Applications of Mathematics

Qua Lin; Shu Hua Shang

A direct global superconvergence analysis for Sobolev and viscoelasticity type equations

Applications of Mathematics, Vol. 42 (1997), No. 1, 23-34

Persistent URL: http://dml.cz/dmlcz/134342

Terms of use:

© Institute of Mathematics AS CR, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

A DIRECT GLOBAL SUPERCONVERGENCE ANALYSIS FOR SOBOLEV AND VISCOELASTICITY TYPE EQUATIONS

Qun Lin, Shuhua Zhang, Beijing

(Received June 16, 1995)

Abstract. In this paper we study the finite element approximations to the Sobolev and viscoelasticity type equations and present a direct analysis for global superconvergence for these problems, without using Ritz projection or its modified forms.

Keywords: Sobolev and viscoelasticity type equations, global superconvergence, direct analysis

MSC 2000: 65B05, 65N30

1. Introduction

Let Ω be a rectangular domain. In order to explain our superconvergence analysis for FEMs succinctly, we only consider the simple Sobolev type equation

$$
\begin{cases}-\triangle u_{t}-\triangle u=f & \text { in } \Omega \times(0, T] \tag{1.1}\\ u=0 & \text { on } \partial \Omega \times(0, T] \\ u(x, 0)=v & \text { in } \Omega\end{cases}
$$

and a viscoelasticity type equation

$$
\begin{cases}u_{t t}-\triangle u_{t}-\triangle u=f & \text { in } \Omega \times(0, T] \tag{1.2}\\ u=0 & \text { on } \partial \Omega \times(0, T] \\ u(x, 0)=v, u_{t}(x, 0)=w & \text { in } \Omega\end{cases}
$$

In (1.1) and (1.2), f, v and w are sufficiently smooth functions.
The problems (1.1) and (1.2) can arise from many physical processes. The numerical approximations to the solutions of these problems have been investigated
by Ewing [2, 3], Ford [4], Ford and Ting [5, 6], and Wahlbin [14]. Also Arnold, Douglas and Thomée [1] and Nakao [13] have considered Galerkin approximations to the soluton of the problem (1.1) in a single space dimension with periodic boundary conditions. L^{2}-error estimates and the interior pointwise superconvergence results have been derived by these authors. In particular, some futher investigations of the finite element methods for the problems (1.1) and (1.2) have been carried out by Lin, Thomée and Wahlbin [12].

According to the conventional error analysis for FEMs of the time-dependent problems, either the Ritz projection initiated by Wheeler [15] or its modifided forms e.g. the so-called Ritz-Volterra projection introduced by Lin et al. [12], have to be used as transitional tools. However, here we will use a new analysis in [7], i.e. an analysis for the "short side" in the FE-right triangle plus the sharp integral estimates of the "hypotenuse", instead of using Ritz projection or its modified forms, to gain the global superconvergence for the problems (1.1) and (1.2) by an interpolation postprocessing technique, rather than the interior pointwise superconvergence by means of the average technique with which numerical analysts are familiar. Our analysis sharpens the results and shortens the proofs of error estimates that appeared in the previous literature under the rectangular mesh assumption.

2. Sobolev type equations

First of all, we discuss the model problem (1.1). Here and below, assume that T^{h} is a rectangular partition over Ω with mesh size h. The weak form of (1.1) consists in finding $u(., t) \in H_{0}^{1}(\Omega)$ for any $t \in[0, T]$ (the Sobolev space) such that

$$
\left\{\begin{array}{l}
\left(\nabla u_{t}, \nabla \varphi\right)+(\nabla u, \nabla \varphi)=(f, \varphi) \quad \forall \varphi \in H_{0}^{1} \tag{2.1}\\
u(0)=v .
\end{array}\right.
$$

Let $S_{0}^{h} \subset H_{0}^{1}$ consist of piecewise bilinear functions. Thus, a continuous Galerkin approximation $u^{h}(x, t):[0, T] \rightarrow S_{0}^{h}$ is defined so that

$$
\left\{\begin{array}{l}
\left(\nabla u_{t}^{h}, \nabla \varphi\right)+\left(\nabla u^{h}, \nabla \varphi\right)=(f, \varphi) \quad \forall \varphi \in S_{0}^{h}, \tag{2.2}\\
u^{h}(0)=i_{h} v,
\end{array}\right.
$$

where $i_{h} v \in S_{0}^{h}$ is the bilinear interpolation function of v. From (2.1) and (2.2) we get the error equation

$$
\begin{equation*}
\left(\nabla\left(u_{t}^{h}-u_{t}\right), \nabla \varphi\right)+\left(\nabla\left(u^{h}-u\right), \nabla \varphi\right)=0 \quad \forall \varphi \in S_{0}^{h} . \tag{2.3}
\end{equation*}
$$

We need the following (see [9])
2.1. Lemma. For $\varphi \in S_{0}^{h}$,

$$
\left|\left(\nabla\left(u-i_{h} u\right), \nabla \varphi\right)\right| \leqslant\left\{\begin{array}{l}
\left.\left.c h^{2}\|u\|_{3}\right|_{\varphi}\right|_{1} \\
c h^{2}\left\|\left.u\right|_{4}\right\| \varphi \|_{0}
\end{array}\right.
$$

2.1. Theorem. For sufficiently smooth u and u_{t}, we have

$$
\left\|u^{h}-i_{h} u\right\|_{1} \leqslant c h^{2}\left[\int_{0}^{t}\left(\left\|u_{t}\right\|_{3}+\|u\|_{3}\right)^{2} \mathrm{~d} s\right]^{1 / 2}
$$

Proof. Let

$$
\theta(x, t)=u^{h}-i_{h} u .
$$

Then, by virtue of (2.3) we have for $\varphi \in S_{0}^{h}$

$$
\begin{equation*}
\left(\nabla \theta_{t}, \nabla \varphi\right)+(\nabla \theta, \nabla \varphi)=\left(\nabla\left(u_{t}-i_{h} u_{t}\right), \nabla \varphi\right)+\left(\nabla\left(u-i_{h} u\right), \nabla \varphi\right) . \tag{2.4}
\end{equation*}
$$

Hence, with $\varphi=\theta_{t}$ (where θ_{t} is the classical derivative) and Lemma 2.1,

$$
\left|\theta_{t}\right|_{1}^{2}+\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|\theta|_{1}^{2} \leqslant c h^{2}\left(\left\|u_{t}\right\|_{3}+\|u\|_{3}\right)\left|\theta_{t}\right|_{1}
$$

or

$$
\left|\theta_{t}\right|_{1}^{2}+\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|\theta|_{1}^{2} \leqslant c h^{4}\left(\left\|u_{t}\right\|_{3}+\|u\|_{3}\right)^{2}+\frac{1}{2}\left|\theta_{t}\right|_{1}^{2} .
$$

By integration with respect to t, it follows from $\theta(x, 0)=0$ that

$$
|\theta|_{1} \leqslant c h^{2}\left[\int_{0}^{t}\left(\left\|u_{t}\right\|_{3}+\|u\|_{3}\right)^{2} \mathrm{~d} s\right]^{1 / 2}
$$

In order to derive L^{∞} estimates, we introduce the discrete Green function $G_{z}^{h} \in S_{0}^{h}$ at any point $\mathrm{z} \in \bar{\Omega}$ such that, for $\varphi \in S_{0}^{h}$,

$$
\left(\nabla G_{z}^{h}, \nabla \varphi\right)=\varphi(z), \quad\left(\nabla D_{z} G_{z}^{h}, \nabla \varphi\right)=D_{z} \varphi
$$

We need the following
2.2. Lemma. ([16]) $\left\|G_{z}^{h}\right\|_{0} \leqslant c,\left\|D_{z} G_{z}^{h}\right\|_{0} \leqslant c\left(\log \frac{1}{h}\right)^{1 / 2}$.
2.2. Theorem. For sufficiently smooth u and u_{t}, we have

$$
\left\|u_{t}^{h}-u_{t}\right\|_{0, \infty} \leqslant c h^{2}\left(\left\|u_{t}\right\|_{2, \infty}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right)
$$

Proof. Taking $\varphi=G_{z}^{h}$ in (2.4), we have by Lemma 2.1 and Lemma 2.2

$$
\begin{equation*}
\theta_{t}(z, t)+\theta(z, t) \leqslant c h^{2}\left(\left\|u_{t}\right\|_{4}+\|u\|_{4}\right) \tag{2.5}
\end{equation*}
$$

and hence, with $\theta(0)=0$,

$$
\theta_{t}(z, t)+\int_{0}^{t} \theta_{t}(z, s) \mathrm{d} s \leqslant c h^{2}\left(\left\|u_{t}\right\|_{4}+\|u\|_{4}\right)
$$

Therefore, it follows from Gronwall's Lemma that

$$
\left|\theta_{t}(z, t)\right| \leqslant c h^{2}\left(\left\|u_{t}\right\|_{4}+\|u\|_{4}\right) .
$$

Thus, Theorem 2.2 holds in virtue of the triangle inequality

$$
\left\|u_{t}^{h}-u_{t}\right\|_{0, \infty} \leqslant\left\|u_{t}^{h}-i_{h} u_{t}\right\|_{0, \infty}+\left\|i_{h} u_{t}-u_{t}\right\|_{0, \infty} .
$$

2.3. Theorem. For sufficiently smooth u and u_{t}, we have

$$
\left\|u^{h}-u\right\|_{0, \infty} \leqslant c h^{2}\left(\|u\|_{2, \infty}+\|u\|_{4}+\left\|u_{t}\right\|_{4}\right) .
$$

Proof. From (2.5) and Theorem 2.2, we drive

$$
|\theta(z, t)| \leqslant c h^{2}\left(\left\|u_{t}\right\|_{4}+\|u\|_{4}\right)
$$

and hence, Theorem 2.3 holds in virtue of the triangle inequality

$$
\left\|u^{h}-u\right\|_{0, \infty} \leqslant\left\|u^{h}-i_{h} u\right\|_{0, \infty}+\left\|i_{h} u-u\right\|_{0, \infty}
$$

2.4. Theorem. For sufficiently smooth u and u_{t}, we have

$$
\left\|u_{t}^{h}-i_{h} u_{t}\right\|_{1, \infty} \leqslant c h^{2}\left(\log \frac{1}{h}\right)^{1 / 2}\left(\left\|u_{t}\right\|_{4}+\|u\|_{4}\right)
$$

Proof. Setting $\varphi=D_{z} G_{z}^{h}$ in (2.4), we get by means of Lemma 2.1 and 2.2

$$
\begin{equation*}
D_{z} \theta_{t}(z, t)+D_{z} \theta(z, t) \leqslant c h^{2}\left(\log \frac{1}{h}\right)^{1 / 2}\left(\left\|u_{t}\right\|_{4}+\|u\|_{4}\right) \tag{2.6}
\end{equation*}
$$

And thus, with $D_{z} \theta(0)=0$,

$$
D_{z} \theta_{t}(z, t)+\int_{0}^{t} D_{z} \theta_{t}(z, s) \mathrm{d} s \leqslant c h^{2}\left(\log \frac{1}{h}\right)^{1 / 2}\left(\left\|u_{t}\right\|_{4}+\|u\|_{4}\right)
$$

Then, Theorem 2.4 follows from Gronwall's Lemma.
2.5. Theorem. For sufficiently smooth u and u_{t}, we have

$$
\left\|u^{h}-i_{h} u\right\|_{1, \infty} \leqslant c h^{2}\left(\log \frac{1}{h}\right)^{1 / 2}\left(\left\|u_{t}\right\|_{4}+\|u\|_{4}\right) .
$$

Proof. From (2.6) and Theorem 2.4 we obtain Theorem 2.5.
Theorems 2.1, 2.4 and 2.5 play key roles in the analysis of the global superconvergence for the problem (1.1). Now we use an interpolation postprocessing technique from [8] to get the desired results. We assume that T^{h} has been gained from $T^{2 h}$ with mesh size $2 h$ by subdividing each element of $T^{2 h}$ into four congruent elements. Thus, we can define a nodal biquadratic interpolation operator $I_{2 h}^{2}$ associated with $T^{2 h}$. It is easy to check that

$$
\begin{gathered}
I_{2 h}^{2} i_{h}=I_{2 h}^{2}, \quad\left\|I_{2 h}^{2} \varphi\right\|_{1, p} \leqslant c\|\varphi\|_{1, p} \quad \forall \varphi \in S_{0}^{h}(p=2, \infty), \\
\left\|I_{2 h}^{2} \varphi-\varphi\right\|_{1, p} \leqslant c h^{2}\|\varphi\|_{3, p} \quad(p=2, \infty) .
\end{gathered}
$$

And thus, we have the following main results.
2.6. Theorem. For sufficiently smooth u and u_{t}, we have

$$
\left\|I_{2 h}^{2} u^{h}-u\right\|_{1} \leqslant c h^{2}\left\{\|u\|_{3}+\left[\int_{0}^{t}\left(\left\|u_{t}\right\|_{3}+\|u\|_{3}\right)^{2} \mathrm{~d} s\right]^{1 / 2}\right\}
$$

Proof. Due to the property of $I_{2 h}^{2}$, we have

$$
I_{2 h}^{2} u^{h}-u=I_{2 h}^{2}\left(u^{h}-i_{h} u\right)+\left(I_{2 h}^{2} u-u\right) .
$$

Therefore, it follows from Theorem 2.1 and the interpolation theorem that

$$
\begin{aligned}
\left\|I_{2 h}^{2} u^{h}-u\right\|_{1} & \leqslant c\left\|u^{h}-i_{h} u\right\|_{1}+c h^{2}\|u\|_{3} \\
& \leqslant c h^{2}\left\{\|u\|_{3}+\left[\int_{0}^{t}\left(\left\|u_{t}\right\|_{3}+\|u\|_{3}\right)^{2} \mathrm{~d} s\right]^{1 / 2}\right\}
\end{aligned}
$$

Analogously, by Theorems 2.4 and 2.5 we have the next assertions.
2.7. Theorem. For sufficiently smooth u and u_{t}, we have

$$
\left\|I_{2 h}^{2} u_{t}^{h}-u_{t}\right\|_{1, \infty} \leqslant c h^{2}\left(\log \frac{1}{h}\right)^{1 / 2}\left(\left\|u_{t}\right\|_{3, \infty}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right)
$$

2.8. Theorem. For sufficiently smooth u and u_{t}, we have

$$
\left\|I_{2 h}^{2} u^{h}-u\right\|_{1, \infty} \leqslant \operatorname{ch}^{2}\left(\log \frac{1}{h}\right)^{1 / 2}\left(\|u\|_{3, \infty}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right)
$$

3. Viscoelasticity type equations

In this section, we will consider the semidiscrete Galerkin approximation to the problem (1.2). The weak form of (1.2) reads as follows: Find $u(., t) \in H_{0}^{1}(\Omega)$ for any fixed $t \in[0, T]$ such that

$$
\left\{\begin{array}{l}
\left(u_{t t}, \varphi\right)+\left(\nabla u_{t}, \nabla \varphi\right)+(\nabla u, \nabla \varphi)=(f, \varphi) \forall \varphi \in H_{0}^{1}(\Omega) \tag{3.1}\\
u(0)=v, \quad u_{t}(0)=w
\end{array}\right.
$$

Thus, a continuous Galerkin approximation $u^{h}(x, t):[0, T] \rightarrow S_{0}^{h}$ is defined so that

$$
\left\{\begin{array}{l}
\left(u_{t t}^{h}, \varphi\right)+\left(\nabla u_{t}^{h}, \nabla \varphi\right)+\left(\nabla u^{h}, \nabla \varphi\right)=(f, \varphi) \quad \forall \varphi \in S_{0}^{h}, \tag{3.2}\\
u^{h}(0)=i_{h} v, \quad u_{t}^{h}(0)=i_{h} w,
\end{array}\right.
$$

where $i_{h} v, i_{h} w \in S_{0}^{h}$ stand for the bilinear interpolation functions of v and w, respectively. Then, we obtain the error equation from (3.1) and (3.2):

$$
\begin{equation*}
\left(u_{t t}-u_{t t}^{h}, \varphi\right)+\left(\nabla\left(u_{t}-u_{t}^{h}\right), \nabla \varphi\right)+\left(\nabla\left(u-u^{h}\right), \nabla \varphi\right)=0 \quad \forall \varphi \in S_{0}^{h} \tag{3.3}
\end{equation*}
$$

3.1. Theorem. For sufficiently smooth u, u_{t} and $u_{t t}$, we have

$$
\left\|u^{h}-i_{h} u\right\|_{1}+\left\|u_{t}^{h}-u_{t}\right\|_{0} \leqslant c h^{2}\left\{\left\|u_{t}\right\|_{2}+\left[\int_{0}^{t}\left(\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right)^{2} \mathrm{~d} s\right]^{1 / 2}\right\}
$$

Proof. Let

$$
\theta(x, t)=u^{h}(x, t)-i_{h} u(x, t)
$$

According to (3.3), we have for $\varphi \in S_{0}^{h}$ that

$$
\begin{align*}
\left(\theta_{t t}, \varphi\right)+\left(\nabla \theta_{t}, \nabla \varphi\right)+(\nabla \theta, \nabla \varphi)= & \left(u_{t t}-i_{h} u_{t t}, \varphi\right)+\left(\nabla\left(u_{t}-i_{h} u_{t}\right), \nabla \varphi\right) \tag{3.4}\\
& +\left(\nabla\left(u-i_{h} u\right), \nabla \varphi\right),
\end{align*}
$$

and hence, with $\varphi=\theta_{t}$ and Lemma 2.1,

$$
\begin{aligned}
\frac{1}{2} \frac{d}{\mathrm{~d} t}\left\|\theta_{t}\right\|_{0}^{2}+c\left\|\theta_{t}\right\|_{1}^{2}+\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|\theta|_{1}^{2} & \leqslant \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|\theta_{t}\right\|_{0}^{2}+\left|\theta_{t}\right|_{1}^{2}+\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|\theta|_{1}^{2} \\
& \leqslant c h^{4}\left(\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right)^{2}+\frac{c}{2}\left\|\theta_{t}\right\|_{0}^{2}
\end{aligned}
$$

or

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left\|\theta_{t}\right\|_{0}^{2}+|\theta|_{1}^{2}\right) \leqslant c h^{4}\left(\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right)^{2}
$$

By integration with respect to t, it follows from $\theta(0)=\theta_{t}(0)=0$ that

$$
\left\|\theta_{t}\right\|_{0}^{2}+|\theta|_{1}^{2} \leqslant c h^{4} \int_{0}^{t}\left(\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right)^{2} \mathrm{~d} s
$$

that is

$$
\left\|\theta_{t}\right\|_{0}+|\theta|_{1} \leqslant c h^{2}\left[\int_{0}^{t}\left(\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right)^{2} \mathrm{~d} s\right]^{1 / 2}
$$

And thus, Theorem 3.1 follows from the triangle inequality

$$
\left\|u_{t}^{h}-u_{t}\right\|_{0} \leqslant\left\|u_{t}^{h}-i_{h} u_{t}\right\|_{0}+\left\|i_{h} u_{t}-u_{t}\right\|_{0}
$$

3.2. Theorem. For sufficiently smooth $u, u_{t}, u_{t t}$ and $u_{t t t}$, we have

$$
\begin{aligned}
\left\|u_{t}^{h}-i_{h} u_{t}\right\|_{1}+\left\|u_{t t}^{h}-u_{t t}\right\|_{0} \leqslant & c h^{2}\left\{\left\|u_{t t}\right\|_{2}+\left[\left(\left\|u_{t t}(0)\right\|_{2}+\left\|u_{t}(0)\right\|_{4}+\|u(0)\|_{4}\right)^{2}\right.\right. \\
& \left.\left.+\int_{0}^{t}\left(\left\|u_{t t t}\right\|_{2}+\left\|u_{t t}\right\|_{4}+\left\|u_{t}\right\|_{4}\right)^{2} \mathrm{~d} s\right]^{1 / 2}\right\} .
\end{aligned}
$$

Proof. Differentiating (3.4) with respect to t, we get, for $\varphi \in S_{0}^{h}$,

$$
\begin{aligned}
\left(\theta_{t t t}, \varphi\right)+\left(\nabla \theta_{t t}, \nabla \varphi\right)+\left(\nabla \theta_{t}, \nabla \varphi\right)= & \left(u_{t t t}-i_{h} u_{t t t}, \varphi\right)+\left(\nabla\left(u_{t t}-i_{h} u_{t t}\right), \nabla \varphi\right) \\
& +\left(\nabla\left(u_{t}-i_{h} u_{t}\right), \nabla \varphi\right),
\end{aligned}
$$

and hence, with $\varphi=\theta_{t t}$ and Lemma 2.1,

$$
\begin{aligned}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|\theta_{t t}\right\|_{0}^{2}+c\left\|\theta_{t t}\right\|_{1}^{2}+\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left|\theta_{t}\right|_{1}^{2} & \leqslant \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|\theta_{t t}\right\|_{0}^{2}+\left|\theta_{t t}\right|_{1}^{2}+\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left|\theta_{t}\right|_{1}^{2} \\
& \leqslant c h^{4}\left(\left\|u_{t t t}\right\|_{2}+\left\|u_{t t}\right\|_{4}+\left\|u_{t}\right\|_{4}\right)^{2}+\frac{c}{2}\left\|\theta_{t t}\right\|_{0}^{2}
\end{aligned}
$$

or

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left\|\theta_{t t}\right\|_{0}^{2}+\left|\theta_{t}\right|_{1}^{2}\right) \leqslant c h^{4}\left(\left\|u_{t t t}\right\|_{2}+\left\|u_{t t}\right\|_{4}+\left\|u_{t}\right\|_{4}\right)^{2}
$$

Therefore, by virtue of $\theta_{t}(0)=0$, we get

$$
\begin{equation*}
\left\|\theta_{t t}\right\|_{0}^{2}+\left|\theta_{t}\right|_{1}^{2} \leqslant\left\|\theta_{t t}(0)\right\|_{0}^{2}+c h^{4} \int_{0}^{t}\left(\left\|u_{t t t}\right\|_{2}+\left\|u_{t t}\right\|_{4}+\left\|u_{t}\right\|_{4}\right)^{2} \mathrm{~d} s \tag{3.5}
\end{equation*}
$$

Let $\mathrm{t}=0$ and $\varphi=\theta_{t t}(0)$ in (3.4). Then

$$
\left\|\theta_{t t}(0)\right\|_{0} \leqslant c h^{2}\left(\left\|u_{t t}(0)\right\|_{2}+\left\|u_{t}(0)\right\|_{4}+\|u(0)\|_{4}\right)
$$

which, together with (3.5), leads to

$$
\begin{aligned}
\left\|\theta_{t t}\right\|_{0}^{2}+\left|\theta_{t}\right|_{1}^{2} \leqslant & \operatorname{ch}^{4}\left[\left(\left\|u_{t t}(0)\right\|_{2}+\left\|u_{t}(0)\right\|_{4}+\|u(0)\|_{4}\right)^{2}\right. \\
& \left.+\int_{0}^{t}\left(\left\|u_{t t t}\right\|_{2}+\left\|u_{t t}\right\|_{4}+\left\|u_{t}\right\|_{4}\right)^{2} \mathrm{~d} s\right]
\end{aligned}
$$

or

$$
\begin{aligned}
\left\|\theta_{t t}\right\|_{0}+\left\|\theta_{t}\right\|_{1} \leqslant & c h^{2}\left[\left(\left\|u_{t t}(0)\right\|_{2}+\left\|u_{t}(0)\right\|_{4}+\|u(0)\|_{4}\right)^{2}\right. \\
& \left.+\int_{0}^{t}\left(\left\|u_{t t t}\right\|_{2}+\left\|u_{t t}\right\|_{4}+\left\|u_{t}\right\|_{4}\right)^{2} \mathrm{~d} s\right]^{1 / 2}
\end{aligned}
$$

and Theorem 3.2 follows from the triangle inequality

$$
\left\|u_{t t}^{h}-u_{t t}\right\|_{0} \leqslant\left\|u_{t t}^{h}-i_{h} u_{t t}\right\|_{0}+\left\|i_{h} u_{t t}-u_{t t}\right\|_{0}
$$

3.3. Theorem. For sufficiently smooth $u, u_{t}, u_{t t}$ and $u_{t t t}$, we have

$$
\begin{aligned}
\left\|u_{t}^{h}-u_{t}\right\|_{0, \infty} \leqslant & c h^{2}\left\{\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\left\|u_{t}\right\|_{2, \infty}+\|u\|_{4}\right. \\
& +\left[\left(\left\|u_{t t}(0)\right\|_{2}+\left\|u_{t}(0)\right\|_{4}+\|u(0)\|_{4}\right)^{2}\right. \\
& \left.\left.+\int_{0}^{t}\left(\left\|u_{t t t}\right\|_{2}+\left\|u_{t t}\right\|_{4}+\left\|u_{t}\right\|_{4}\right)^{2} \mathrm{~d} s\right]^{1 / 2}\right\} .
\end{aligned}
$$

Proof. Setting $\varphi=G_{z}^{h}$ in (3.4), we have according to Lemmas 2.1 and 2.2

$$
\begin{equation*}
\left(\theta_{t t}, G_{z}^{h}\right)+\theta_{t}(z, t)+\theta(z, t) \leqslant \operatorname{ch}^{2}\left(\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right), \tag{3.6}
\end{equation*}
$$

or

$$
\left|\theta_{t}(z, t)\right| \leqslant \int_{0}^{t}\left|\theta_{t}(z, s)\right| \mathrm{d} s+c\left\|\theta_{t t}\right\|_{0}+c h^{2}\left(\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right)
$$

And thus, it follows from Gronwall's Lemma and Theorem 3.2 that

$$
\begin{aligned}
\left|\theta_{t}(z, t)\right| \leqslant & \operatorname{ch}^{2}\left\{\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right. \\
& +\left[\left(\left\|u_{t t}(0)\right\|_{2}+\left\|u_{t}(0)\right\|_{4}+\|u(0)\|_{4}\right)^{2}\right. \\
& \left.\left.+\int_{0}^{t}\left(\left\|u_{t t t}\right\|_{2}+\left\|u_{t t}\right\|_{4}+\left\|u_{t}\right\|_{4}\right)^{2} \mathrm{~d} s\right]^{1 / 2}\right\} .
\end{aligned}
$$

Then, Theorem 3.3 holds by virtue of the triangle inequality

$$
\left\|u_{t}^{h}-u_{t}\right\|_{0, \infty} \leqslant\left\|u_{t}^{h}-i_{h} u_{t}\right\|_{0, \infty}+\left\|i_{h} u_{t}-u_{t}\right\|_{0, \infty} .
$$

3.4. Theorem. For sufficiently smooth $u, u_{t}, u_{t t}$ and $u_{t t t}$, we have

$$
\begin{aligned}
\left\|u^{h}-u\right\|_{0, \infty} \leqslant & c h^{2}\left\{\|u\|_{2, \infty}+\|u\|_{4}++\left\|u_{t}\right\|_{4}+\left\|u_{t t}\right\|_{2}\right. \\
& +\left[\left(\left\|u_{t t}(0)\right\|_{2}+\left\|u_{t}(0)\right\|_{4}+\|u(0)\|_{4}\right)^{2}\right. \\
& \left.\left.+\int_{0}^{t}\left(\left\|u_{t t t}\right\|_{2}+\left\|u_{t t}\right\|_{4}+\left\|u_{t}\right\|_{4}\right)^{2} \mathrm{~d} s\right]^{1 / 2}\right\} .
\end{aligned}
$$

Proof. From (3.6), Lemma 2.2 and Theorems 3.2, 3.3 we derive

$$
\begin{aligned}
|\theta(z, t)| & \leqslant\left|\theta_{t}(z, t)\right|+c\left\|\theta_{t t}\right\|_{0}+c h^{2}\left(\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right) \\
& \leqslant c h^{2}\left\{\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{4}+\left[\left(\left\|u_{t t}(0)\right\|_{2}+\left\|u_{t}(0)\right\|_{4}\right.\right.\right. \\
& \left.\left.\left.+\|u(0)\|_{4}\right)^{2}+\int_{0}^{t}\left(\left\|u_{t t t}\right\|_{2}+\left\|u_{t t}\right\|_{4}+\left\|u_{t}\right\|_{4}\right)^{2} \mathrm{~d} s\right]^{1 / 2}\right\}
\end{aligned}
$$

and hence, Theorem 3.4 holds in virtue of the triangle ineqality

$$
\left\|u^{h}-u\right\|_{0, \infty} \leqslant\left\|u^{h}-i_{h} u\right\|_{0, \infty}+\left\|i_{h} u-u\right\|_{0, \infty}
$$

3.5. Theorem. For sufficiently smooth $u, u_{t}, u_{t t}$ and $u_{t t t}$, we have

$$
\begin{aligned}
\left\|u_{t}^{h}-i_{h} u_{t}\right\|_{1, \infty} \leqslant & c h^{2}\left(\log \frac{1}{h}\right)^{1 / 2}\left\{\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right. \\
& +\left[\left(\left\|u_{t t}(0)\right\|_{2}+\left\|u_{t}(0)\right\|_{4}+\|u(0)\|_{4}\right)^{2}\right. \\
& \left.\left.+\int_{0}^{t}\left(\left\|u_{t t t}\right\|_{2}+\left\|u_{t t}\right\|_{4}+\left\|u_{t}\right\|_{4}\right)^{2} \mathrm{~d} s\right]^{1 / 2}\right\} .
\end{aligned}
$$

Proof. Taking $\varphi=D_{z} G_{z}^{h}$ in (3.4), we obtain according to Lemmas 2.1 and 2.2

$$
\begin{equation*}
\left(\theta_{t t}, D_{z} G_{z}^{h}\right)+D_{z} \theta_{t}(z, t)+D_{z} \theta(z, t) \leqslant c h^{2}\left(\log \frac{1}{h}\right)^{1 / 2}\left(\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right) \tag{3.7}
\end{equation*}
$$ or

$$
\begin{aligned}
\left|D_{z} \theta_{t}(z, t)\right| \leqslant & \int_{0}^{t}\left|D_{z} \theta_{t}(z, s)\right| \mathrm{d} s+c\left(\log \frac{1}{h}\right)^{1 / 2}\left\|\theta_{t t}\right\|_{0} \\
& +c h^{2}\left(\log \frac{1}{h}\right)^{1 / 2}\left(\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right)
\end{aligned}
$$

And thus, Theorem 3.5 follows from Gronwall's Lemma and Theorem 3.2.
3.6. Theorem. For sufficiently smooth $u, u_{t}, u_{t t}$ and $u_{t t t}$, we have

$$
\begin{aligned}
\left\|u^{h}-i_{h} u\right\|_{1, \infty} \leqslant & c h^{2}\left(\log \frac{1}{h}\right)^{1 / 2}\left\{\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right. \\
& +\left[\left(\left\|u_{t t}(0)\right\|_{2}+\left\|u_{t}(0)\right\|_{4}+\|u(0)\|_{4}\right)^{2}\right. \\
& \left.\left.+\int_{0}^{t}\left(\left\|u_{t t t}\right\|_{2}+\left\|u_{t t}\right\|_{4}+\left\|u_{t}\right\|_{4}\right)^{2} \mathrm{~d} s\right]^{1 / 2}\right\} .
\end{aligned}
$$

Proof. From (3.7) and Theorems 3.2, 3.5 we obtain Theorem 3.6.
Theorems 3.1, 3.2, 3.5 and 3.6 are essential, by them we can get the global superconvergence for the problem (1.2) instead of the interior pointwise superconvergence. Identically to Section 2, we derive the following main theorems by means of the interpolation postprocessing technique initiated in [8].
3.7. Theorem. For sufficiently smooth u, u_{t} and $u_{t t}$, we have

$$
\left\|I_{2 h}^{2} u^{h}-u\right\|_{1} \leqslant c h^{2}\left\{\left\|u_{t}\right\|_{2}+\|u\|_{3}+\left[\int_{0}^{t}\left(\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{4}\right)^{2} \mathrm{~d} s\right]^{1 / 2}\right\}
$$

3.8. Theorem. For sufficiently smooth $u, u_{t}, u_{t t}$ and $u_{t t t}$, we have

$$
\begin{aligned}
\left\|I_{2 h}^{2} u_{t}^{h}-u_{t}\right\|_{1} \leqslant & \operatorname{ch}^{2}\left\{\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{3}\right. \\
& +\left[\left(\left\|u_{t t}(0)\right\|_{2}+\left\|u_{t}(0)\right\|_{4}+\|u(0)\|_{4}\right)^{2}\right. \\
& \left.\left.+\int_{0}^{t}\left(\left\|u_{t t t}\right\|_{2}+\left\|u_{t t}\right\|_{4}+\left\|u_{t}\right\|_{4}\right)^{2} \mathrm{~d} s\right]^{1 / 2}\right\}
\end{aligned}
$$

3.9. Theorem. For sufficiently smooth $u, u_{t}, u_{t t}$ and $u_{t t t}$, we have

$$
\begin{aligned}
\left\|I_{2 h}^{2} u_{t}^{h}-u_{t}\right\|_{1, \infty} \leqslant & c h^{2}\left(\log \frac{1}{h}\right)^{1 / 2}\left\{\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\left\|u_{t}\right\|_{3, \infty}\right. \\
& +\|u\|_{4}+\left[\left(\left\|u_{t t}(0)\right\|_{2}+\left\|u_{t}(0)\right\|_{4}+\|u(0)\|_{4}\right)^{2}\right. \\
& \left.\left.+\int_{0}^{t}\left(\left\|u_{t t t}\right\|_{2}+\left\|u_{t t}\right\|_{4}+\left\|u_{t}\right\|_{4}\right)^{2} \mathrm{~d} s\right]^{1 / 2}\right\} .
\end{aligned}
$$

3.10. Theorem. For sufficiently smooth $u, u_{t}, u_{t t}$ and $u_{t t t}$, we have

$$
\begin{aligned}
\left\|I_{2 h}^{2} u^{h}-u\right\|_{1, \infty} \leqslant & c h^{2}\left(\log \frac{1}{h}\right)^{1 / 2}\left\{\left\|u_{t t}\right\|_{2}+\left\|u_{t}\right\|_{4}+\|u\|_{3, \infty}\right. \\
& +\|u\|_{4}+\left[\left(\left\|u_{t t}(0)\right\|_{2}+\left\|u_{t}(0)\right\|_{4}+\|u(0)\|_{4}\right)^{2}\right. \\
& \left.\left.+\int_{0}^{t}\left(\left\|u_{t t t}\right\|_{2}+\left\|u_{t t}\right\|_{4}+\left\|u_{t}\right\|_{4}\right)^{2} \mathrm{~d} s\right]^{1 / 2}\right\} .
\end{aligned}
$$

Remark 1. In another paper, we will discuss the case of $k(k \geqslant 2)$ which is the order of finite elements for the problems above.

Remark 2. When Ω is a convex quadrilateral domain, the corresponding superconvergent results hold for such problems as above if the quadrilateral meshes are almost uniform and are constructed by connecting the equi-proportional points of two opposite boundaries.

Acknowledgement. Prof. Y. P. Lin generously gave us his papers about Sobolev and viscoelasticity equations when the first author visited Canada in 1994. His work in this field has aroused our interest in such problems. The authors would like to thank Prof. M. Křižek whose comments improved this version of the paper.

References

[1] D. Arnold, J. Douglas, V. Thomée: Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable. Math. Comp. 36 (1981), 53-63.
[2] R. Ewing: The approximation of certain parabolic equations backward in time by Sobolev equations. SIAM J. Math. Anal. 6 (1975), 283-294.
[3] R. Ewing: Numerical solution of Sobolev partial differential eqautions. SIAM J. Numer. Anal. 12 (1975), 345-363.
[4] W. Ford: Galerkin approximation to nonlinear pseudoparabolic partial differential equation. Aequationes Math. 14 (1976), 271-291.
[5] W. Ford, T. Ting: Stability and convergence of difference approximations to pseudoparabolic partial equations. Math. Comp. 27 (1973), 737-743.
[6] W. Ford, T. Ting: Uniform error estimates for difference approximations to nonlinear pseudoparabolic partial differential equations. SIAM J. Numer. Anal. 11 (1974), 155-169.
[7] Q. Lin: A new observation in FEM. Proc. Syst. Sci. \& Syst. Eng. (1991), 389-391. Great Wall (H.K.) Culture Publish Co..
[8] Q. Lin, N. Yan, A. Zhou: A rectangle test for interpolated finite elements, ibid.
[9] Q. Lin, S. Zhang: An immediate analysis for global superconvergence for integrodifferential equations. Appl. Math. 42 (1997), 1-21.
[10] Y. Lin: Galerkin methods for nonlinear Sobolev equations. Aequations Math. 40 (1990), 54-56.
[11] Y. Lin, T. Zhang: Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions. J. Math. Anal. \& Appl. 165 (1992), 180-191.
[12] Y. Lin, V. Thomée, L. Wahlbin: Ritz-Volterra projection on finite element spaces and applications to integrodifferential and related equations. SIAM J. Numer. Anal. 28 (1991), 1047-1070.
[13] M. Nakao: Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension. Numer. Math. 47 (1985), 139-157.
[14] L. Wahlbin: Error estimates for a Galerkin method for a class of model equations for long waves. Numer. Math. 23 (1975), 289-303.
[15] M. Wheeler: A priori L_{2} error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973), 723-759.
[16] Q. Zhu, Q. Lin: Superconvergence Theory of the Finite Element Methods. Hunan Science Press, 1990.

Author's address: Qun Lin, Shuhua Zhang, Institute of Systems Science, Academia Sinica, Beijing 100080, P. R. China.

