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Abstract. To study the asymptotic properties of entropy estimates, we use a unified
expression, called the Hϕ1,ϕ2

h,v -entropy. Asymptotic distributions for these statistics are
given in several cases when maximum likelihood estimators are considered, so they can be
used to construct confidence intervals and to test statistical hypotheses based on one or
more samples. These results can also be applied to multinomial populations.
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1. Introduction

To study a majority of entropy measures cited in literature, a general mathemat-
ical expression is proposed in this paper. In favour of this mathematical tool is the

fact that any entropy measure can be obtained as a particular case of the Hϕ1,ϕ2
h,v -

entropy functional, and therefore, all properties which are proved for the functional

are also true for any entropy measure. Entropy estimates are obtained by replacing
parameters by their corresponding maximum likelihood estimates and their asymp-

totic distributions are obtained, too. Applications to test statistical hypotheses and
to build confidence intervals are also given.

Let (X, βX, Pθ)θ∈Θ be a statistical space, where X is the sample space and Θ is an

open subset of �M . We shall assume that there exists a probability density function
(p.d.f) fθ(x) for the distribution Pθ with respect to a σ-finite measure µ.

The research in this paper was supported in part by Complutense University grant
N.PR219/94-5307. Their financial support is gratefully acknowledged
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In this context, Esteban, M.D. [4] defined the Hϕ1,ϕ2
h,v -entropy by the following

expression:

Hϕ1,ϕ2
h,v (θ) = h

(∫
X v(x)ϕ1(fθ(x)) dµ∫
X

v(x)ϕ2(fθ(x)) dµ

)
,

where v(x) is a weight function and we suppose that v : X → [0,∞), ϕ1 : [0,∞)→ �,

ϕ2 : [0,∞) → � and h : � → � are any of the triples of functions appearing in
Table 1.

In Table 1, functions v(x), h(x), ϕ1(x) and ϕ2(x) are given for the following
entropy measures: (1) Shannon [13], (2) Renyi [11], (3) Aczel-Daróczy [1], (4) Aczel-

Daróczy [1], (5) Aczel-Daróczy [1], (6) Varma [18], (7) Varma [18], (8) Kapur [8], (9)
Havrda-Charvat [7], (10) Arimoto [2], (11) Sharma-Mittal [14], (12) Sharma-Mittal

[14], (13) Taneja [17], (14) Sharma-Taneja [15], (15) Sharma-Taneja [16], (16) Ferreri
[5], (17) Sant’anna-Taneja [12], (18) Sant’anna-Taneja [12], (19) Belis-Guiasu [3] and

Gil [6], (20) Picard [9], (21) Picard [9], (22) Picard [9] and (23) Picard [9].

Measure h(x) ϕ1(x) ϕ2(x) v(x)

1 x −x log x x v
2 (1− r)−1 log x xr x v
3 x −xr log x xr v
4 (s− r)−1 log x xr xs v
5 (1/s) arctanx xr sin(s log x) xr cos(s log x) v
6 (m− r)−1 log x xr−m+1 x v
7 (m(m− r))−1 log x xr/m x v
8 (1− t)−1 log x xt+s−1 xs v
9 (1− s)−1(x− 1) xs x v
10 (t− 1)−1(xt − 1) x1/t x v
11 (1− s)−1(ex − 1) (s− 1)x log x x v

12 (1− s)−1(x
s−1
r−1 − 1) xr x v

13 x −xr log x x v
14 (s− r)−1x xr − xs x v
15 (sin s)−1x −xr sin(s log x) x v
16

(
1 + 1

λ

)
log(1 + λ)− x

λ (1 + λx) log(1 + λx) x v

17 x −x log
( sin(sx)
2 sin(s/2)

)
x v

18 x − sin(xs)
2 sin(s/2) log

( sin(sx)
2 sin(s/2)

)
x v

19 x −x log x x w(x)
20 x − log x 1 v(x)
21 (1− r)−1 log x xr−1 1 v(x)
22 (1− s)−1(ex − 1) (s− 1) log x 1 v(x)

23 (1− s)−1(x
r−1
s−1 − 1) xr−1 1 v(x)

Table 1
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2. Asymptotic distribution of Hϕ1,ϕ2
h,v -statistics

We suppose that the following regularity assumptions hold:

1. For all θ1 �= θ2 ∈ Θ,

µ ({x ∈ X/fθ1(x) �= fθ2(x)}) > 0.

2. For all θ1, θ2 ∈ Θ, ∫

A(θ1)
fθ2(x)dµ = 1,

where A(θ) = {x ∈ X/fθ(x) > 0}.
3. For almost every x ∈ X there exists a neighbourhood U of the true value of the
parameter such that for any θ ∈ U the following derivatives exist and are finite:

∂fθ(x)
∂θi

,
∂2fθ(x)
∂θi∂θj

,
∂3fθ(x)

∂θi∂θj∂θk
, i, j, k = 1, . . . , M.

4. For almost every x ∈ X and for all θ ∈ U ,

∣∣∣∣
∂fθ(x)

∂θi

∣∣∣∣ < F (x),

∣∣∣∣
∂2fθ(x)
∂θi∂θj

∣∣∣∣ < F (x),

∣∣∣∣
∂3fθ(x)

∂θi∂θj∂θk

∣∣∣∣ < H(x), i, j, k = 1, . . . , M,

where ∫

X

F (x) dµ < ∞ and
∫

X

H(x)fθ(x) dµ < η,

and η > 0 is independent of θ.

5. For all θ ∈ U , Fisher’s information matrix

IF (θ) =

(∫

X

∂ log fθ(x)
∂θi

∂ log fθ(x)
∂θj

fθ(x) dµ

)

i,j=1,...,M

is finite and positive definite.

In this section we obtain the asymptotic distribution of Hϕ1,ϕ2
h,v (θ̂) where θ̂ is the

maximum likelihood estimator of θ based on a simple random sample X1, . . . , Xn

of fθ.

We write f ∈ Ci(A) to denote that the real valued function f has a continuous

derivative of i− th order in the set A. We write
L−→

n,m↑∞ to denote convergence in law.
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Theorem 2.1. Assume the regularity conditions 1–5. Moreover suppose that
h ∈ C1(�), ϕ1 ∈ C1([0,∞)), ϕ2 ∈ C1([0,∞)),

∣∣∣∣v(x)ϕ′s(fθ(x))
∂fθ(x)

∂θj

∣∣∣∣ < F (x), j = 1, . . . , M, s = 1, 2,

with F (x) finitely integrable. Then

n1/2[Hϕ1,ϕ2
h,v (θ̂)−Hϕ1,ϕ2

h,v (θ)]
L−→

n,m↑∞ N (0, σ2)

where σ2 = T tI−1F (θ)T > 0, T t = (t1, . . . , tM ) and

ti = h′
(∫

X v(x)ϕ1(fθ(x)) dµ∫
X

v(x)ϕ2(fθ(x)) dµ

)[∫

X

v(x)ϕ′1(fθ(x))
∂fθ(x)

∂θi
dµ
∫

X

v(x)ϕ2(fθ(x)) dµ

−
∫

X

v(x)ϕ1(fθ(x)) dµ
∫

X

v(x)ϕ′2(fθ(x))
∂fθ(x)

∂θi
dµ

] [∫

X

v(x)ϕ2(fθ(x)) dµ

]−2
.

�����. By the mean value theorem we have

Hϕ1,ϕ2
h,v (θ̂) = Hϕ1,ϕ2

h,v (θ) +
M∑

i=1

∂Hϕ1,ϕ2
h,v (θ̃)

∂θi
(θ̂i − θi),

where ‖ θ̃ − θ ‖2<‖ θ̂ − θ ‖2 . Hence the random variables
√

n[Hϕ1,ϕ2
h,v (θ̂)−Hϕ1,ϕ2

h,v (θ)] and
√

nT t(θ̂ − θ)

have asymptotically the same distribution.

Since √
nT t(θ̂ − θ)

L−→
n,m↑∞ N (0, T tI−1F (θ)T ),

we conclude that

√
n[Hϕ1,ϕ2

h,v (θ̂)−Hϕ1,ϕ2
h,v (θ)]

L−→
n,m↑∞ N (0, σ2).

�

Proposition 2.1. Assume conditions of Theorem 2.1. If Sn = n1/2T t(θ̂−θ), then

Sn = 0 a.s. ∀n ∈ � if and only if σ2 = 0.

�����. If Sn = 0 a.s. ∀n ∈ �, then lim
n→∞

V [Sn] = σ2 = 0.

If σ2 = T tI−1F (θ)T = 0, then T ≡ 0 because IF (θ) is positive definite. Therefore
Sn = 0 a.s. ∀n ∈ �. �
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Theorem 2.2. Assume conditions of Theorem 2.1. Moreover suppose that h ∈
C2(�), ϕ1, ϕ2 ∈ C2([0,∞)),

∣∣∣∣v(x)ϕ′s(fθ(x))
∂fθ(x)

∂θj

∣∣∣∣ < F (x),

∣∣∣∣v(x)ϕ′′s (fθ(x))
∂fθ(x)

∂θi

∂fθ(x)
∂θj

∣∣∣∣ < F (x) and

∣∣∣∣v(x)ϕ′s(fθ(x))
∂2fθ(x)
∂θi∂θj

∣∣∣∣ < F (x), i, j = 1, . . . , M, s = 1, 2,

with F (x) finitely integrable. If T tI−1F T = 0, then

2n[Hϕ1,ϕ2
h,v (θ̂)−Hϕ1,ϕ2

h,v (θ)]
L−→

n,m↑∞

M∑

i=1

βiχ
2
1,i,

where the χ21,i’s are independent and the βi’s are the nonnull eigenvalues of the

matrix AI−1F (θ) with

A = (aij)i,j=1,...,M =

(
∂2Hϕ1,ϕ2

h,v (θ)

∂θi∂θj

)

i,j=1,...,M

.

�����. By Proposition 2.1 and the mean value theorem we have

Hϕ1,ϕ2
h,v (θ̂) = Hϕ1,ϕ2

h,v (θ) +
1
2
(θ̂ − θ)t

(
∂2Hϕ1,ϕ2

h,v (θ̃)

∂θi∂θj

)

i,j=1...,M

(θ̂ − θ),

where ‖ θ̃ − θ ‖2<‖ θ̂ − θ ‖2 .
So, we conclude that

2n[Hϕ1,ϕ2
h,v (θ̂)−Hϕ1,ϕ2

h,v (θ)] and
√

n(θ̂ − θ)tA
√

n(θ̂ − θ)

have asymptotically the same distribution (cf. Rao [10], p. 385).

On the other hand, since
√

n(θ̂ − θ) have aymptotically a zero mean normal dis-
tribution with a variance-covariance matrix I−1F (θ), we have that

n(θ̂ − θ)tA(θ̂ − θ)
L−→

n,m↑∞

M∑

i=1

βiχ
2
1,i,

where the βi’s are the eigenvalues of the matrix AI−1F (θ) and the χ21,i’s are indepen-
dent. So, the result follows. �
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3. Statistical applications

The previous results giving the asymptotic distribution of the Hϕ1,ϕ2
h,v -entropy

statistics can be used in various settings to construct confidence intervals and to test

statistical hypotheses based on one or more samples.

(a) Test for a predicted value of the population entropy.
To test H0 : Hϕ1,ϕ2

h,v (θ) = D0 against H1 : Hϕ1,ϕ2
h,v (θ) �= D0, we reject the null

hypothesis if

|Ta| =

∣∣∣∣∣∣

n1/2
(
Hϕ1,ϕ2

h,v (θ̂)−D0

)

σ̂

∣∣∣∣∣∣
> zα/2,

where σ̂ is obtained from σ in Theorem 2.1 when θ is replaced by θ̂ and zα is the

(1−α)-quantile of the standard normal distribution. In this context an approximate
1− α level confidence interval for Hϕ1,ϕ2

h,v (θ) is given by

(
Hϕ1,ϕ2

h,v (θ̂)− σ̂zα/2

n1/2
, Hϕ1,ϕ2

h,v (θ̂) +
σ̂zα/2

n1/2

)
.

Furthermore, the minimum sample size giving the maximum error ε at a confidence
level 1− α is

n =

[
σ̂2z2α/2

ε2

]
+ 1.

(b) Test for a common predicted value of r population entropies.
To test H0 : Hϕ1,ϕ2

h,v (θ1) = . . . = Hϕ1,ϕ2
h,v (θr) = D0, we reject the null hypotheses if

Tb =
r∑

j=1

nj

(
Hϕ1,ϕ2

h,v (θ̂j)−D0

)2

σ̂2j
> χ2r,α,

where nj is the size of the sample in the jth population, σ̂j ’s are obtained from σ

when θj is replaced in Theorem 2.1 by θ̂j , j = 1, . . . , r, and χ2r,α is the (1−α)-quantile

of the chi-square distribution with r degrees of freedom.

In this context an approximate 1 − α confidence interval for the difference of
entropies corresponding to independent populations is given by

Hϕ1,ϕ2
h,v (θ̂1)−Hϕ1,ϕ2

h,v (θ̂2)± zα/2

√
σ̂21
n1
+

σ̂22
n2

.
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Furthermore, for n = n1 = n2, the minimum sample size giving the maximum error

ε at a confidence level 1− α is

n =

[
(σ̂21 + σ̂22)z

2
α/2

ε2

]
+ 1.

(c) Test for the equality of r population entropies.
To test H0 : Hϕ1,ϕ2

h,v (θ1) = . . . = Hϕ1,ϕ2
h,v (θr), we reject the null hypotheses if

Tc =
r∑

j=1

nj

(
Hϕ1,ϕ2

h,v (θ̂j)−H
)2

σ̂2j
> χ2r−1,α,

where

H =

r∑
j=1

njH
ϕ1,ϕ2
h,v (θ̂j)

σ̂2j
r∑

j=1

nj

σ̂2j

,

and nj and σ̂j are defined above.

(d) Tests for parameters.
For the cases where the Hϕ1,ϕ2

h,v -entropy is a bijective function of the parameters,

testing the hypotheses

H0 : θ = θ0

H0 : θ1 = θ2 = . . . = θr = θ0

H0 : θ1 = θ2 = . . . = θr

is equivalent to test the hypotheses

H0 : Hϕ1,ϕ2
h,v (θ) = Hϕ1,ϕ2

h,v (θ0)

H0 : Hϕ1,ϕ2
h,v (θ1) = Hϕ1,ϕ2

h,v (θ2) = . . . = Hϕ1,ϕ2
h,v (θr) = Hϕ1,ϕ2

h,v (θ0)

H0 : Hϕ1,ϕ2
h,v (θ1) = Hϕ1,ϕ2

h,v (θ2) = . . . = Hϕ1,ϕ2
h,v (θr).

There are many entropy and certainty measures which are bijective functions of the
parameters. To illustrate this fact it is enough to analyze the expression

∫
X

f(x)r dµ

appearing in the Sharma-Mittal entropy (this entropy measure is a monotone trans-
formation of the previous expression) for the probability distributions
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Distribution
∫

X f(x)r dµ

Uniform (a, b) (b − a)1−r

Gamma (a, p)
Γ(rp− r + 1)
Γ(p)ra1−rrrp−r+1

, rp− r + 1 > 0

Laplace (b) 21−rb1−rr−1

Normal (µ, σ) σ1−rr
−
1
2 (2�)

1 − r

2

Pareto (a, k) ark1−r(ra+ r − 1)−1

Beta (a, b)
Γ(ra+ 1− r)Γ(rb + 1− r)
B(a, b)rΓ(ra + rb− 2− 2r) , a >

r − 1
r

, b >
r − 1

r

Weibull (a, b)
br−1

rar−1

(
a

r

) (r−1)(b−1)
b

Γ

(
br − r + 1

b

)

Gumbel (b) r−2β1−r

To conclude we give an example of testing the equality of parameters of r expo-

nential distributions based on Shannon’s entropy. The expression of this entropy
measure for an exponential distribution of the parameter θ is

ϕ(θ) =
∫ ∞

0
−fθ(x) ln fθ(x) dx = 1− ln θ.

As Shannon’s entropy is a bijective function of the parameter, we can use this measure
to test

H0 : θ1 = . . . = θr,

with Tc statistic given in (c). In this case we have v(x) = v, h(x) = x, ϕ1(x) = −x lnx

and ϕ2(x) = x, ∀x ∈ �, hence

T =
∂ϕ(θ)

∂θ
= −1

θ
,

IF (θ) =
∫ ∞

0

∂2 ln fθ

∂θ2
fθ(x) dx =

1
θ2

,

σ2 = T 2IF (θ) = θ−4,

H =

∑r
j=1 nj θ̂

4
j ln θ̂j

∑r
j=1 nj θ̂4j

− 1,

and the test statistic is

Tc =
r∑

j=1

nj θ̂
4
j ln

2 θ̂j −

(∑r
j=1 nj θ̂

4
j ln θ̂j

)2

∑r
j=1 nj θ̂4j

,
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where θ̂i =
1

X i

, Xi =
1
ni

ni∑
j=1

Xij and (Xi1, Xi2, . . . Xini), i = 1, . . . , r, are inde-

pendent simple random samples of size ni from the exponential distribution of the

parameter θi. So, we reject the null hypothesis at a level α if

Tc > χ2r−1,α.
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