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(h,Φ)-ENTROPY DIFFERENTIAL METRIC

M. L. Menéndez, D. Morales, L. Pardo, Madrid, M. Salicrú, Barcelona1

(Received May 10, 1995)

Abstract. Burbea and Rao (1982a, 1982b) gave some general methods for constructing
quadratic differential metrics on probability spaces. Using these methods, they obtained the
Fisher information metric as a particular case. In this paper we apply the method based on
entropy measures to obtain a Riemannian metric based on (h,Φ)-entropy measures (Salicrú
et al., 1993). The geodesic distances based on that information metric have been computed
for a number of parametric families of distributions. The use of geodesic distances in testing
statistical hypotheses is illustrated by an example within the Pareto family. We obtain the
asymptotic distribution of the information matrices associated with the metric when the
parameter is replaced by its maximum likelihood estimator. The relation between the
information matrices and the Cramér-Rao inequality is also obtained.

Keywords: (h,Φ)-entropy measures, information metric, geodesic distance between prob-
ability distributions, maximum likelihood estimators, asymptotic distributions, Cramér-Rao
inequality.

MSC 2000 : 62B10, 62H12

1. Introduction

Rao (1945) introduced a Riemannian metric as a measure of distance between
two probability distributions. Burbea and Rao (1982a, 1982b) gave some general

methods for constructing Riemannian metrics on probability spaces, of which the
Fisher information metric belonged to special class. In view of the rich variety of

possible metrics, it was found desirable to lay down some criteria for the choice of
an appropriate metric for a given problem. Amari (1983) has stated that a metric

should reflect the stochastic and statistical properties of the family of probability

1 The research in this paper was supported in part by DGICYT Grants PB94-0308 and
PB93-0022. Their financial support in gratefully acknowledged.
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distributions. In particular he emphasized the invariance of the metric under trans-

formations of the variable as well as of the parameters. Cencov (1982) showed that
the Fisher information metric is unique under some conditions including invariance.
Burbea and Rao (1982a) showed that the Fisher information metric is the only met-

ric associated with divergence measures of the type introduced by Csiszar (1967).
However, there exist other types of invariant metrics as Rao (1987) showed.

In Burbea and Rao (1982a) a metric based on the Hessian of the Φ-entropy
functional is obtained. Salicrú et al (1993) established the necessity of introducing

a more general entropy functional than the one introduced by Burbea and Rao
(1982c), because there exist many entropy and uncertainty measures that are not

particular cases of the Φ-entropy functional. To solve this problem they introduced
the (h,Φ)-entropy in the following terms: Let (X, βX, Pθ; θ ∈ Θ) be a statistical space,
where Θ is an open subset of �M . Assume that there exists a probability density
function (p.d.f.) f(x, θ) for the probability Pθ with respect to a σ-finite measure µ.

Then the (h,Φ)-entropy associated with f(x, θ) is given by

(1) Hh
Φ(θ) = h

[ ∫

X

Φ
(
f(x, θ)

)
dµ(x)

]
,

where either Φ: [0,∞)→ � is concave and h : � → � is increasing or Φ: [0,∞)→ �

is convex and h : � → � is decreasing. Note also that if h is increasing and Φ is
convex or h is decreasing and Φ is concave,Hh

Φ(θ) plays the role of a certainty function

(e.g. van der Lubbe, 1977). In what follows, we assume that Hh
Φ(θ) is an entropy

function and that h(x) and Φ(x) are two real valued C3-functions defined on � and

[0,∞), respectively. In the important particular case when the family {Pθ; θ ∈ Θ}
is discrete, the entropies Hh

Φ(θ) defined in this way have been considered by many

authors, e.g. Vajda and Vasek (1985), where arbitrary Schur-concave entropies have
been studied, and other references therein. In Tables 1 and 2 we present some

examples of certainty and (h,Φ)-entropy measures:

Table 1. Certainty Measures

h(x)
x

x1/r

x1/(r−1)

xs

Φ(x)
x2

xr

xr

xr

Certainty Measures
Information Energy (Onicescu, 1966)
r-Norm (Van der Lubbe, 1977)

r-Mean (Van der Lubbe, 1981)
Generalized Measure of average Certainty

(Van der Lubbe, 1981)
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Table 2. (h,Φ)-Entropies

h(x)
x

(1− r)−1 log x

(m− r)−1 log x

[m(m− r)]−1 log x

x

(t− 1)−1(xt − 1)
(1− s)−1

[
exp{(s− 1)x} − 1

]

(1− s)−1(xs−1/r−1 − 1)
x

(s− r)−1x(
1 + 1

λ

)
log(1 + λ) − x

λ

Φ(x)
−x log x

xr

xr−m+1

xr/m

(1− s)−1(xs − x)
x1/t

x log x

xr

−xr log x

xr − xs

(1 + λx) log(1 + λx)

(h,Φ)-Entropies
Shannon (1948)

Renyi (1961)
Varma (1966)

Varma (1966)
Havrda and Charvat (1967)

Arimoto (1971)
Sharma and Mittal (1975)

Sharma and Mittal (1975)
Taneja (1975)

Sharma and Taneja (1975)
Ferreri (1980)

In Section 2, we obtain a metric based on the Hessian of the (h,Φ)-entropy as well

as the geodesic distances induced by the (h,Φ)-entropy for a particular selection of
h and Φ and some probability distributions. The use of geodesic distances in testing

statistical hypotheses is illustrated by an example wihin the Pareto family. In Section
3 we obtain the asymptotic distribution of the information matrices associated with

the metric based on the Hessian of the (h,Φ)-entropy when the parameter is replaced
by its maximum likelihood estimator. In Section 4 we obtain the relation between

the information matrices and the Cramér-Rao inequality.

2. Information matrices associated to the (h,Φ)-entropy

Various procedures have been proposed in literature to introduce information ma-

trices. Partial lists can be found in Ferentinos and Papaioannou (1981) or in Morales
et al (1993). In this section we consider a differential geometric approach to this

problem
Taking into account that each population can be characterized by a particular

point θ of Θ, we may interpret {Pθ : θ ∈ Θ} as a manifold and view θ = (θ1, . . . , θM )
as a coordinate system. In general, it is also assumed that for any fixed θ ∈ Θ the
M functions

∂f(x, θ)
∂θi

, i = 1, . . . , M,

are linearly independent. Thus, the tangent space Tθ at point θ is theM -dimensional
vector space spanned by [∂f(x, θ)

∂θi

]
i=1,...,M

.
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In this context the derivative of Hh
Φ(θ) at f(x, θ) in the direction to the p.d.f.

g1(x, θ) is given by

d
dt

Hh
Φ

[
f(x, θ) + tg1(x, θ)

]
t=0
= h′

[ ∫

X

Φ
(
f(x, θ)

)
dµ(x)

]

×
∫

X

Φ′
(
f(x, θ)

)
g1(x, θ) dµ(x)

and the second derivative at f(x, θ) in the direction to the p.d.f. g2(x, θ) is given by

d2

dt ds
Hh
Φ

(
f(x, θ) + tg1(x, θ) + sg2(x, θ)

)
t=s=0

= h′′
[∫

X

Φ
(
f(x, θ)

)
dµ(x)

]

×
[ ∫

X

Φ′
(
f(x, θ)

)
g1(x, θ) dµ(x)

][ ∫

X

Φ′
(
f(x, θ)

)
g2(x, θ) dµ(x)

]

+ h′
[ ∫

X

Φ
(
f(x, θ)

)
dµ(x)

] ∫

X

Φ′′
(
f(x, θ)

)
g1(x, θ)g2(x, θ) dµ(x)

Then, when g1 = g2 = g, the Hessian is

∆gH
h
Φ(θ) = h′′

[ ∫

X

Φ
(
f(x, θ)

)
dµ(x)

][ ∫

X

Φ′
(
f(x, θ)

)
g(x, θ) dµ(x)

]2

+ h′
[ ∫

X

Φ
(
f(x, θ)

)
dµ(x)

] ∫

X

Φ′′
(
f(x, θ)

)
g(x, θ)2 dµ(x)

and the Hessian along the direction of the tangent space of the parameter space Θ

is obtained by replacing g by

df(x, θ) =
M∑

i=1

∂f(x, θ)
∂θi

dθi.

Thus, we get the following result:

Theorem 1. The Hessian of the (h,Φ)-entropy along the direction of the tangent
space of the parameter space Θ is given by

ds2(h,Φ)(θ) =
M∑

ij=1

gij(θ) dθi dθj ,
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where

gij(θ) = h′′
[∫

X

Φ
(
f(x, θ)

)
dµ(x)

]

×
∫

X

Φ′
(
f(x, θ)

)∂f(x, θ)
∂θi

dµ(x)
∫

X

Φ′
(
f(x, θ)

)∂f(x, θ)
∂θj

dµ(x)

+ h′
[ ∫

X

Φ
(
f(x, θ)

)
dµ(x)

] ∫

X

Φ′′
(
f(x, θ)

)∂f(x, θ)
∂θi

∂f(x, θ)
∂θj

dµ(x),

provided the integrals exist and are finite.

If ds2(h,Φ)(θ) is a positive definite quadratic form on the tangent space we have a
differential metric of a Riemannian geometry because

(
gij(θ)

)
ij=1,...,M

defines a sec-

ond order covariant tensor, since after performing a non-singular parameter change

θ = (θ1, . . . , θM )→ θ = (θ1, . . . , θM ),

we have

gij(θ) =
M∑

r,s=1

grs(θ)
∂θr

∂θi

∂θs

∂θj

.

To get that ds2(h,Φ)(θ) is a positive definite quadratic form when Hh
Φ(θ) plays

the role of an entropy measure, it is necessary to consider −gij(θ) instead of gij(θ).
The metric ds2(h,Φ)(θ) and the matrix IMh

Φ(θ) =
(
gij(θ)

)
ij=1,...,M

will be called the

(h,Φ)-entropy metric and the (h,Φ)-entropy matrix, respectively.
If we consider a curve in {Pθ : θ ∈ Θ} connecting Pθa and Pθb

, i.e.

θ(t) =
(
θ1(t), . . . , θM (t)

)
, ta � t � tb

with θ(ta) = θa and θ(tb) = θb, then the distance between the probability density

functions f(x, θa) and f(x, θb) along the curve θ(t) is given by

S(θa, θb) =

∣∣∣∣
tb∫

ta

[ M∑

i=1

M∑

j=1

gij(θ)
dθi

dt
dθj

dt

]1/2
dt

∣∣∣∣,

where, for ease of exposition, we have written θ, θi and θj instead of θ(t), θi(t) and
θj(t), respectively. In particular, the curve connecting θa and θb with the shortest

S(θa, θb) is of interest. Such a curve is called a geodesic and is given as the solution
of differential equations, the so-called Euler-Lagrange equations,

M∑

i=1

gik(θ)
d2θi

dt2
+

M∑

i,j=1

[i, j; k]
dθi

dt
dθj

dt
= 0, j = 1, . . . , M,
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where [i, j; k] is the Christoffer symbol of the first kind which is defined by

[i, j; k] =
1
2

[∂gki(θ)
∂θj

+
∂gjk(θ)

∂θi
− ∂gij(θ)

∂θk

]
; i, j, k = 1, . . . , M.

The geodesic distance between θa and θb was proposed by Rao to measure the dis-

tance between distributions with parameters θa and θb. In our case, the geodesic
pseudo-distance (a pseudo-distance satisfies all the postulates of distance except that

it may vanish for elements which are distinct) induced by ds2(h,Φ)(θ) is denoted by
S(h,Φ) and called the (h,Φ)-pseudo-distance.

������ 1. If we consider Renyi’s entropy, that is h(x) = (1 − r)−1 log x and
Φ(x) = xr (r > 0), we obtain

rgij(θ) =
1

r − 1

[ ∫

X

f(x, θ)r dµ(x)

]−2 ∫

X

rf(x, θ)r−1
∂f(x, θ)

∂θi
dµ(x)

·
∫

X

rf(x, θ)r−1
∂f(x, θ)

∂θi
dµ(x) −

[∫

X

f(x, θ)r dµ(x)

]−1

∫

X

rf(x, θ)r−2
∂f(x, θ)

∂θi

∂f(x, θ)
∂θj

dµ(x).

The metric ds2r(θ) =
M∑

i,j=1

rgij(θ) dθi dθj , r ∈ �
+ , will be called Renyi’s entropy

metric, the matrix IMr(θ) =
(
rgij(θ)

)
ij=1,...,M

, Renyi’s entropy matrix and the geo-

desic pseudo-distance induced by ds2r(θ), Sr, Renyi’s entropy pseudo-distance. The
special case of r → 1 corresponds to Shannon’s entropy, which is widely used in ap-
plied research (see Burbea and Rao (1982a)). In this case we obtain the information
metric of Rao (1945), while IMh

Φ(θ) is the Fisher information matrix IF
x (θ).

������ 2. If θ ∈ Θ ⊂ �, we have ds2(h,Φ)(θ) = IMh
Φ(θ) dθ

2 and the distance

between the distributions f(x, θa) and f(x, θb) is given by

S(h,Φ)(θa, θb) =

∣∣∣∣
θb∫

θa

(
IMh

Φ(θ)
)1/2
dθ

∣∣∣∣.

We present Renyi’s entropy pseudo-distance for some probability distributions:

Bernoulli (θ):

IMr(θ)

=
r
[
(r − 1)θ2r−2 + (r − 1)(1− θ)2r−2 + 2(r − 1)θr−1(1− θ)r−2 − θr−2(1− θ)r−2

]

(r − 1)
(
θr + (1− θ)r

)2
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and for r = 2 we have

S2(θa, θb) =
∣∣∣ 1
21/2

arctan
A(θb)
21/2

− 1
2
arctan

A(θb)
2

− 1
21/2

arctan
A(θa)
21/2

+
1
2
arctan

A(θa)
2

∣∣∣,

where A(θ) = (2θ − 1)
(
θ(1 − θ)

)−1/2
.

Geometric (θ):

IMr(θ) =
r
[
(r − 1)θ2r−2 + (1− θ)r−2(θ2 + 2θ − 2) + 1− rθ2(1 − θ)r−2

]

(r − 1)
(
1− (1− θ)r

)2
θ2

, r �= 1,

and for r → 1 we have

Sr(θa, θb) =
∣∣∣ log θb

2− θb + 2(1− θb)1/2
− log θa

2− θa + 2(1− θa)1/2

∣∣∣.

Exponential (θ):

Sr(θa, θb) =
∣∣∣2− r

r

∣∣∣
1/2∣∣ log θb − log θa

∣∣, 0 < r < 2.

Pareto (θ): (x0 fixed)

IMr(θ) =
rθr−2

(θr + r − 1)xr−1
0

{
1− 2θ

θr + r − 1 +
2θ2

(θr + r − 1)2
}

and for r = 1 we have
S1(θa, θb) = | log θa − log θb|.

Erlang (θ, n): (n fixed)

Sr(θa, θb) =
∣∣∣ [2− r(2 − n)]

r

∣∣∣
1/2
| log θb − log θa|.

Normal (µ, σ2): (σ fixed)

Sr(µa, µb) =
|µb − µa|

σ

so that in this case the Rao distance is constant for all r > 0.

Normal (µ, σ2): (µ fixed)

Sr(σ
2
a, σ2b ) =

∣∣∣3− r

4r

∣∣∣
1/2
| log σb − log σa|, 0 < r < 3.
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Normal (µ, σ2): (µ and σ variable)
Renyi’s entropy metric is given by

ds2r(θ) = dµ
2/σ2 +

(
(3 − r)/4r

)
dσ2/σ2, 0 < r < 3.

For µ∗ =
(
(3− r)/4r

)−1/2
µ and σ∗ = σ we have

ds2r(θ) =
3− r

4r

[
( dµ∗)2

(σ∗)2
+
(dµ∗)2

(σ∗)2

]
,

which is the Poincaré metric. Following the method described by Burbea (1986),
Renyi’s entropy pseudodistance between (µ1, σ21) and (µ2, σ

2
2), or equivalently be-

tween N(µ1, σ21) and N(µ2, σ22), is

Sr

[
(µ1, σ21), (µ2, σ

2
b )
]
=

(
3− r

4r

)1/2
log

(
1 + δ

1− δ

)
=

(
3− r

4r

)1/2
tanh−1(δ),

where

δ =

(
(µ∗1 − µ∗2)

2 + (σ∗1 − σ∗2)
2

(µ∗1 − µ∗2)2 + (σ
∗
1 + σ∗2)2

)1/2
=

(
(µ1 − µ2)2 + 3−r

4r (σ1 − σ2)2

(µ1 − µ2)2 + 3−r
4r (σ1 + σ2)2

)1/2
.

If µ1 = µ2 then geodesic curve connecting (µ1, σ21) and (µ1, σ
2
1) lies on the straight

line µ = constant, and the distance is Sr(σ21 , σ
2
2) which coincides with the distance

obtained above. On the other hand, if σ21 = σ22 , then the present distance differs
from the distance obtained above, since σ2 = constant is not a geodesic curve of the

present metric.

Multivariate normal (µ,Σ): (Σ fixed)

Sr(µ1, µ2) =
(
(µ1 − µ2)tΣ−1(µ1 − µ2)

)1/2
,

which is the square root of the well-known Mahalanobis distance.

�����	� 1. When dealing with parametric distributions, statistical tests based

on Renyi’s entropy pseudo-distance can be constructed by substituting one or two
parameters by convenient estimators. To clarify this idea, let us consider the Pareto

distribution (x0 fixed) and the Rao distance. The test of the hypothesis H0 : θ = θ0
is equivalent to the test of the hypothesis S1(θ1, θ2) = 0, so that we can use the

statistics T = S1(θ̂, θ0) = | log θ̂ − log θ0|, where θ̂ is a suitable estimator of θ. We
reject the null hypothesis, at a level α, if T > cα, where Pθ0(T > cα) = α.
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For the maximum likelihood estimator (M.L.E.)

θ̂ =
n

n∑
i=1
log xi

x0

,

a straightforward calculus yields the following Rao distance test (R.D.T.):

Φ(x1, . . . , xn) =

{
0 if c1 < S(x1, . . . , xn) < c2

1 if S(x1, . . . , xn) < c1 or S(x1, . . . , xn) > c2

where

Fχ22n
(c2)− Fχ22n

(c1) = 1− α,(1)

c1c2 = 4n2,(2)

and

S(x1, . . . , xn) = 2θ0

n∑

i=1

log
xi

x0
.

The size condition (1) is obtained form the fact that S is chi-square distributed

with 2n degrees of freedom under the null hypothesis. Condition (2) follows from
the relations c1 = 2n exp{−cα} and c2 = 2n exp{cα}.
From the uniformly minimum variance unbiased estimator (U.M.V.U.E.)

θ̃ =
n− 1

n∑
i=1
log xi

x0

,

the modified Rao distance test (M.R.D.T.) is obtained if we replace (2) by

(2′) c1c2 = 4(n− 1)2.

Finally, the likelihood ratio test (L.R.T.) is in this case the uniformly most pow-

erful unbiased test (U.M.P.U.T.) and coincides with the above two tests except for
condition (2), which has to be replaced by

(2′′) 2n log
c2
c1
= c2 − c1.

To compare the above three decision rules (R.D.T., M.R.D.T. and L.R.T.), the

exact powers are illustrated in Figure 1 for H0 : θ = 1, H1 : θ �= 1, α = 0.05 and
n = 10.
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Figure 1

3. Asymptotic distribution of information matrices

When dealing with parameter distributions, statistical tests based on information

matrices can be constructed by substituting the parameter θ by an estimator θ̂. In
general, it will not be possible to get the exact distribution of the statistic IM

h
Φ(θ̂) =(

gij(θ̂)
)
ij
and we will have to use its asymptotic distribution. In the next theorem

we obtain the asymptotic distribution of IM
h
Φ(θ̂), where θ̂ = (θ̂1, . . . , θ̂M ) is the
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maximum likelihood estimator of θ based on a random sample of size n. We suposse

that the following regularity assumptions hold:
(i) The set A =

{
x ∈ X/f(x, θ) > 0

}
does not depend on θ and for all x ∈ A,

θ ∈ Θ
∂f(x, θ)

∂θi
,

∂2f(x, θ)
∂θi∂θj

,
∂3f(x, θ)
∂θi∂θj∂θk

, i, j, k = 1, . . . , M

exist and are finite.
(ii) There exist real valued functions F (x) and H(x) such that

∣∣∣∣
∂f(x, θ)

∂θi

∣∣∣∣ < F (x),

∣∣∣∣
∂2f(x, θ)
∂θi∂θj

∣∣∣∣ < F (x),

∣∣∣∣
∂3f(x, θ)
∂θi∂θj∂θk

∣∣∣∣ < H(x),

where F is finitely integrable and E
[
H(X)

]
< M with M independent of θ.

(iii) IF
X(θ) =

[
E
{

∂ log f(X,θ)
∂θi

∂ log f(X,θ)
∂θj

}]

i,j=1,...,M

is finite and positive definite.

Theorem 2. If assumptions (i), (ii) and (iii) hold then

n1/2
(
Vec IMh

Φ(θ̂)−Vec IMh
Φ(θ)

) L−→
n→∞

N
(
0, A(θ)IF

X(θ)
−1A(θ)t

)
,

where

Vec IMh
Φ(θ̂) =

(
g11(θ̂), . . . , gMM (θ̂)

)t

Vec IMh
Φ(θ̂) =

(
g11(θ), . . . , gMM (θ)

)t

A(θ) =




∂g11(θ)
∂θ1

, . . . , ∂g11(θ)
∂θM

...
...

∂gMM (θ)
∂θ1

, . . . , ∂gMM (θ)
∂θM





����. The Taylor expansion of IM
h
Φ(θ̂) =

(
gij(θ̂)

)
ij
at the point θ yields

Vec IMh
Φ(θ̂) = Vec IMh

Φ(θ) +

[ M∑

i=1

∂g11
∂θi
(θ̂i − θi), . . . ,

M∑

i=1

∂gMM

∂θi
(θ̂i − θi)

]t

+Rn.

Since n1/2Rn
L−→

n→∞
0, the random variables

n1/2
(
Vec IMh

Φ(θ̂)−Vec IMh
Φ(θ)

)
and A(θ)n1/2(θ̂ − θ)

have asymptotically the same distribution, where the matrix A(θ) is given above.
Hence the result follows.
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We now consider the generalized inverse for any matrix A(m×n). As is well-known

Ag(n×m) is called the g-inverse (generalized inverse) of A if
(i) AAgA = A,
(ii) AAg is symmetric,

(iii) AgA is symmetric,
(iv) AgAAg = Ag.

Some properties of generalized inverse matrices are stated below.
(1) There exists only one matrix Ag satisfying (i)–(iv),

(2) (At)g = (Ag)t,
(3) (Ag)g = A. �

������ 3. If the random variableX = (X1, . . . , Xm)t has a multivariate normal
distribution with vector of means zero and variance-covariance matrix V , where V

has rank r (r � m) and Vg is the generalized inverse of V , then XtVgX , is chi-square
distributed with r degrees of freedom (see Muirhead 1982, pp. 30, Theorem 1.4.4.).

Now on the basis of Remark 3 and using Theorem 2 we can obtain the following

tests of hypotheses:
a) Goodness of fit test

H0 : IMh
Φ(θ) = IMh

Φ(θ0).

In this case we consider the statistic

T1 = n
(
Vec IMh

Φ(θ̂)−Vec IMh
Φ(θ0)

)t(
AIF

X(θ)
−1At

)
g

(
Vec IMh

Φ(θ̂)−Vec IMh
Φ(θ0)

)
,

where, for ease of exposition, we write A instead of A(θ). By Theorem 2 and Re-
mark 3, T1 is asymptotically chi-square distributed with s degrees of freedom, where

s = rank
(
AIF

X(θ)
−1At

)
. We reject the null hypothesis if T1 � χ2s,α.

If we collect r independent samples of sizes n1, . . . , nr (n = n1 + . . . + nr) from

the population associated with f(x, θ1), . . . , f(x, θr), respectively, then we can test
the homogeneity of information matrices (with or without a specified common infor-

mation matrix).
b) Test of homogeneity with a known information matrix.

H0 : IMh
Φ(θ1) = IMh

Φ(θ2) = . . . = IMh
Φ(θr) = IMh

Φ(θ0).

In this case we consider the statistic

T2 =
r∑

i=1

ni

[
Vec IMh

Φ(θ̂i)− Vec IMh
Φ(θ0)

]t[
AiI

F
X(θi)−1At

i

]
g

×
[
Vec IMh

Φ(θ̂i)−Vec IMh
Φ(θ0)

]

92



where, for ease of exposition, we write Ai instead of Ai(θ). By Theorem 2,

Remark 3 and the independence of the r random samples, T2 is asymptoti-
cally distributed as a chi-square distribution with s degrees of freedom, where

s =
r∑

i=1
rank

(
AiI

F
X(θi)−1At

i

)
. We reject the null hypothesis if T2 � χ2s,α.

c) Test of homogeneity

H0 : IM
h
Φ(θ1) = IM

h
Φ(θ2) = . . . = IM

h
Φ(θr).

This test is based on a lemma. First, we introduce the following notation:

Σi =
(
AiI

F
X(θi)

−1At
i

)
g
, B =

r∑

i=1

niΣi, Ŷi = BgBVec IMh
Φ(θi),

Y0 = BgBVec IMh
Φ(θ0), Y = Bg

[ r∑

i=1

niΣiBgBŶj

]
,

Y = (Y1, . . . , Yr)t, Ŷ = (Ŷ1, . . . , Ŷr)t

and

C =




I − n1BgΣ1BgB −n2BgΣ2BgB . . . −nrBgΣrBgB

−n2BgΣ2BgB I − n2BgΣ2BgB . . . −nrBgΣrBgB
... . . .

...
−n1BgΣ1BgB −n2BgΣ2BgB . . . I − nrBgΣrBgB




(M2r)×(M2r)

For

λi = lim
ni→∞

ni

n
∈ (0, 1), i = 1, . . . , r

let us consider the (M2r ×M2r) block diagonal matrix

∆ =

r∏
i=1

λi

λ1

(
BgB(Σ1)gBBg

)
⊕ . . .⊕

r∏
i=1

λi

λr

(
BgB(Σr)gBBg

)
.

Lemma 1. If (i), (ii) and (iii) hold and

λi = lim
ni→∞

ni

n
∈ (0, 1), i = 1, . . . , r

then the statistic

T3 =

[
r∏

i=1
ni

nr−1

]
(Ŷ1 − Y , . . . , Ŷr − Y )t

[
C∆Ct

]
g
(Ŷ1 − Y , . . . , Ŷr − Y )t
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is asymptotically chi-square distributed with

s = rankC∆Ct

degrees of freedom.


����. We know that

n1/2(Ŷi − Yi) = BgBn
1/2
i

[
Vec IMh

Φ(θ̂i)−Vec IMh
Φ(θi)

] L−→
ni→∞

N
(
0, BgB(Σi)gBBg

)
,

and therefore

[
r∏

i=1
ni

nr−1

]
(Ŷ1 − Y, . . . , Ŷr − Y )t

L−−−−→
n1,...,nr→∞

N(0,∆).

Now, taking into account that

(
C(Ŷ − Y )

)t
= (Ŷ1 − Y , Ŷ2 − Y , . . . , Ŷr − Y )t

we obtain the announced result. �

On the basis of this lemma we reject the null hypothesis if T3 > χ2s,α.

������ 4. When Σi, i = 1, . . . , r and B are non-singular matrices, the statistic

T ′3 =
r∑

i=1

nj

[
Vec IMh

Φ(θ̂)−Vec IMh
Φ(θ)

]t[
AiI

F
X(θi)−1At

i

]
g

×
[
Vec IMh

Φ(θ̂i)−Vec IM
h

Φ(θ)
]

is asymptotically chi-square distributed with

s =
r∑

i=1

rank(Σi)− rank(B) = rM2 −M2 =M2(r − 1)

degrees of freedom, and

Vec IMh
Φ(θ) = Bg

[ r∑

i=1

niΣiVec IMh
Φ(θi)

]
.
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To this end, it is easy to see that

r∑

i=1

ni

[
Vec IMh

Φ(θ̂i)−Vec IMh
Φ(θ)

]t
Σi

[
Vec IMh

Φ(θ̂i)−Vec IMh
Φ(θ)

]

=
r∑

i=1

ni

[
Vec IMh

Φ(θ̂i)−Vec IMh
Φ(θ)

]t
Σi

[
Vec IMh

Φ(θ̂i)−Vec IM
h

Φ(θ)
]

+
r∑

i=1

ni

[
Vec IM

h

Φ(θ) −Vec IMh
Φ(θ)

]t
Σi

[
Vec IM

h

Φ(θ)−Vec IMh
Φ(θ)

]
.

Also, if lim
n→∞

nj

n ∈ (0, 1), i = 1, . . . , r, then

r∑

i=1

nj

[
Vec IMh

Φ(θ̂i)−Vec IMh
Φ(θ)

]t
Σi

[
Vec IMh

Φ(θ̂i)−Vec IMh
Φ(θ)

]
L−→ χ2a

with a =
r∑

i=1
rank(Σi) = rM2, and

r∑

i=1

ni

[
Vec IM

h

Φ(θ)−Vec IMh
Φ(θ)

]t
Σi

[
Vec IM

h

Φ(θi)−Vec IMh
Φ(θ)

]
L−→ χ2b

with b = rank(B) =M2. This implies the announced result.

4. Relation to Cramer-Rao’s inequality

Let X1, . . . , Xn be a sample from a random variable X with p.d.f. f(x, θ).

Let Ψ1(θ), . . . ,Ψs(θ) be functions with continuous first partial derivatives and
let T1 = T1(X1, . . . , Xn), . . . , Ts = ts(X1, . . . , Xn) be unbiased estimators of

Ψ1(θ), . . . ,Ψs(θ), respectively. We denote by Σ the variance-covariance matrix
of (T1, . . . , Ts). If IMh

Φ(θ) is positive definite, it can be taken to be the variance-

covariance matrix of some random variables Y1, . . . , Yn. If we define δij = Cov(Ti, Yj)
and δ = (δij)ij=1,...,M , then we get the following inequality.

Theorem 4. Σ− δ
(
IMh

Φ(θ)
)−1

δt is positive semidefinite.


����. The matrix 

Σ
... δ

. . . . . . . . . . . . . .

δt
... IMh

Φ(θ)



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is positive semidefinite because it is the variance-covariance matrix of the random

variable (T1, . . . , Ts, Y1, . . . , Yn). Then




Is

... −δIMh
Φ(θ)

−1

. . . . . . . . . . . . . . . . . . .

0
... IMh

Φ(θ)
−1






Σ
... δ

. . . . . . . . . . . . .

δt
... IMh

Φ(θ)







Is

... 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−
(
δIMh

Φ(θ)
−1)t ... IMh

Φ(θ)
−1




=



Σ− δ

(
IMh

Φ(θ)
)−1

δt
... 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... IMh

Φ(θ)
−1




is a positive semidefinite matrix, and so is Σ− δ
(
IMh

Φ(θ)
)−1

δt. �

Corollary 1. If Φ(x) = −x log x and h(x) = x then the Cramer-Rao inequality

is obtained so that is this case

Σ− δIF
X(θ)

−1δt is positive semidefinite.

Here IF
X(θ) is the Fisher information matrix and Yi = ∂

∂θi
log f(x, θ).

Appendix A

(Pseudo-distance for Erlang distributions)

The Erlang family of distributions is defined by p.d.f.

f(x, θ) =
θn

Γ(n)
xn−1 exp(−θx), x ∈ �+ (θ > 0, n ∈ �).

For a fixed n ∈ N , Renyi’s entropy metric is given by

ds2r(θ) =
rg11(θ) dθ2

where rg11(θ) is defined in Remark 1 by

rg11(θ) =
1

r − 1

{[ ∞∫

0

f(x, θ)r dx

]−2[ ∞∫

0

rf(x, θ)r−1
∂f(x, θ)

∂θ
dx

]2

−
[ ∞∫

0

f(x, θ)r dx

]−1 ∞∫

0

rf(x, θ)r−2
[∂f(x, θ)

∂θ

]2
dx

}
.
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After some calculations obtain

∞∫

0

f(x, θ)r dx =
Γ(rn− r + 1)
Γ(n)rθ1−rrrn−r+1

,

∞∫

0

rf(x, θ)r−1
[∂f(x, θ)

∂θ

]
dx =

(r − 1)Γ(rn− r + 1)
Γ(n)rr(n−1)r+1θ−r+2

and ∞∫

0

rf(x, θ)r−2
[∂f(x, θ)

∂θ

]2
dx =

Γ(nr − r + 1)(r2 + rn− 3r + 2)
rnr−r+2θ3−rΓ(n)r

.

This obviously leads to

g11(θ) =
r(n− 2) + 2

θ2r
.

Now Renyi’s entropy pseudodistance between two Erlang distributions, f(x, θa)
and f(x, θb), is given by

Sr(θa, θb) =

∣∣∣∣
[
r(n− 2) + 2

r

]1/2 θb∫

θa

θ−1 dθ

∣∣∣∣ =
∣∣∣∣
r(n− 2) + 2

r

∣∣∣∣
1/2

| log θb − log θa|.
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