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Abstract. In a nonlinear model, the linearization and quadratization domains are con-
sidered. In the case of a locally quadratic model, explicit expressions for these domains are
given and the domains are compared.

Keywords: nonlinear regression models, linear and quadratic estimators, linearization
and quadratization domains

MSC 2000: 62F10

INTRODUCTION

In [K1], the problem of linearization of nonlinear regression models is solved and
the linearization domains are defined. Quadratization domains are indicated in [K2].

The domains mentioned are of several kinds (with respect to bias, dispersion, etc.).
It is not quite clear which of these domains is the most important. Regarding some
experience in the analysis of several simple nonlinear regression models (see [Pu]),
the linearization domain for the bias seems to be important.

If the linearization domain for the bias is not sufficiently large, then two possibili-
ties occur. Either a quadratic estimator, or a procedure given in [Pa] must be used.
Since the quadratic estimator defined in [K2| is simple, it is of some importance to
recognize whether the quadratization domain (for the bias) is sufficiently large, or at
least, whether it contains the linearization domain.

The aim of the paper is to find conditions under which the above mentioned
inclusion occurs. To do this, it is necessary to find a suitable expression for the
characterization of the domains. This characterization is given in Definition 1.1, the
conditions can be found in Proposition 2.1
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1. DEFINITION OF THE DOMAINS

Let Y be an n-dimensional normally distributed random vector with E[Y] = f(0),
Var[Y] = %, where f: R¥ — R" is a known function with continuous second deriv-
atives, 8 € R* is an unknown parameter and ¥ is a known positively definite (p.d.)
matrix. We assume that the true value of the parameter lies in a neighbourhood O
of a chosen point Gy € RF (we suppose below that 3y = 0) and that within O the
function f has the form

F(8) = fo+ i + 3

where

B H1
kg = : :
B Hy,f3
fo = f(B), F = ’g,é?”ﬁ:% is a full rank matrix in columns, H; = ;gé%ﬁ,), i =

1,...,n.
Let us consider the linear estimator of the parameter § = CTIF'S~YY - fo),
where C = F’Y71F, and the quadratic estimators

Te(H\C™') — f'H1fp

B=Cs P48 Y~ fo+ g ; ,

Tr(H,C~') — F'H, 3
Te(H\C™') = f'H1f
B=3+ %C‘lF’E‘l :
Tr(H,C~ ') — 3'H,.3
defined in [K2]; here Cs = F'(X + S)™'F and {S};; = %'I‘r(HiC'_lHjC_l). Let
l;(ﬂ), li(ﬂ) and B(ﬁ) be the bias of the estimators {3, é and 3, respectively.

In [K1] and [K2], the linearization domains (with respect to the bias) and, respec-
tively, the quadratization domains are defined as sets @ C R* such that

(i)
Vhe R |Wb(3)| < eVR'C—1h

VheRF  |WB(B)| < ey/WC5 R
Y —

Vhe R¥  |WB(B)| < eVR'C—1h

hold for B € O. Here c is a criterion parameter, chosen by a statistician. The aim is
to find these domains in the form of an ellipsoid, i.e. in the form {3: ||8]lc < M(c)},
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where [|z||c = V2/Cx. We will use the Bates-Watts parameter effect and intrinsic
curvatures (see [Pa] for more detail), defined as

| Prenlls-1
KP* = sup ———5—"—
h HFh”ZZfl
wnd | M
: Rpl||lxo-1
K™t = sup 1L ,
no IIFR[E-

where ||z||%_, = 2/S7 'z, Pr = FCT'F'S™! is the orthogonal projector onto the
subspace M(F) C (R™,].|[g-1), spanned by the columns of the matrix F, and Mp =

I — Pp, I is the n x n identical matrix. From [K1] it follows that M (c) = /2% for

the linearization domain.
First, we prove some auxiliary statements.

Lemma 1.1.
(a) b(B) = —3C " F'S kg and Var[§] = C~1.

(b) ) . )
B H1b(B) + 5b(8) Hib(3)

b(B) = —C5 F/(2 + 5)~! :
B H,b(5) + $b(8) Hab(B)
and Var[é\ﬂ =0]=0Cg".
(c) ) ) )
B'H1b(3) + 50(8) H1b(5)
b(B) = —C1F'xt :
B'H,b(B) + 35(8) Hab(3)
and Var[3|3 =0 = C~ '+ C'F'E-1Sn-1FCL.
The proof of (b) and (c) can be found in [2], the proof of (a) is easy.

Lemma 1.2. If||f]|c < M, then ||b(8)|c < LKP M2

Proof.
) 1 VRSO
sup [[6(B)[lc =5 sup Bop
I18llc <M 2 8l B'Cp
IS 1 =1 -1
| RS TIFCTIEE Ry )
< = M2 _ _KparMZ.
2" 5Ch 2
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Lemma 1.3. Let A be a symmetric and W a p.d. k x k matrix. Then

sup |z’ Ay| <2 sup |2/ Ax].

lzllw=1,llyllw=1 llzllw =1

Proof. First, let A be p.s.d. Then A = BB’ for some B and therefore

sup |2’ Ay| = sup |2’ BB'y|
lzllw=Lllyllw=1 llzllw=Lllyllw=1
< sup v x'BB'xy' BB'y
llzllw=1llyllw=1
= sup a'Ax
ll][w=1

<2 sup 2'Ax.

llzllw=1

Now let A be an arbitrary symmetric matrix. Then there exists a nonsingular
matrix R such that R'AR = A = diag(\1,...,\;) and W = (R7})/R™L. Let \; >

.2 As 2 0and 0 > Ag11 = ... = A, and let us denote z = R 'z, u = Ry,
Ay = diag(M1, ..., As), Ao = diag(As+1,...,Ax). Then A; and (—As) are obviously
p-s.d. and

sup |z’ Ay| = sup |2’ Au|
lzllw=1,llyllw=1 Izl =1, llullz=1
! /
< s At swp (Aol
Izl =1, lulr=1 llzllr=1,llullz=1

< sup 2'A1z+ sup 2/(—Ag)z

llzllr=1 llzllr=1

= sup |2"Az| + sup |2"Az|

I2llr=1,2041=...=2,=0 l2llr=1,z1=...=2.=0

< sup |¢'Az|+ sup |2/ Az]
ll|lw=1 ll|lw=1

=2 sup [2/Az|.

llzllw=1

Lemma 1.4. If ||3|l¢ < M then ||b(3)||c < (KP*)2M3 + S(KPar)3 M4,
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Proof. According to Lemma 1.1 (c),

sup [|b(8)llc
IBlle<M
B'H1b(B) + 3b(8) H1b(8)
= sup ||-ClF'®! :
I8lle<M ,
’ B/ H,b(5) +§ 8)/ lle
5'H1 (B)
< sup |[-CTlF'2!
I8lc<M ﬁ,H b
H
+ sup 1 —C7lF'y !
IBlle<M
’ b9/ mb0) ) |
The expression b(3) = —1C'F'S7 ks can be viewed as a function of 3, hence
: b(8) Hab(5)
fEC*lF'zfl : = b(b(3)).
b(8)' Hnb(8)

According to Lemma 1.2,

an 1 1 2 1
sup [b(b(9))l|c < K (FEPME) = S
IBllc<M

n
Further, let K = S {I'C~'F'$~1},H;, | € R*. By the Schwarz inequality we have

B Hib B H1b
—C 'yt : = sup |/CT'F'2! :
grb) e 5 H,b
= sup |FKWy.
lc=tlle=1

283



Hence, using Lemma 1.3, we obtain

ﬁ'Hlb
sup —C7lF'yt
B'Hq

IBle<M

13 .
— sup |-C-lpm- 1( . 18llclb(B)llc
I8llc<M - 18llclo(B)lle
‘ BH.HB) /) |l
B'H1b(3)
_Clelzfl :
o
H,
< sup Aﬁ b(ﬁ) C 1KparM3
I8llc<M [1Bllcllb(B)]le
B Hb
< sup —C 'yt : L gevar g3
1Bllc=1,[]b[lc=1 B'H,b o 2
= sup sup |ﬁ’K(l)b|%KPa‘“M3

I1Bllc=1,llbllc=1||C~l|lc=1
1
<2 sup sup  |F KO3 KPP A3
I8llc=1 [C-11]|c=1 2
B'Hy
—C- 1yt .
B'Hy3
= sup

CM3Kpar — M3(Kpar)2
I8llo=1 pes

Lemma 1.5. Let R®) =Y. H;z;, x = (21,...,2,) € R". Then
1
3 Tr(R®WCIR®C™Y) = 2/ Sz

Proof.

1
5Tr(R<$>O 'R@C

(ZxZHO 1Z%HC >
%TI(ZZ.’BZ.T]HzclH301>
i

1
Z Z Tijy Tr(H,C'H;C™ ") = 2/Sx.

g

I
L\DI»—l
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Lemma 1.6. Let A be a p.s.d. and B a p.d. k X k matrix. Then

' Ax ' Az
up g, S THAB) S ksup

s

Proof. Let L be a nonsingular matrix such that B = LL’. Then
Tr(AB) = Tr(ALL') = Tr(L’AL) = > m;,

where 11 > ... > n; are the eigenvalues of the matrix L' AL. Further,

' Ax ' Ax y' L' ALy
up ———— = su =su =
mp ’B~1z mp o (L)~1L-1x yp y'y M

S

where y = L™ 'z. Obviously n; > 0,i=1,...,k, thus

m < Zni < kny.

Lemma 1.7. "

1
-1 )
(E+85) = ; 1 —/\ipzpz,

S piph = X1, and Vi\; < dy, where
dy = K ((K™)? + (KP™)?).
Proof. Let ¥ =UU’. Then
UlE+S)U)Yt=1+UtS@WwH)

Let A\ > ... > A\, > 0 be the eigenvalues of the matrix U~1S(U’')~!, and ¢,
it =1,...,n the corresponding eigenvectors. Then

I+U7'SW)™ =Y (1 + N\)aid,

3
and

U+ 8)"U=Uz+8)U)yhHt
=(I+USO)™H) =0+ M) e

i
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Hence
(E+8)7" =) (1+X) " U) aqU

7

Now, put p; = (U’)"'¢; and

S ol = )7 Satu = w)ut =5

Moreover, \; = ¢iU'S(U")"1q;, ¢igi = 1. If z; is a vector such that ¢; = U~ 'z,

then
N =2/ (U UTIS(U)TIU Ty = 2B TSRy

and z/X7'2; = ¢l¢; = 1. Let x € R™ be an arbitrary vector such that ||z|/g-1 = 1.

Using Lemmas 1.3, 1.5 and 1.6 we get

P'NTIeN Ty = % Tr(R® D 1RE9) o1

y/R(Eflx)C—lR(E’Ix)y 1 T&.(R(E’Ix)yy/R(E lx)c

=k
y'Cy 2 Sgp y'Cy

1 (Z’R(E_lx)y)2 k2 -1
< k’*supsup - ~—————%" = sup sup —(Z/R(E x)y)2
v = 2 yCyzCz lyllo=1llzlc=1 2

B /R(E’lx)y)2
<k? sup (yRC lx)y 2 — 12 sup (y
Hy\lc=1( ) v (YCy)?

'Y 1k,)? [ Y
:k2sup% < k‘2supy/72y
v  (YCy) v (Y'Cy)
< k2{ sup KZ;/Z_IPFKZy n sup K};E_lMFKZy }
h v (Cy)? v (yCy)?

_ kZ((Kint)Z + (Kpar)Z).

1
< 5k‘sgp

Lemma 1.8. Let ||z|j; = 2/S 1z and ||z|2 = 2/ (Z + S) " 'z. Let d =

dllz)? < =3 < 27
Proof. According to Lemma 1.7,

)2 = 3 a'pipla,
i

1
Il = 3 y5e/paia
7

i

and d < 1+1)\i < 1. The rest of the proof is obvious.
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Lemma 1.9. If ||8||c < M, then [|b(3)|cs < K5 (KP*M? + S(KPar)2 M),
where K5 is the parameter effect curvature for the inner product (z,z) = /(X +
)~ la.

Proof. The statement of the lemma can be proved similarly as Lemma 1.4,
using the fact that according to Lemma 1.8

B'Csf=BF (E+8)FB=|Fflis, s
<|IFBl%- =BCB.

Proposition 1.1.
(a) If || Bllc < M(c) where M(c) > 0 is the solution of

1
(Kpar)2M3 4 g(KPar)3M4 =c

then |W'b(6)] < ev/h'C—1h Yh € RF.

(b) If || Bllc < M(c) where ]\AA/[(C) > 0 is the solution of

1
Kgar (KparMB + g(}'{par)2]\4'4) =c,

IWB(B)] < e\/WC5th Vh e R,

Proof. (a) The equivalence

then

Wb < VW C-thVh & |bllc <c

following from the Schwarz inequality, will be used. Now, by Lemma 1.4, for ||8||c <
M (c) we have

Ib(B)llc < (KP*)*M (c)* + é(Kp'”)?’Z\Z(C)4 =c

(b) The same as (a). O

Now, we can define the linearization and quadratization domains as follows:
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Definition 1.1. The linearization domain is

O(c) = {51 I18llc < M(c) = KQpcar}'

The quadratization domains are
O(c) = {B: ||Bllc < M(c)}

and

O(c) = {8: |Bllc < M(e)}.

2. LINEARIZATION VS. QUADRATIZATION

Now we have an expression for the domains, which allows us to compare easily
the linearization and quadratization domains.

Proposition 2.1. If0 < ¢ < 2(9[;7;2/5), then O(c)  O(c).

Proof. It is obvious that O(c) C O(c) iff M(c) < M(c). The function p(M) =
(KPar)2 M3 4 L(KPar)3M* is increasing for M > 0, i.e. VM, M < M(c) & p(M) <

p(M(c)) = ¢. Therefore it suffices to prove that p(M(c)) < ¢ for 0 < ¢ < 2@1273;/5).
Moreover,
1
p(v/2¢/KPar) L ¢ & 2V2KPare 4 iKparc < 1.
The last inequality implies that 1 — %K Pare >0, ie. ¢ < Kfm. Further,
1 1

2V2KPare < 1 — 5ch & Z(KP‘“)QCQ —9KP¥c 4+ 1> 0.

The last inequality holds for ¢ < 2((‘9};71;‘/3). O

Remark 2.1. It follows from the last proposition that if KPa" < 2(9 — 4\/5) =
0.11, the quadratization domain O is larger than the linearization domain for all
0<e< 1. .

It is clear that the estimator B is more suitable for practical purposes than B,
because it is simpler and has a more convenient form B+ correction terms. MoAreover7
we will see that if the nonlinearity of the model is low, the domains @ and O seem
to be nearly the same.
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Lemma 2.1. Let d = where dy = k?((K'™)2 + (KP2)2). Then

1+d ’
< ((KP)2 4 (1 — d)(K™)2).

AP — (1= d)(K™)? < (KE") < —

Proof. Let P, and P, be the orthogonal projectors onto the subspace F spanned
by the columns of the matrix F in the space (R, |- ||1) and (R™, || - ||2), respectively;
let My =1— Py, My =1— P5. Then

||P1fih\|1
Fpar —
IFRIZ
and
KP \|P2/€h||2
|FRl3
Let P be an orthogonal projector matrix in the space (R™, || - ||) onto a subspace

L C R™. Then for each = € R, ||z||? = | Pz|* + || Mz|? and | Mz|? = ||x — Pz||*> =
inf ||z — y||?. Thus, by Lemma 1.8,
yeL

[Maa]l = yigjfrllfffylli < Jnf [l —yli = | Mz}

and
||M233||2 d 1nf |z — ZUHl = dHMﬂ?Hl
Moreover,
[Pox]|3 = [ll3 — [|Maz]l5 < ||z} — dl| Miz|?
= [Pz + (1 — d)|| Mrz|?
and
[Pox]|3 = dl||} — || Miz||} = d| Pra||} — (1 — d)||Myz|f}.
Hence P ”2
2603 1 2 2
< P, 1—d)||M
||FhH421 dQHFthlL(H lﬁh||1+( )H lﬂh“l)
and thus 1
(KE™)? < (KP4 (1= d)(K™)2),
On the other hand,
P. 2 P, 2 M 2
I 2/€h|lz ;d” mh\ll B (1—d)” 1th|1
IER]l3 IER]I3 [ Ehl}
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and
[ P2kinll3 o lIPisnll?
sup >d
| Fhl3 | FhI}

[Myrn 7
—(1—d)sup ———,
IFRI1T

hence
(KE™)? > d(KP™)? — (1 - d)(K™)2.
O
Remark 2.2. We see that the first inequality in Lemma 2.1 makes sense only
if
d(Kpar)Z o (1 o d)(Kint)Z > 0,
i.e.
(Kpar)2 2 dl(Kint)2 — k‘2((Kint)2 + (Kpar)Q)(Kint)?
It follows that K"t < 1

k
these conditions are fulfilled.

ar\2 kZ(Kint)él
and (KP?)? > T—R2(rmnz: We suppose below that both

Proposition 2.2. Let

1
P2 = 22 TaT
1+ (1 —d)(5wer)
and )
2 2
qg =c int
d=(1-d) 5y

Then O(r) € O(c) € O(q).

Proof. Let p(M) = KP*M?3 + L(KP™)2M*. 1t is sufficient to prove that

K p(M(r)) < c and K§"p(M(q)) > c. But according to Lemma 2.1,

(KB pT ()R = (e < = (1 - d><Kim )2) =<

K par = d2 K par
and
' ~ Kmt 2
KE'p(M(q)) > ¢* <d (1= d)<Kpar) ) =
It is obvious how to complete the proof. O
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