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Abstract. We prove existence and asymptotic behaviour of a weak solutions of a mixed
problem for

(∗)
{

u′′ +Au −∆u′ + |v|�+2 |u|� u = f1

v′′ + Av −∆v′ + |u|�+2 |v|� v = f2

where A is the pseudo-Laplacian operator.
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1. Introduction

In 1987 Medeiros-Miranda [7] proved the existence and uniqueness of weak solu-

tions of the system

(∗∗)
{

�u+ |v|�+2 |u|� u = f1,

� v + |u|�+2 |v|� v = f2, � > −1,

where � = ∂2

∂t2−∆ is the d’Alambertian operator. They proved existence of solutions
for n � 1 (n: spatial dimension) and uniqueness for n = 1, 2, 3. We have studied the

existence of solutions to a system analogous to that in (∗∗), namely

(∗∗∗)
{

u′′ +Au−∆u′ + |v|�+2 |u|� u = f1,

v′′ +Av −∆v′ + |u|�+2 |v|� v = f2,
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where

Aω =
n∑

i=1

∂

∂xi

(∣∣∣∣
∂ω

∂xi

∣∣∣∣
(p−2)

∂ω

∂xi

)
, p > 2.

Many significant variations of the (**) and (***)-problems had been studied by

many authors. Tsutsumi [8] studied the differential equation

u′′ +Au+Bu′ = f

with initial conditions u(0) = u0, u′(0) = u1, where A is a nonlinear operator with

some strong properties and B is a bounded linear operator associated with a bounded
symmetric bilinear form. Biazutti [1] studied the existence of weak solutions of the

initial boundary value problem for the system

u′′ +Au−∆u′ +G1(u′, v′) = f1,

v′′ +Av −∆v′ +G2(u′, v′) = f2,

where A is as before, p � 2 and G1, G2 have some properties as functions of u′

and v′.
(For other authors see references at the end).

2. Notation and main results

Let Ω be a regular bounded domain of �n . Let T > 0 be a real number and

Q = Ω×]0, T [. The norm and inner product in H10 (Ω) and L2(Ω) are denoted by
‖ · ‖, ((·, ·)) and | · |, (·, ·), respectively.
Let X be a Banach space and 1 � p � ±∞.
Then Lp(0, T ;X) is the Banach space of vector X-valued measurable functions

u : ]0, T [→ X such that ‖u(t)‖X ∈ Lp(0, T ).
If 1 � p < +∞, then Lp(0, T ;X) is normed by

‖u‖Lp(0,T ;X) =

(∫ T

0
‖u(t)‖p

X dt

) 1
p

.

In the case p = +∞, we have

‖u‖L∞(0,T ;X) = ess sup
[0,T ]

‖u(t)‖X .

Now we list some results and relations that will be used in the sequel.

2.1 Let n ∈ �, p ∈ �, with n > p, p > 2.
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If −1 < p � 4(1−n+p)
2(n−p−1)+np , then � < 4

np−2 .

2.2 If n ∈ �, e 4n+24+n < p < n, then 4
np−2 � 1

n−p .

2.3 Let n, p and � be as before and let

θ =
2np(�+ 2)

(np− 2)(�+ 2) + 2np(�+ 1)
and γ =

2np(�+ 2)
(np+ 2)(�+ 2)− 2np(�+ 1)

.

Then

i) 1 < θ < �+2
�+1 , ii) 1 < γ � np

n−p , iii) 1
θ +

1
γ = 1.

2.4 Let α = �+2
(�+1)θ , β = �+2

(�+2)−(�+1)θ .

Then

i) α > 1, β > 1, ii) θβ = 2np
np−2 , iii) 1

α +
1
β = 1.

2.5 Let u, v ∈ W 1,p
0 (Ω). Then

i) uv ∈ L�+2(Ω), ii) |v|�+2 |u|� u, |u|�+2 |v|� v ∈ Lθ(Ω).

The proofs of 2.1–2.5 are straightforward and can be found in Castro [3].

3. An existence theorem

Theorem 1. Let n, p and � be as before and suppose that

f1, f2 ∈ L2(0, T ;L2(Ω)),(1)

u0, v0 ∈ W 1,p
0 (Ω),

u1, v1 ∈ L2(Ω).

Then there exist functions u, v : Q → � such that

u, v ∈ L∞(0, T ;W 1,p
0 (Ω)),

u′, v′ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H10 (Ω)),
d
dt
(u′(t), w) + 〈Au(t), w〉 + ((u′(t), w))

+
〈
|v(t)|�+2 |u(t)|� u(t), w

〉
= (f1(t), w), ∀w ∈ W 1,p

0 (Ω)

in the sense of D′(0, T ),

d
dt
(v′(t), w) + 〈Av(t), w〉 + ((v′(t), w))

+
〈
|u(t)|�+2 |v(t)|� u(t), w

〉
= (f2(t), w), ∀w ∈ W 1,p

0 (Ω)
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in the sense of D′(0, T ),

u(0) = u0, u′(0) = u1,

v(0) = v0, v′(0) = v1.

�����. Let {wj}j be a spectral basis of Hs
0(Ω), s > n

(
1
2 − 1

p

)
+ 1, which is

an orthonormal complete system in L2(Ω). Let Vm = [w1, . . . , wm] be a subspace of

Hs
0(Ω) generated by the first m vectors w1, . . . , wm. �

Approximate problem. We consider the system

(u′′m(t), w) + 〈Aum(t), w〉 + ((u′m(t), w)) +
〈
|vm(t)|�+2 |um(t)|� um(t), w

〉
(2)

= (f1(t), w),

(v′′m(t), w) + 〈Avm(t), w〉 + ((v′m(t), w)) +
〈
|um(t)|�+2 |vm(t)|� vm(t), w

〉

= (f2(t), w) ∀w ∈ Vm,

um(0) = u0m → u0, in W 1,p
0 (Ω);

u′m(0) = u1m(0)→ u1, in L2(Ω),

vm(0) = v0m → v0, in W 1,p
0 (Ω);

v′m(0) = v1m(0)→ v1, in L2(Ω).

The system (2) is in the form required by the Caratheodory existence theorem,
so there exists a solution {um(t), vm(t)} of (2) defined in [0, tm[, tm > 0. In what

follows we will obtain some “a priori” estimates that will enable us to extend the
solutions um(t), vm(t) to the interval [0, T ].

Estimate I. In the system (2) we replace w by u′m(t) in equation (2)1, and by

v′m(t) in equation (2)2.

Then adding both the expressions we get

d
dt

{
1
2
|u′m(t)|2 +

1
2
|v′m(t)|2 +

1
p
‖um(t)‖p

0 +
1
p
‖vm(t)‖p

0(3)

+
1

�+ 2
‖um(t)vm(t)‖�+2

L�+2(Ω)

}

+
1
2

(
‖u′m(t)‖2 + ‖v′m(t)‖2

)
� |f1(t)| |u′m(t)|+ |f2(t)| |vm(t)|.
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Now, integration from 0 to t < tm, the inequality ab � 1
2 (a

2 + b2) and the contin-

uous immersion of H10 (Ω) in L2(Ω), implies

1
2
|u′m(t)|2 +

1
2
|v′m(t)|2 +

1
p
‖um(t)‖p

0 +
1
p
‖vm(t)‖p

0(4)

+
1

�+ 2
‖um(t)vm(t)‖�+2

L�+2(Ω) +
1
2

∫ t

0

(
‖u′m(s)‖2 + ‖v′m(s)‖2

)
ds

� c

∫ t

0

(
|f1(s)|2 + |f2(s)|2

)
ds+

1
2
|u′m(0)|2 +

1
2
|v′m(0)|2

+
1
p
‖um(0)‖p

0 +
1
p
‖vm(0)‖p

0 +
1

�+ 2
‖xm(0)vm(0)‖�+2

L�+2(Ω).

(∗) We remember that ‖ · ‖0 means the norm in W 1,p
0 (Ω).

Taking into account hypothesis (1) on f1, f2, (2)3–(2)4 and 2.5, from the above
expression we get

1
2
|v′m(t)|2 +

1
2
|v′m(t)|2 +

1
p
‖um(t)‖p

0 +
1
p
‖vm(t)‖p

0(5)

+
1

�+ 2
‖um(t)vm(t)‖�+2

L�+2(Ω) +
1
2

∫ t

0

(
‖u′m(s)‖2 + ‖v′m(s)‖2

)
ds � C,

where C is a constant independent of t and m.

So, we have:

um(t), vm(t) may be extended to the interval [0, T ],

(um)m, (vm)m are bounded in L∞(0, T ;W 1,p
0 (Ω)),(6)

(u′m)m, (v′m)m are bounded in L∞(0, T ;L2(Ω)),(7)

(u′m)m, (v′m)m are bounded in L2(0, T ;H10(Ω)),(8)

(umvm)m is bounded in L∞(0, T ;L�+2(Ω)).(9)

Furthermore,

(Aum)m, (Avm)m are bounded in L∞(0, T ;W−1,p′(Ω)), because A is(10)

a “bounded” operator, that is, it takes bounded sets into bounded sets.

Estimate II. Now we will obtain an estimate for u′′m, v
′′
m.

To this end we consider the projection operator given by

Pm : L2(Ω) −→ L2(Ω),(11)

h 
−→ Pmh =
m∑

j=1

(h, wj)wj
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and suppose that L2(Ω) is identified with its dual, so that we have the following

sequence of continuous imbeddings:

Hs
0 (Ω) ⊂ W 1,p

0 (Ω) ⊂ H10 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω) ⊂ W−1,p1(Ω) ⊂ H−s(Ω)(12)

Also, W 1,p
0 (Ω) ⊂ Lγ(Ω) and Lθ(Ω) ⊂ W−1,p′(Ω).

By using the imbeddings as in (12), 2.5 and the projection operator, we get from
the approximate problem, in a standard way, that

(13) (u′′m) m, (v′′m) m are bounded in L2(0, T ;H−s(Ω)).

Passage to the limit. As a consequence of (6)–(9) and (13) there exist subse-
quences denoted by (uv) v, (vv) v such that

uν
∗
⇀ u, vν

∗
⇀ ν in L∞(0, T ;W 1,p

0 (Ω)),(14)

u′ν
∗
⇀ u′, v′ν

∗
⇀ v′ in L∞(0, T ;L2(Ω)),

u′ν ⇀ u′, v′ν ⇀ v′ in L∞(0, T ;H10(Ω)),

uνvν
∗
⇀ z in L∞(0, T ;L�+2(Ω)),

u′′ν ⇀ u′′, v′′ν ⇀ v′′ in L2(0, T ;H−s(Ω)),

Auν
∗
⇀ η, Avν

∗
⇀ ξ in L∞(0, T ;W−1,p′(Ω)),

|vν |�+2 |uν|� uν
∗
⇀ λ, |uν |�+2 |vν |� vν

∗
⇀ µ in L∞(0, T ;Lθ(Ω)).

Now, by (14), Aubin-Lions Compactness Theorem and Lion’s Lemma 1.3 (see [5],
[7]), we get

uνvν
∗
⇀ uv in L∞(0, T ;L�+2(Ω)),(15)

|vν |�+2 |uν |� uv
∗
⇀ |v|�+2 |u|� u in L∞(0, T ;Lθ(Ω)),

|uν |�+2 |vν |� vv
∗
⇀ |u|�+2 |v|� v in L∞(0, T ;Lθ(Ω)).

From now on we consider the equation (2)1 in the form

(u′′ν(t), w) + 〈Auν(t), w〉 + ((u′ν(t), w))(16)

+
〈
|vν(t)|�+2 |uν(t)|� uν(t), w

〉
= (f1(t), w)

where w ∈ Vm, ν � m.

Multiplying (16) by ϕ ∈ D(0, T ), integrating from 0 to t and passing to the limit
as ν →∞, we deduce from the convergence in (14) and (15) that

−
∫ T

0
(u′(t), w)ϕ′ dt+

∫ T

0
〈η(t), w〉ϕdt+

∫ T

0
((u′(t), w))ϕdt(17)

+
∫ T

0

〈
|v(t)|�+2 |u(t)|� u(t), w

〉
ϕdt =

∫ T

0
(f1(t), w)ϕdt, ∀w ∈ Vm,
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∀ϕ ∈ D(T ) and, by a density argument, ∀w ∈ W 1,p
0 (Ω), ∀ϕ ∈ D(0, T ).

In a similar way it results from equation (2)2 that

−
∫ T

0
(v′(t), w)ϕ′ dt+

∫ T

0
〈ξ(t), w〉ϕdt+

∫ T

0
((v′(t), w))ϕdt(17′)

+
∫ T

0

〈
|u(t)|�+2 |v(t)|� v(t), w

〉
ϕdt =

∫ T

0
(f2(t), w)ϕdt, ∀w ∈ W 1,p

0 (Ω).

In order to establish the theorem we next prove that Au(t) = η(t), Av(t) = ξ(t).

To this end we suppose the initial conditions u(0) = u0, u′(0) = u1, v(0) = v0 and
v′(0) = v1 are already proved.

Here, as it is known, it is essential to have the strong convergence

(18) u′ν → u′, v′ν → v′ in L2(0, T lL2(Ω)) ≡ L2(Q).

So let us multiply the equation (16) by ϕ ∈ C1([0, T ]) and integrate from 0 to T

obtaining

(u′ν(T ), wϕ(T ))− (u′ν(0), wϕ(0))−
∫ T

0
(u′ν(t), wϕ(t)) dt(19)

+
∫ T

0
〈Auν(t), wϕ(t)〉 dt+

∫ T

0
((u′ν(t), wϕ(t)) dt

+
∫ T

0

〈
|v′ν(t)|�+2 |uν(t)|� uν(t), wϕ(t)

〉
dt =

∫ T

0
(f1(t), wϕ(t)) dt, ∀w ∈ Vm.

Since the set of finite linear combinations of products of the type w ϕ, w ∈ W 1,p
0 (Ω),

ϕ ∈ C1([0, T ]), is dense in V = {v ∈ L2(0, T ;W 1,p
0 (Ω)); v′ ∈ L2(0, T ;L2(Ω))} and

since u ∈ V , by passing to the limit with ν →∞ in the equation (19) we get

(u′(T ), u(T ))− (u′(0), u(0))−
∫ T

0
(u′(t), u′(t)) dt+

∫ T

0
〈η(t), u(t)〉 dt

+
∫ T

0
((u′(t), u(t))) dt+

∫ T

0
‖v(t)u(t)‖�+2

L�+2(Ω) =
∫ T

0
(f1(t), u(t)) dt.

On the other hand, since A is a monotone operator we have

0 �
∫ T

0
〈Auν(t)−Aw, uν(t)− w〉 dt, ∀w ∈ W 1,p

0 (Ω),
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and by a straightforward but lengthy calculation, we conclude

0 � (u′(0), u(0))− (u′(T ), u(T )) +
∫ T

0
|u′(t)2| dt(21)

+
1
2
‖u(0)‖2 − 1

2
‖u(T )‖2 −

∫ T

0
‖u(t)v(t)‖�+2

L�+2(Ω)

+
∫ T

0
(f1(t), u(t)) dt−

∫ T

0
〈η(t), w〉 dt−

∫ T

0
〈Aw, u(t) − w〉 dt,

∀w ∈ W 1,p
0 (Ω).

Next we substitute (20) into (21) to obtain that

(22) 0 �
∫ T

0
〈η(t)−Aw, u(t)− w〉 dt, ∀w ∈ W 1,p

0 (Ω).

From this inequality, as A is a hemicontinuous operator, we have Au(t) = η(t).
In an analogous way we show that Av(t) = ξ(t).

The initial conditions are proved in a standard way (see [3]) and so the proof of
Theorem 1 is complete.

Asymptotic behaviour

In what follows we will consider f1 = f2 = 0 and in this case we can extend the
solution {u, v}, obtained in Theorem 1, to the interval [0,+∞). So in order to study
the asymptotic behaviour of the solution of the problem (∗∗∗) with f1 = f2 = 0, we
first consider the energy of the following approximate problem:

(u′′m(t), w) + 〈Aum(t), w〉 + ((u′m(t), w)) +
〈
|vm(t)|�+2 |um(t)|� um(t), w

〉
= 0,(23)

(v′′m(t), w) + 〈Avm(t), w〉+ ((v′m(t), w)) +
〈
|um(t)|�+2 |vm(t)|� vm(t), w

〉
= 0,

um(0) = u0m → u0, in W 1,p
0 (Ω); u′m(0) = u1m → u1, in L2(Ω),

vm(0) = v0m → v0, in W 1,p
0 (Ω); v′m(0) = v1m → v1, in L2(Ω).

We remember that in this case, um(t), vm(t) may be extended to the whole interval
[0,∞).
We define the energy of the system (23) by

Em(t) =
1
2
|u′m(t)|2 +

1
2
|v′m(t)|2 +

1
p
‖um(t)‖p

0 +
1
p
‖vm(t)‖p

0(24)

+
1

�+ 2
‖um(t)vm(t)‖�+2

L�+2(Ω)
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and it is simple to verify that Em(t) is a decreasing function for t � 0, with 0 �
Em(t) � Em(0), ∀ t � 0.
The study of the behaviour of the energy Em(t) of the system in (23) in the

interval [t, t+1] leads us after a rather lengthy calculation (see [3], [6] for details) to

the inequality

(25) E
2
p′
m (t) � c(Em(t)− Em(t+ 1)).

From (25) and by Nakao’s Lemma [6] we obtain

Em(t) � c(1 + t)−
1
β , ∀ t � 0, where 1

p
+
1
p′
= 1,(26)

2
p′
= 1 + β, β > 0.

The inequality (26) means that the energy of the approximate system (23) has an
algebraic decay.

The next step is to take liminf (m → ∞) in the expression of the approximate
energy Em(t) to obtain

E(t) =
1
2
|u′(t)|2 + 1

2
|v′(t)|2 + 1

p
‖u(t)‖p

0 +
1
p
‖v(t)‖p

0

+
1

�+ 2
‖u(t)v(t)‖�+2

L�+2(Ω) � c(1 + t)−
1
β , ∀ t � 0,

where β is as defined before and given by

β =
2
p′
− 1 > 0.

Therefore the energy associated to the system (∗∗∗) with f1 = f2 = 0 has an algebraic
decay.
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