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Abstract. In this paper we study the finite element approximations to the Sobolev and
viscoelasticity type equations and present a direct analysis for global superconvergence for
these problems, without using Ritz projection or its modified forms.
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1. Introduction

Let Ω be a rectangular domain. In order to explain our superconvergence analysis
for FEMs succinctly, we only consider the simple Sobolev type equation

(1.1)





−�ut −�u = f in Ω× (0, T ],
u = 0 on ∂Ω× (0, T ],
u(x, 0) = v in Ω,

and a viscoelasticity type equation

(1.2)





utt −�ut −�u = f in Ω× (0, T ],
u = 0 on ∂Ω× (0, T ],
u(x, 0) = v, ut(x, 0) = w in Ω.

In (1.1) and (1.2), f , v and w are sufficiently smooth functions.

The problems (1.1) and (1.2) can arise from many physical processes. The nu-
merical approximations to the solutions of these problems have been investigated
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by Ewing [2, 3], Ford [4], Ford and Ting [5, 6], and Wahlbin [14]. Also Arnold,

Douglas and Thomée [1] and Nakao [13] have considered Galerkin approximations to
the soluton of the problem (1.1) in a single space dimension with periodic boundary
conditions. L2-error estimates and the interior pointwise superconvergence results

have been derived by these authors. In particular, some futher investigations of the
finite element methods for the problems (1.1) and (1.2) have been carried out by Lin,

Thomée and Wahlbin [12].
According to the conventional error analysis for FEMs of the time-dependent prob-

lems, either the Ritz projection initiated by Wheeler [15] or its modifided forms
e.g. the so-called Ritz-Volterra projection introduced by Lin et al. [12], have to be

used as transitional tools. However, here we will use a new analysis in [7], i.e. an
analysis for the “short side” in the FE-right triangle plus the sharp integral esti-

mates of the “hypotenuse”, instead of using Ritz projection or its modified forms,
to gain the global superconvergence for the problems (1.1) and (1.2) by an interpo-

lation postprocessing technique, rather than the interior pointwise superconvergence
by means of the average technique with which numerical analysts are familiar. Our

analysis sharpens the results and shortens the proofs of error estimates that appeared
in the previous literature under the rectangular mesh assumption.

2. Sobolev type equations

First of all, we discuss the model problem (1.1). Here and below, assume that T h

is a rectangular partition over Ω with mesh size h. The weak form of (1.1) consists
in finding u(. , t) ∈ H10 (Ω) for any t ∈ [0, T ] (the Sobolev space) such that

(2.1)

{
(∇ut,∇ϕ) + (∇u,∇ϕ) = (f, ϕ) ∀ϕ ∈ H10 ,

u(0) = v.

Let Sh
0 ⊂ H10 consist of piecewise bilinear functions. Thus, a continuous Galerkin

approximation uh(x, t) : [0, T ]→ Sh
0 is defined so that

(2.2)

{
(�uh

t ,�ϕ) + (�uh,�ϕ) = (f, ϕ) ∀ϕ ∈ Sh
0 ,

uh(0) = ihv,

where ihv ∈ Sh
0 is the bilinear interpolation function of v. From (2.1) and (2.2) we

get the error equation

(2.3) (∇(uh
t − ut),∇ϕ) + (∇(uh − u),∇ϕ) = 0 ∀ϕ ∈ Sh

0 .

We need the following (see [9])
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2.1. Lemma. For ϕ ∈ Sh
0 ,

|(∇(u − ihu),∇ϕ)| �
{

ch2‖u‖3|ϕ|1,
ch2‖u |4‖ϕ‖0.

2.1. Theorem. For sufficiently smooth u and ut, we have

‖uh − ihu‖1 � ch2
[∫ t

0
(‖ut‖3 + ‖u‖3)2 ds

]1/2
.

�����. Let

θ(x, t) = uh − ihu.

Then, by virtue of (2.3) we have for ϕ ∈ Sh
0

(2.4) (∇θt,∇ϕ) + (∇θ,∇ϕ) = (∇(ut − ihut),∇ϕ) + (∇(u − ihu),∇ϕ).

Hence, with ϕ = θt (where θt is the classical derivative) and Lemma 2.1,

|θt|21 +
1
2
d
dt
|θ|21 � ch2(‖ut‖3 + ‖u‖3)|θt|1

or

|θt|21 +
1
2
d
dt
|θ|21 � ch4(‖ut‖3 + ‖u‖3)2 +

1
2
|θt|21.

By integration with respect to t, it follows from θ(x, 0) = 0 that

|θ|1 � ch2
[∫ t

0
(‖ut‖3 + ‖u‖3)2 ds

]1/2
.

�

In order to derive L∞ estimates, we introduce the discrete Green function Gh
z ∈ Sh

0

at any point z∈ Ω such that, for ϕ ∈ Sh
0 ,

(∇Gh
z ,∇ϕ) = ϕ(z), (∇DzG

h
z ,∇ϕ) = Dzϕ.

We need the following

2.2. Lemma. ([16]) ‖Gh
z‖0 � c, ‖DzG

h
z‖0 � c

(
log
1
h

)1/2
.
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2.2. Theorem. For sufficiently smooth u and ut, we have

‖uh
t − ut‖0,∞ � ch2(‖ut‖2,∞ + ‖ut‖4 + ‖u‖4).

�����. Taking ϕ = Gh
z in (2.4), we have by Lemma 2.1 and Lemma 2.2

(2.5) θt(z, t) + θ(z, t) � ch2(‖ut‖4 + ‖u‖4),

and hence, with θ(0) = 0,

θt(z, t) +
∫ t

0
θt(z, s) ds � ch2(‖ut‖4 + ‖u‖4).

Therefore, it follows from Gronwall’s Lemma that

|θt(z, t)| � ch2(‖ut‖4 + ‖u‖4).

Thus, Theorem 2.2 holds in virtue of the triangle inequality

‖uh
t − ut‖0,∞ � ‖uh

t − ihut‖0,∞ + ‖ihut − ut‖0,∞.

�

2.3. Theorem. For sufficiently smooth u and ut, we have

‖uh − u‖0,∞ � ch2(‖u‖2,∞ + ‖u‖4 + ‖ut‖4).

�����. From (2.5) and Theorem 2.2, we drive

|θ(z, t)| � ch2(‖ut‖4 + ‖u‖4),

and hence, Theorem 2.3 holds in virtue of the triangle inequality

‖uh − u‖0,∞ � ‖uh − ihu‖0,∞ + ‖ihu− u‖0,∞.

�
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2.4. Theorem. For sufficiently smooth u and ut, we have

‖uh
t − ihut‖1,∞ � ch2

(
log
1
h

)1/2
(‖ut‖4 + ‖u‖4).

�����. Setting ϕ = DzG
h
z in (2.4), we get by means of Lemma 2.1 and 2.2

(2.6) Dzθt(z, t) +Dzθ(z, t) � ch2
(
log
1
h

)1/2
(‖ut‖4 + ‖u‖4).

And thus, with Dzθ(0) = 0,

Dzθt(z, t) +
∫ t

0
Dzθt(z, s) ds � ch2

(
log
1
h

)1/2
(‖ut‖4 + ‖u‖4).

Then, Theorem 2.4 follows from Gronwall’s Lemma. �

2.5. Theorem. For sufficiently smooth u and ut, we have

‖uh − ihu‖1,∞ � ch2
(
log
1
h

)1/2
(‖ut‖4 + ‖u‖4).

�����. From (2.6) and Theorem 2.4 we obtain Theorem 2.5. �

Theorems 2.1, 2.4 and 2.5 play key roles in the analysis of the global superconver-
gence for the problem (1.1). Now we use an interpolation postprocessing technique

from [8] to get the desired results. We assume that T h has been gained from T 2h

with mesh size 2h by subdividing each element of T 2h into four congruent elements.

Thus, we can define a nodal biquadratic interpolation operator I22h associated with
T 2h. It is easy to check that

I22hih = I22h, ‖I22hϕ‖1,p � c‖ϕ‖1,p ∀ϕ ∈ Sh
0 (p = 2,∞),

‖I22hϕ− ϕ‖1,p � ch2‖ϕ‖3,p (p = 2,∞).

And thus, we have the following main results.

2.6. Theorem. For sufficiently smooth u and ut, we have

‖I22huh − u‖1 � ch2

{
‖u‖3 +

[∫ t

0
(‖ut‖3 + ‖u‖3)2 ds

]1/2}
.
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�����. Due to the property of I22h, we have

I22huh − u = I22h(u
h − ihu) + (I22hu− u).

Therefore, it follows from Theorem 2.1 and the interpolation theorem that

‖I22huh − u‖1 � c‖uh − ihu‖1 + ch2‖u‖3

� ch2

{
‖u‖3 +

[∫ t

0
(‖ut‖3 + ‖u‖3)2 ds

]1/2}
.

�

Analogously, by Theorems 2.4 and 2.5 we have the next assertions.

2.7. Theorem. For sufficiently smooth u and ut, we have

‖I22huh
t − ut‖1,∞ � ch2

(
log
1
h

)1/2
(‖ut‖3,∞ + ‖ut‖4 + ‖u‖4).

2.8. Theorem. For sufficiently smooth u and ut, we have

‖I22huh − u‖1,∞ � ch2
(
log
1
h

)1/2
(‖u‖3,∞ + ‖ut‖4 + ‖u‖4).

3. Viscoelasticity type equations

In this section, we will consider the semidiscrete Galerkin approximation to the
problem (1.2). The weak form of (1.2) reads as follows: Find u(. , t) ∈ H10 (Ω) for any
fixed t ∈ [0, T ] such that

(3.1)

{
(utt, ϕ) + (∇ut,∇ϕ) + (∇u,∇ϕ) = (f, ϕ) ∀ϕ ∈ H10 (Ω),

u(0) = v, ut(0) = w.

Thus, a continuous Galerkin approximation uh(x, t) : [0, T ]→ Sh
0 is defined so that

(3.2)

{
(uh

tt, ϕ) + (∇uh
t ,∇ϕ) + (∇uh,∇ϕ) = (f, ϕ) ∀ϕ ∈ Sh

0 ,

uh(0) = ihv, uh
t (0) = ihw,

where ihv, ihw ∈ Sh
0 stand for the bilinear interpolation functions of v and w,

respectively. Then, we obtain the error equation from (3.1) and (3.2):

(3.3) (utt − uh
tt, ϕ) + (∇(ut − uh

t ),∇ϕ) + (∇(u− uh),∇ϕ) = 0 ∀ϕ ∈ Sh
0 .
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3.1. Theorem. For sufficiently smooth u, ut and utt, we have

‖uh − ihu‖1 + ‖uh
t − ut‖0 � ch2

{
‖ut‖2 +

[∫ t

0
(‖utt‖2 + ‖ut‖4 + ‖u‖4)2 ds

]1/2}
.

�����. Let

θ(x, t) = uh(x, t)− ihu(x, t).

According to (3.3), we have for ϕ ∈ Sh
0 that

(3.4)
(θtt, ϕ) + (∇θt,∇ϕ) + (∇θ,∇ϕ) = (utt − ihutt, ϕ) + (∇(ut − ihut),∇ϕ)

+ (∇(u − ihu),∇ϕ),

and hence, with ϕ = θt and Lemma 2.1,

1
2

d

dt
‖θt‖20 + c‖θt‖21 +

1
2
d
dt
|θ|21 � 1

2
d
dt
‖θt‖20 + |θt|21 +

1
2
d
dt
|θ|21

� ch4(‖utt‖2 + ‖ut‖4 + ‖u‖4)2 +
c

2
‖θt‖20,

or
d
dt
(‖θt‖20 + |θ|21) � ch4(‖utt‖2 + ‖ut‖4 + ‖u‖4)2.

By integration with respect to t, it follows from θ(0) = θt(0) = 0 that

‖θt‖20 + |θ|21 � ch4
t∫

0

(‖utt‖2 + ‖ut‖4 + ‖u‖4)2 ds,

that is

‖θt‖0 + |θ|1 � ch2
[∫ t

0
(‖utt‖2 + ‖ut‖4 + ‖u‖4)2 ds

]1/2
.

And thus, Theorem 3.1 follows from the triangle inequality

‖uh
t − ut‖0 � ‖uh

t − ihut‖0 + ‖ihut − ut‖0.

�

3.2. Theorem. For sufficiently smooth u, ut, utt and uttt, we have

‖uh
t − ihut‖1 + ‖uh

tt − utt‖0 � ch2
{
‖utt‖2 + [(‖utt(0)‖2 + ‖ut(0)‖4 + ‖u(0)‖4)2

+
∫ t

0
(‖uttt‖2 + ‖utt‖4 + ‖ut‖4)2 ds]1/2

}
.
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�����. Differentiating (3.4) with respect to t, we get, for ϕ ∈ Sh
0 ,

(θttt, ϕ) + (∇θtt,∇ϕ) + (∇θt,∇ϕ) = (uttt − ihuttt, ϕ) + (∇(utt − ihutt),∇ϕ)

+ (∇(ut − ihut),∇ϕ),

and hence, with ϕ = θtt and Lemma 2.1,

1
2
d
dt
‖θtt‖20 + c‖θtt‖21 +

1
2
d
dt
|θt|21 � 1

2
d
dt
‖θtt‖20 + |θtt|21 +

1
2
d
dt
|θt|21

� ch4(‖uttt‖2 + ‖utt‖4 + ‖ut‖4)2 +
c

2
‖θtt‖20,

or
d
dt
(‖θtt‖20 + |θt|21) � ch4(‖uttt‖2 + ‖utt‖4 + ‖ut‖4)2.

Therefore, by virtue of θt(0) = 0, we get

(3.5) ‖θtt‖20 + |θt|21 � ‖θtt(0)‖20 + ch4
∫ t

0
(‖uttt‖2 + ‖utt‖4 + ‖ut‖4)2 ds.

Let t = 0 and ϕ = θtt(0) in (3.4). Then

‖θtt(0)‖0 � ch2(‖utt(0)‖2 + ‖ut(0)‖4 + ‖u(0)‖4)

which, together with (3.5), leads to

‖θtt‖20 + |θt|21 � ch4
[
(‖utt(0)‖2 + ‖ut(0)‖4 + ‖u(0)‖4)2

+
∫ t

0
(‖uttt‖2 + ‖utt‖4 + ‖ut‖4)2 ds

]
,

or

‖θtt‖0 + ‖θt‖1 � ch2
[
(‖utt(0)‖2 + ‖ut(0)‖4 + ‖u(0)‖4)2

+
∫ t

0
(‖uttt‖2 + ‖utt‖4 + ‖ut‖4)2 ds

]1/2
,

and Theorem 3.2 follows from the triangle inequality

‖uh
tt − utt‖0 � ‖uh

tt − ihutt‖0 + ‖ihutt − utt‖0.

�
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3.3. Theorem. For sufficiently smooth u, ut, utt and uttt, we have

‖uh
t − ut‖0,∞ � ch2

{
‖utt‖2 + ‖ut‖4 + ‖ut‖2,∞ + ‖u‖4

+ [(‖utt(0)‖2 + ‖ut(0)‖4 + ‖u(0)‖4)2

+
∫ t

0
(‖uttt‖2 + ‖utt‖4 + ‖ut‖4)2 ds]1/2

}
.

�����. Setting ϕ = Gh
z in (3.4), we have according to Lemmas 2.1 and 2.2

(3.6) (θtt, G
h
z ) + θt(z, t) + θ(z, t) � ch2(‖utt‖2 + ‖ut‖4 + ‖u‖4),

or

|θt(z, t)| �
∫ t

0
|θt(z, s)| ds+ c‖θtt‖0 + ch2(‖utt‖2 + ‖ut‖4 + ‖u‖4).

And thus, it follows from Gronwall’s Lemma and Theorem 3.2 that

|θt(z, t)| � ch2
{
‖utt‖2 + ‖ut‖4 + ‖u‖4

+ [(‖utt(0)‖2 + ‖ut(0)‖4 + ‖u(0)‖4)2

+
∫ t

0
(‖uttt‖2 + ‖utt‖4 + ‖ut‖4)2 ds]1/2

}
.

Then, Theorem 3.3 holds by virtue of the triangle inequality

‖uh
t − ut‖0,∞ � ‖uh

t − ihut‖0,∞ + ‖ihut − ut‖0,∞.

�

3.4. Theorem. For sufficiently smooth u, ut, utt and uttt, we have

‖uh − u‖0,∞ � ch2
{
‖u‖2,∞ + ‖u‖4 ++‖ut‖4 + ‖utt‖2

+ [(‖utt(0)‖2 + ‖ut(0)‖4 + ‖u(0)‖4)2

+
∫ t

0
(‖uttt‖2 + ‖utt‖4 + ‖ut‖4)2 ds]1/2

}
.

�����. From (3.6), Lemma 2.2 and Theorems 3.2, 3.3 we derive

|θ(z, t)| � |θt(z, t)|+ c‖θtt‖0 + ch2(‖utt‖2 + ‖ut‖4 + ‖u‖4)

� ch2
{
‖utt‖2 + ‖ut‖4 + ‖u‖4 + [(‖utt(0)‖2 + ‖ut(0)‖4

+ ‖u(0)‖4)2 +
∫ t

0
(‖uttt‖2 + ‖utt‖4 + ‖ut‖4)2 ds]1/2

}
,
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and hence, Theorem 3.4 holds in virtue of the triangle ineqality

‖uh − u‖0,∞ � ‖uh − ihu‖0,∞ + ‖ihu− u‖0,∞.

�

3.5. Theorem. For sufficiently smooth u, ut, utt and uttt, we have

‖uh
t − ihut‖1,∞ � ch2

(
log
1
h

)1/2{
‖utt‖2 + ‖ut‖4 + ‖u‖4

+ [(‖utt(0)‖2 + ‖ut(0)‖4 + ‖u(0)‖4)2

+
∫ t

0
(‖uttt‖2 + ‖utt‖4 + ‖ut‖4)2 ds]1/2

}
.

�����. Taking ϕ = DzG
h
z in (3.4), we obtain according to Lemmas 2.1 and 2.2

(3.7) (θtt, DzG
h
z ) +Dzθt(z, t) +Dzθ(z, t) � ch2

(
log
1
h

)1/2
(‖utt‖2 + ‖ut‖4 + ‖u‖4),

or

|Dzθt(z, t)| �
∫ t

0
|Dzθt(z, s)| ds+ c

(
log
1
h

)1/2
‖θtt‖0

+ ch2
(
log
1
h

)1/2
(‖utt‖2 + ‖ut‖4 + ‖u‖4).

And thus, Theorem 3.5 follows from Gronwall’s Lemma and Theorem 3.2. �

3.6. Theorem. For sufficiently smooth u, ut, utt and uttt, we have

‖uh − ihu‖1,∞ � ch2
(
log
1
h

)1/2{
‖utt‖2 + ‖ut‖4 + ‖u‖4

+ [(‖utt(0)‖2 + ‖ut(0)‖4 + ‖u(0)‖4)2

+
∫ t

0
(‖uttt‖2 + ‖utt‖4 + ‖ut‖4)2 ds]1/2

}
.

�����. From (3.7) and Theorems 3.2, 3.5 we obtain Theorem 3.6. �

Theorems 3.1, 3.2, 3.5 and 3.6 are essential, by them we can get the global super-
convergence for the problem (1.2) instead of the interior pointwise superconvergence.

Identically to Section 2, we derive the following main theorems by means of the in-
terpolation postprocessing technique initiated in [8].
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3.7. Theorem. For sufficiently smooth u, ut and utt, we have

‖I22huh − u‖1 � ch2

{
‖ut‖2 + ‖u‖3 +

[∫ t

0
(‖utt‖2 + ‖ut‖4 + ‖u‖4)2 ds

]1/2}
.

3.8. Theorem. For sufficiently smooth u, ut, utt and uttt, we have

‖I22huh
t − ut‖1 � ch2

{
‖utt‖2 + ‖ut‖3

+ [(‖utt(0)‖2 + ‖ut(0)‖4 + ‖u(0)‖4)2

+
∫ t

0
(‖uttt‖2 + ‖utt‖4 + ‖ut‖4)2 ds]1/2

}
.

3.9. Theorem. For sufficiently smooth u, ut, utt and uttt, we have

‖I22huh
t − ut‖1,∞ � ch2

(
log
1
h

)1/2{
‖utt‖2 + ‖ut‖4 + ‖ut‖3,∞

+ ‖u‖4 + [(‖utt(0)‖2 + ‖ut(0)‖4 + ‖u(0)‖4)2

+
∫ t

0
(‖uttt‖2 + ‖utt‖4 + ‖ut‖4)2 ds]1/2

}
.

3.10. Theorem. For sufficiently smooth u, ut, utt and uttt, we have

‖I22huh − u‖1,∞ � ch2
(
log
1
h

)1/2{
‖utt‖2 + ‖ut‖4 + ‖u‖3,∞

+ ‖u‖4 + [(‖utt(0)‖2 + ‖ut(0)‖4 + ‖u(0)‖4)2

+
∫ t

0
(‖uttt‖2 + ‖utt‖4 + ‖ut‖4)2 ds]1/2

}
.

������ 1. In another paper, we will discuss the case of k (k � 2) which is the
order of finite elements for the problems above.

������ 2. When Ω is a convex quadrilateral domain, the corresponding super-
convergent results hold for such problems as above if the quadrilateral meshes are

almost uniform and are constructed by connecting the equi-proportional points of
two opposite boundaries.
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