Here Y is
an n-dimensional random vector (observation vector), X a known nxk matrix (design
matrix), S an unknown k-dimensional parameter (parameter of the first order), X(J)
a covariance matrix parametrized by a p-dimensional vector ¥ (parameter of the
second order), R a k-dimensional real linear space and ¥ C R? a parametric space
of the second order parameters.

It is well known that the ¥o-locally best linear estimator (Y, 9o) of 3 (if it exists)
is

BY, %) = [X'E™ (W) X] 1 X'E1 () Y;

further,
Var[B(Y, 90)|9*] — Var[B(Y, 9*)[9*]

! Supported by internal grant No. 311 03 001 of Palacky University, Olomouc and by grant
No. 2/1226/95 of the Grant Agency for Science of the Slovak republic

433



is positive semidefinite, if 9* is an actual value of the vector ¥, ¥* # 0. (Here
Var[B(Y, ¥)|9*] is the covariance matrix of the ¥-locally best linear estimator at the
point ¥* € ¥.) Therefore statisticians try to use such a 99 which is as near to the
actual value ¥* as possible, since the actual value J* is usually unknown. Therefore
it is of some importance to investigate the effect of the inequality 9y # 9* on basic
statistical inferences.

The aim of the paper is to give a criterion which enables us to decide whether
or not the difference Jy — 9* can be neglected in the above mentioned statistical
inference.

A starting point for further consideration are papers [1], [3], [4] and [5].

1. DEFINITIONS AND AUXILIARY STATEMENTS

Let Y ~ N,(XB,%(9)), ie., Y is normally distributed with the mean value
E(Y|B) = X3, B € R*, and with the covariance matrix £(J), ¥ € 9.

Definition 1.1. The model Y ~ N,(X3,2(9)), 3 € R*, 9 € 9 C R*, is regular,
if the rank 7(X) of the n x k matrix X is k < n, J € ¥ = £(9) is positive definite
and ¥ contains an open sphere.

P
Assumption 1.2. The covariance matrix X(V) is of the form ) ¥;V;, where
i=1
Vi,...,V, are known symmetric matrices.

In what follows the regular model from Definition 1.1 together with Assumption 1.2
is under consideration.
Let G be an s X k matrix with the rank r(G) = s < k.

Lemma 1.3. Let x2(1 — a) be the (1 — a) quantile of the chi-square distribution
with s degrees of freedom. Let 3* be the actual value of the parameter ( and let 9*
be the actual value of the parameter ¥. Then

P{[B* = BY,9")'G'(GCTIG)IGIB* - Y, 9] < (1 -a)} =1-a,

where C = X'S~1(9*)X.
Proof. Cf [2], p. 212 O
The notation
v=Y - XB(Y,9"),
60 =09 — 9%,
AB:(Y,0%) = [(9Bi(Y,9) /891, ..., 8B:(Y, 9) /80,) 9=0-]
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(" denotes the transposition),

If: f’C“lX’E‘l(ﬁ*), f c Rk,
AB(Y,9*) = [AB (Y, 9%),..., AB(Y,9%)],
68 = [AB(Y,9%)]69

will be used in the sequel.

Lemma 1.4.
@) ) )
68 = [AB(Y,9)]69 = —CLX'S™H(9*)S(69) =~ (9*)v.
(ii) The random vectors GB(Y, 9*) and G(SB are stochastically independent.
(iii)
G683 ~ N4(0,G Var{[AB(Y, 9*)|69]|9*}G"),

where
Var{[AB(Y,9%)]89|9*} = C~1X'S~1(9*)2(69)
X[MxZ(9*)Mx |t (69T (9*) XCE,
p
S(69) =Y 69:Vi, Mx =1 - X(X'X)7'X'
=1
and

MxZ(W*)Mx]t =71 (0%) - W) X[X' S H(9*) X] XS (9%).

Proof. Cf. [5] O

Remark 1.5. The confidence ellipsoid for the function G3,8 € R¥, which can
be constructed from Lemma 1.3, has its center at the point GJ3 (Y,9*). If 9* is changed
into ¥* + 69 (69 sufficiently small), then the center is changed into GB(Y, 9*) + G453.
Thus Lemma 1.4 characterizes the behaviour of the center of the confidence ellipsoid,
when an approximate value 9* + §9 = 9 is used instead of the actual value 9*.

Lemma 1.5. Let f(8) = f', B € R*. Then
f'8B ~ N1(0,60' W60 = L, (59)[Mx S(9*) Mx ]t S(69) Ly),

where

{(Wshij = LyVi[MxZ(0*)Mx]*ViLy, i,5=1,...,p.
Proof. Itis a consequence of Lemma 1.4. 0O
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The notation M(An, ) is used in the sequel for the subspace {Au: u € R™}.

Lemma 1.7. Let A and B be positive semidefinite n X n matrices.

M(A, B) = M(A + B).

Proof. Itis a consequence of Theorem 6.2.3 in [7].

2. CONFIDENCE ELLIPSOID
Let the random variable

[B* = B, 9 G{GIX'S (9 X]71G"} ' G[B" - B(Y, V)],

where ¥ = 9* + §9, be denoted as kg(Y,9). Thus (Lemma 1.3) kg(Y,9*) ~ x2.

Theorem 2.1. Let
Skg = 69 0kg (Y, V) /09| 9= -

Then
Skg = — 2[B(Y,0) — B X' UgZ(89) 2~ (9*)v
— [B(Y,9%) - B*]' X' UgZ(69)Uc X[B(Y,9*) — B*],

where

Ug =71 (9)XCIG(GCIG)IGCI XS (9%).
Further,

E(0k¢|B*,0*) = — Tr[UgZ(69)] = =69 [Tx(UcWh), .. ., Tx(UcV,))

and

Var(ékg|,6‘,19*) = 519’(25[]6 + 4CUc,[MxE(19‘)Mx]+)60’
where

{SUc}i,j = TY(UGMUG%)> 1’7] =1,. Ry 2

{CUG,[MXE(ﬂ‘)Mx]"‘}i,j = T\I’{UGM[MXE(ﬂ*)Mxl+‘/J}, ’L,] = 1, <oy D

Proof. Obviously
Okg(Y,V)/09;
= 2(9[8" - B(Y, 9)) /09 )G {GIX '} 9) X] ' C'} !
XG[ﬂ* - B(Y"&)] + [,3* - :B(Yvﬂ)]’G,
x ((8/89:){G[X'S1(9)X]7'G'} 1) G[B* - B(Y, 9)).
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Now the relations

318" — B(Y,9)) /8Vil9=g- = — OY'S™I (W) X[X'S™}(¥) X]~" /80;] 9=
='WV, 27 (9 XC!

and

HGX'S ) X]1G'} /09| 9=+
= (GC7IG")IGC XS (9) X/99:]C G (GCLG") o=y~
=—(GcTigH e X' s i WM viET (9 ) X el (Ge TGN !

can be used. Thus we obtain

Ok (Y, 9)/09;|9=s-
2'S7H W) V;ETH 9N XCTIG(GCTIG) TIGIB* - B(Y,9%))]
—[8* = B(Y, )G (GC™IG)'GC I XS~ (9*)V;
x9N XCTIG(GCIG)IGB* - B(Y,9%)).

Since

X'Ug = X'£71(9")XC7IG'(GC™IG)~IGe I X's7 (9%)
=G'(GCTIG) GO XS (9,

the first statement is proved.
In the next step we use the notation

X'UgE(69)E~ (%) = A, X'UgE(69)UcX =B, &= B(Y,9*) - B*.
Since Y ~ N,[X*, £(9*)], we have
€~ Ni(0,C7Y), v~ N[0, Z(W*) - XC™1X']
and £ and v are stochastically independent.

E(0kg|B*,9*) = E(—2¢ Av — €' BE|B*,9%)
= —2E(¢'|8*,9*)AE(v|B*,9*) — Tx[B Var(¢|8*,9*)]
—E(¢'|8*,9")BE(¢]8*,9%) = - Tx(BC™Y);
BC™! = X'UgZ(69)UgXC™! = Tr(BC™!) = Tr[Us XC ' X'UgZ(89)].
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However, Ug XC~1X'Ug = Ug which implies the second statement.
In the last step we use the relations

E[(§'B¢)*|B*,9"] = 2 Tx[B Var(¢|8*, ") B Var(¢|8*, 9%)]
+ {Tx[B Var(¢]8*,9")]}?,

Var(8kg|6*,9%) = E[(2€'Av + €' BE)?|6*, 9%] - [E(2€' Av + £'BE|*, 9",
E[(2¢' Av + € BE)?|8*,9"] = E[Tx(4A'€€' Avv')| 5%, 9"]
+E(¢' Beg' BEIB® 0"
= 4ATe{S71(9")S(09)Uc X C 1 X UgR(59)S~ (97)[S(9*) — XC1 X'}
F2T[X U (69) 2 (9" ) Ug X C1 X UgE(69) 21 (9*)Ug X C~1]}

+H{Tr[UgZ(69)]}2.
Since
T[S~ 1) Z(E)Uc XC X' UgE(89)(I — S~ (W) XC1 X))
= Tr[UaE(09)[Mx Z(9*) Mx]TE(09)] = 09" Cuy (mix (o) Mx]+0Y
and

Tr[X'UgD(69)S " (9" U XC L X' UsS(69) S~ (9*) U XCY]
= Tr[UsS(69)Ug £(69)] = 69' Sy, 60,

the proof can be easily completed.
Lemma 2.2. Let o' = P{x?+ 6kg > x2(1 — a)}. Then

o <P{E> A1 - @) —v—el|lbke — v| < e} P{|0kc — v| < €}
+ P{x% + dkg > x2(1 - a)||6ka — v| > €} Var(8kg|B8*,9%) />

Here v = — Tr[UgZ(89)].

Proof. Obviously

o = P{x} +0ke > x3(1 - a)}
=P{x*> 2(1-a) - 6kG||6kG —v| < e}P{|6kg — v| < €}
+ P{! >2x*(1-a) - 6kcl|dkc —v| > e}P{|6kc — v| > €}.
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With respect to the Chebyshev inequality
P{|6kc — v| > €} < Var(6kg)/e?
and the obvious relationship
P{x} 2 x}(1 - a) - 6kg|lokc — v| < e} <

<SP{x2 231 -a)—v—¢lldke —v| <e},
the proof can be finished. a

Remark 23. If ¢ = t\/Var(ékg|B*,9*), where t is sufficiently large, then
P{|dkg — v| < €} is sufficiently near to 1 and Var(dkg|B*,9*)/e? = 1/t? is suffi-
ciently near to 0. Thus the value o' can be majorized by the value

P{x? > x*(1 - a) + Th[UsZ(69)] — t\/Var(5kg|B*,9*) },

where
Var(ékclﬂ*,ﬁ*) = (5’(9'(25[16 + 4CUG,[MxE(19‘)Mx]+)5’l9'

The term v = —Tr[UgE(dV)] = —6Y' Tx[(UgVi),...,Tr(UgV,)]' depends on 69
linearly and the term t/Var(dkg|B*,9*)} depends linearly on the norm ||§9|| =
V9.

Let the function ®(z), = € R*, be defined as follows:
®(z) = —z'a + tVz' Az,

where a = [’I\I'(UGV']), .. ’h’(UGVp)]I and A = 2SUG + 4CUG,[MxE(19’)Mx]+‘
Definition 2.4. Let

Ke={z:z € R* &(z) < o},
where J, is given by the relationship
P >2x*1-a)-6)=a+e.

Lemma 2.5. The matrices Sy, and Cy, (myx(9+) M+ are at least p.s.d.

Proof. The matrix Ug is p.s.d.; thus there exists a matrix J such that JJ' =
Ug. The matrix Sy, is the Gram matrix of the p-tuple

(J'Vd,..., ]V, ]}
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in the Hilbert space S of symmetric matrices with the inner product
(A,B) =Tr(AB), A,B€ S.

The matrix [Mx Z(9*)Mx]* is also p.s.d.; thus there exists a matrix K such that
[MxZ(W*)Mx]"™ = KK'. Let us consider a Hilbert space M of matrices with given
dimensions; the inner product is given by the relation (A, B) = Tr(A'B), A, B € M.
The matrix Cy, [amx £(9+)Mx)+ 1S the Gram matrix of the p-tuple { VI K, ..., J'V, I}
in such a space.

Since any Gram matrix is at least p.s.d., the proof is complete. g

Lemma 2.6. Let A, ..., A, be any p-tuple of n x n symmetric matrices. If G is
the Gram matrix of this p-tuple, i.e.

{G}i; = Tr(Aid;), i,i=1,...,p,

then
[TY(AI), RN Tr(Ap)]l € M(G)

Proof. Let S, be the Hilbert space of n x n symmetric matrices with the inner
product (A, B) = Tr(AB), A, B € S,. Let P(U) denote the projection of the matrix

U € S, onto the subspace generated by the matrices A,,..., A,. Then there exist
P P

numbers ¢; (U),...,c,(U), such that P(U) = 3 c;(U)A;. Let P(I) = 3 c;(I)A;.
Then

j=1 j=1

V{l = 1, “e ,p} TI‘(Al) = TI'(A1I) = Zp:Tr(Ach(I)AJ) = {G}i,,c,
j=1

where ¢ = (a1 (Z),...,cp(1))".
Thus
[Tr(A1),...,Tx(4p)] = Ge.

a
Corollary 2.7. Let A = Sy, +Cug (Mxs(9+)Mx)+ Then M(Syg) C M(A) (which
follows by Lemma 1.7). If a = [Tx(UgV1),. .., Tr(UgV,)]', then, by virtue of Lemma

2.6, a € M(Sy;) C M(A) and the equation (t2A — aa’)zo = ad. (with respect to
Zo) Is consistent.

Proof. If a € M(A), then 3{u € R"}a = Au. Let 2o = ku; now the equation
(P A — Auv’ A)ku = Audy
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implies
k(t? — u' Au) Au = Aud,.
Since the number k = 4. /(t? — u’ Au) always exists (the number ¢ can be chosen),

the solution exists as well. 0

Lemma 2.8. Let
A =28y +4Cy, (Mxs(97)Mx]*

and
a=[Tx(UcW),..., Te(UsV,)]'.

Then the boundary of the domain K. from Definition 2.4 is given by the set

— 2
_ . k _ 1032 A _ ’ _ — 2
ICE—{u.uelR , (u—1ug)' (t*A — aa’)(u — uo) 65—t2—a’A—a}’

where ug = p_—f,?;A_a.
Proof. ®(u) =6 & ua+ 4, = tVu'Au & (v'a + 6:)? = t?u’ Au. The last
equality can be rewritten as

' (t2A — aa')u — 2u'ad, = 62.

Let uc be such that (t24 — aa’)ug = ad.(= —2u'{t?A — aa')uy = —2u'ad.). The
vector ug exists by virtue of Corollary 2.7. Thus
u' (A - ad')u - 2u'ad: = 6} &
[u— (t*A — ad')"ad.] (t*A — ad')[u — (t*A — aa’) " ad,]
=a' (t*A — aa’)"ad? + 62,

(The Lh.s. and also the r.h.s. of the last equality are invariant with respect to a
g-inverse of the matrix t?4 — aa’.) Now we use the equality
1
2 - _ 2 - \A- = -
(tA—-aa') —m[(t —a,A a)A + A aa'A ],
which can be easily proved. Thus we obtain

)
24 n— —__ e a-
(t*A — ad')"ade 7 —a’A—aA a,

t2
1042 n— 52 2 __ 52
a(tA—aa) a66+65—55m

and the expression for K,. O
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Theorem 2.9. Let 8* and 9* be the actual values of 3 and ¥, respectively. Let
G be an s x k matrix with the rank r(G) = s < k. Then

MWek. =
P{B* € {u: [u— GB(Y,9* + 89) {G[X'S™1(9* + 69) X]|"1G'}
x[u—GRY,9* +89)] < xX21-a)}} >1-a—c.

Proof. It is an obvious consequence of Lemma 2.2, Definition 2.4 and
Lemma 2.8. O

Remark 2.10. If the set K, is the surface of an ellipsoide, then K. is the union
of K. and its interior. If K, is not characterized by an ellipsoide, then it is necessary
to find the proper part K. of a set with the boundary K.

3. TEST OF LINEAR HYPOTHESIS

P
Let Y ~ N, (X*, 3 97V;). Let the null-hypothesis concerning 3* be Ho: HB* +
i=1
h = 0, where H is a ¢ X k matrix with the rank r(H) = ¢, and let the alternative
hypothesis be H,: HB* + h # 0.
Lemma 3.1. (i) If Hy is true, then the statistic

Tu(Y,9%) = [HB(Y,9*) + W {H[X'S™ (") X] ' H'} " [HB(Y,9") + h]

possesses the central chi-square distribution with q degrees of freedom.
(it) IfF HB*+h = £ # 0, then T(Y,9*) possesses a noncentral chi-square distribution
with q degrees of freedom and ¢'(HC~'H')~1¢ is the parameter of its noncentrality.

Proof. Both statements follow from the second fundamental theorem of the
least squares theory given in [6], p. 155. O

Remark 3.2. The statistic T(Y,9*) has been used for testing the hypothesis
Hy against H,. If T(Y,9*) > 3(3(1 — a), then Hj is rejected with the risk a. The
power function of this test is

BE) = P{X(€'[HCTIH' ') 2 xj(1 - @)}, € €RT
Theorem 3.3. Let
T(Y,9) = [HB(Y,9) + h) {H[X'S~ 1 () X]) " H'} " [HB(Y,9) + h]
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and
0Ty = 89'0TH (Y, V) /00| 9=v- .

Then

(i)

6Ty = — 2[HB(Y,9*) + h) C Fu£(89)L ™ (9" )v
—~ [HA(Y,9*) + b Cu Fu£(69) Fy Cu[HA(Y, 9°) + h,

where Fgy = HC1X'S~1(9*) and Cy = (HC~'H')~!.

(ii)

E(0Ty|B*,9%) = — 69 [Tx(UaW1), ..., Tx(UnV,)]
- 619,[§/Z1§’ LR 1§’ZP€])

where Uy = FII_ICHFH, Z; = CHFHViFI'{CH, i=1,...,p,and § = HB* + h.

(iii)

Var(6Ty|B*,9%) =4 Tr {UHE(M)[MXE(ﬂ*)Mx]+2(619)}

+2 Te[Uyg Z(09)Un £(69)]
+4§'CHFH2(5’19)[UH + [sz(ﬂ*)Mx]+]Z(519)F;{CH§.

Proof. (i) It follows by the relations

6Ty = 69'8TH(Y, V) /09 9=s-,
AB(Y,9)/80;|9=g» = — CTLX'S™H(*)ViZ™ (9%,
i=1,...,p,
HM{H[X'S Y (9)X]) 1 H'} "1 /80;|9—9» = — CyFyViFyChy;

further we continue analogously to the proof of Theorem 2.1.
(ii) and (iii) can be proved in a similar way as in Theorem 2.1; since the procedure
is rather tedious, it is omitted. O

In the sequel the notation
p(z) = —2'ag + t\/2' Aoz,

ap = [Tx(UgW1),... ,Tr(UHV,,)]',
Ao =25y, +4Cuy (Mx T )Mx ]+
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{AO}i,j = 2'1\“(UHV1‘UHV]') -+ 4TI‘{UHVI[]\/IX 2(19*)1\/lx]+‘/j},
,7=1,...,p,
Ae(z) = —a'ag — t\/2' Agx,

ag = ap + (€IZ1E, N ,flzpf)/,

Aé = Ao + va
{De}ij = € CuFuVi{Un + [MxZ(9*)Mx]"}V;Fy ChE,
i,j=1,...,p,

Re = {z: ¢(z) < d¢}, where
P{xﬁ; 3(1—a)—55}=a+5,
Hee ={x: Ae(x) > —0c¢}, where

P{GEHCTHTTIE) 2 x5 (1 —a) + 0.6} = B(E) — <,

B&) = P{x;('[HCTH'|T'¢) 2 xj(1 - a)}, € € RY,

will be used.

Lemma 3.4. The matrices Sy, , Cuy, (mxx(9+)Mmx]+ and Dg¢ are at least positive

semidefinite.

Proof.

and the matrices Uy + [MxZ(9*)Mx]*

ECuFyV{Uy + [MxS(9")Mx|"}V;Fl,Cué
=Tr ({Un + [MxS(")Mx]| "}V, Fl;Cyé€'CrFy V)

is p.s.d. in Lemma 2.5.

Lemma 3.5.
(i) The boundary of the set R, is

where g =

62t2 }

Re = {73? (z — 20)' (t* 4o — aoap)(z — z0) = m )

—_— AT
t2—ayAg ao AO @o-

(ii) The boundary of the set H. ¢ is

where yg =

— 52 12
Hoe= { +90) (2 4¢ — aeat)(y + vo) = A

ee =y (y+w0) (t2A¢ — agag)(y +wo) = Az o
m*‘ ag.

Proof. It can proceed analogously to the proof of Lemma 2.8.
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With respect to Lemma 2.5 it suffices to prove that D¢ is p.s.d. Since

(cf. Lemma 1.7) and Fy;Cy&€'CyFy are
p-s.d., the proof can be completed in a similar way as the proof that Cy [px(9+) M)+



to

(1]
2]
[3]

Theorem 3.6. (i) If Hy is true, i.e. £ =0, then
WERy = P{Tu(Y,9"+8)2x2(1-a)} <a+e.
(i1) If € # 0, then

§9€Hee = P{Tu(Y,0" +69) 2 x5(1-a)} > BE) ~e.

Proof. It is sufficient to modify properly the procedures given in Section 2 and
use arguments analogous to those given in Remark 2.3. O
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