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GLOBAL STATISTICAL INFORMATION IN EXPONENTIAL

EXPERIMENTS AND SELECTION OF EXPONENTIAL MODELS1

Igor Vajda, Praha, and E. van der Meulen, Leuven

(Received September 17, 1997)

Abstract. The concept of global statistical information in the classical statistical experi-
ment with independent exponentially distributed samples is investigated. Explicit formulas
are evaluated for common exponential families. It is shown that the generalized likelihood
ratio test procedure of model selection can be replaced by a generalized information proce-
dure. Simulations in a classical regression model are used to compare this procedure with
that based on the Akaike criterion.
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1. Introduction

We consider the standard model of asymptotic statistics, i. e. a sequence of parame-

trized product probability spaces (X n,A n, Pn
θ : θ ∈ Θ) for Θ ⊂ �

m . In the family
(Pθ : θ ∈ Θ) of distributions corresponding to the sample size n = 1 all distributions
are supposed to be defined by densities pθ = dPθ/dλ.
This model describes a statistical experiment producing a sequence of data vectors

Xn = (X1, . . . , Xn) with observationsXk i. i. d. by Pθ0 where θ0 is the true parameter
from Θ. In regular models the Fisher formula specifies the amount of information

Iθ0 contained in one observation from this experiment. As is well known, the Fisher
information measures the sensitivity of the distributions Pθ to variations of parameter
θ in the neighborhood of θ0. This information is local in the sense that Iθ0 cannot be

affected by modifications of the distribution Pθ outside open neighborhoods of θ0.

1 Supported by the Czech Academy of Sciences grant 175 402 and by GACR grant
201/96/0415.
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In this paper we are interested in global measures of information reflecting the

structure of the whole family (Pθ : θ ∈ Θ). Intuitively we would like to express
the amount of evidence per observation provided by the experiment in favour of
the hypothesis that the true value is in a given subset S ⊂ Θ. Similarly as in the
local case, this amount of evidence is called briefly information about S. In order
to distinguish this information from the previously mentioned local information, we

call it global information.

Vajda (1997) introduced the global information I(S) = Iθ0(S) as the difference of
asymptotic expected maximum likelihoods achieved on S and its complement, i. e. he

considered

Iθ0(S) = lim
n→∞

E sup
θ∈S

1
n

n∑

k=1

ln pθ(Xk)− lim
n→∞

E sup
θ∈Θ−S

1
n

n∑

k=1

ln pθ(Xk).

He showed that if

E inf
θ∈Θ
ln pθ(X1) > −∞ and E ln pθ(X1) <∞ for all θ ∈ Θ

then this information is well defined by the above formulas for all θ0 ∈ Θ and all
nonvoid open or closed proper subsets S ⊂ Θ. He also proved that then, moreover,

(1) Iθ0(S) = lim
n

1
n
ln

sup
θ∈S

n∏
k=1

pθ(Xk)

sup
θ∈Sc

n∏
k=1

pθ(Xk)
a. s.,

and that one has at one’s disposal simple necessary and sufficient conditions for
consistency of maximum likelihood estimators (MLE’s) and generalized likelihood

ratio tests (GLRT’s) in cases when Iθ0(S) is available for θ0 ∈ Θ and appropriate
open or closed subsets S ⊂ Θ.
In this paper we show by using (1) that in models with exponential densities

one can obtain explicit formulas for Iθ0(S) when θ0 is arbitrary and S is a set of

parameters with reasonably simple boundary ∂S. In Section 3 we prove that the
global information is the minimal Kullback divergence I(θ0, θ) achieved by θ ∈ ∂S,

with the sign + or − depending on whether θ0 is in S or not. In Section 4 we present
formulas for the divergences I(θ0, θ) in all common exponential families. If Θ ⊂ �

then these formulas provide the global information simply by Euclidean projections
of θ0 on ∂S.

In Section 5 we show that in exponential models the generalized likelihood ratio
test of a hypothesis S ⊂ Θ can be formulated as a global information test based on
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the statistic Iθ̂n
(S) where θ̂n is the MLE of θ0. By using this, we show in Section 6

that the “bottom to top” strategy of model selection using the likelihood ratio tests,
applied previously in special statistical models (cf. e. g. Pötscher (1983) and Bauer
et al (1988)), can in the case of an arbitrary exponential model be based on the

global information statistics Iθ̂n
(S1), . . . , Iθ̂n

(SM ) where subsets S1 ⊂ . . . ⊂ SM = Θ
represent possible submodels. The global information selection criterion formulated

at the end of Section 6 in fact differs from the likelihood ratio test criteria, and
also from other familiar “information criteria” (cf. Akaike (1973), Schwartz (1978),

Rissanen (1979), Sahamoto et al (1986), Nishii (1988), Speed and Yu (1993), Berlinet
and Francq (1994), Rydén (1995), Vieu (1995)). We compare this criterion with the

Akaike criterion by means of simulations in a classical nonlinear regression model.
Note that the growing need for new information-theoretic methods of reduction of

complexity of regression models has been stressed not long ago e. g. by E. Ronchetti
in his talk at the 12th Prague Conference, cf. Ronchetti (1994).

2. Basic concepts and results

Exponential families of distributions on X are described by the densities

pθ(x) = a(θ) b(x) eT (x)Q(θ)
t

with respect to a dominating measure λ on X where Q : Θ → �
m is continuous

and invertible, T : X → �
m is measurable, and t denotes the vector transpose

(cf. Lehmann (1986)). These densities can be simplified by the reparametrization

Q(θ) → θ and modification of the dominating measure and the density factor b(x)
into the form

(2) pθ(x) =
eT (x) θ

t

c(θ)
,

where c(θ) = 1/a(Q−1(θ)) for the new parameter θ ∈ �m called a natural parameter.

The function c(θ) is then given by the simple formula

c(θ) =
∫

X

eT (x) θ
t

dλ(x),

where λ is the new dominating measure.

By Hölder’s inequality, c(θ) is convex (even logconvex, i. e. ln c(θ) is convex).
Therefore, the set {

θ ∈ �m : 0 <
∫

X

eT θt

dλ <∞
}

is convex.
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We assume that Θ is nonvoid open and consider the experiment with P = (Pθ :

θ ∈ Θ) where Pθ is defined by the density (2) w. r. t. a σ-finite measure λ. This
experiment is regular in the sense of Brown (1986). Moreover, we assume that for
different θ1 ∈ Θ and θ2 ∈ Θ there is no real c with the property

λ({x ∈ X : T (x) (θ1 − θ2)t �= c}) = 0.

This assumption means that P is not overparametrized (the experiment is minimal
in the sense of Brown (1986)). This implies in particular that all distributions in P

are different and that ln c(θ) has a positive definite Hessian matrix on Θ.
If we denote

d(θ) = ln c(θ), T̂n = T̂n(Xn) =
1
n

n∑

k=1

T (Xk),

then the function

(3) fn(θ) = d(θ) − T̂n θ
t, i. e. fn(θ,Xn) = d(θ) − T̂n(Xn) θt

is convex and the expression behind lim
n
in (1) reduces to

inf
θ∈Sc

fn(θ)− inf
θ∈S

fn(θ),

where Sc = Θ−S. We will be interested in the random variables fn(S) = fn(S,Xn)

defined by
fn(S) = inf

θ∈S
fn(θ)

for various subsets S ⊂ Θ. By means of these variables (1) can be rewritten into the
form

(4) Iθ0(S) = limn
(fn(S

c)− fn(S)) a. s. for S �= ∅, S �= Θ.

As is well known (cf. Brown (1986)), (3) is not only convex but also analytic in the

variable θ ∈ Θ. We draw several useful consequences of this. First, (3) is continuous
on Θ so that inf over S can be replaced by inf over a dense countable subset of S.

This implies that fn(Xn, S) is measurable in Xn, i. e. fn(S) is a random variable for
all sets S considered in (4). This formally justifies the definition (4).

The following assertion follows directly from (4). Note that we extend formulas

(5), (6) in this assertion to all subsets S ⊂ Θ by the convention Iθ0(Θ) = ∞,
Iθ0(∅) = −∞.
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Theorem 1. If for some ∅ �= S �= Θ there exist constants Iθ0(S) and Iθ0(Sc)

satisfying (4) then

(5) Iθ0(S
c) = −Iθ0(S).

If for ∅ �= S1 ⊂ S2 �= Θ there exist constants Iθ0(S1) and Iθ0(S2) satisfying (4) then

(6) Iθ0(S1) � Iθ0(S2).

We will also need some facts concerning the maximum likelihood estimator (MLE)

θ̂n = θ̂n(Xn)
�
= argmin fn(θ).

The maximum likelihood equation ∇ fn(θ) = 0 takes on the form

(7) τ(θ̂n) = T̂n for τ(θ) = ∇ d(θ)

where ∇ = (∂/∂θ1), . . . ∂/∂θm stands for the gradient. As follows from (2),

(8) τ(θ0) = E T̂n = ET.

The assumption of strict convexity of d(θ) implies that τ(θ) is invertible and, by
Theorem 3.6 and formula (2) on p. 145 in Brown (1986), there exist unique solutions

θ̂n ∈ Θ of equation (7).
Let us express the Fisher information m×m matrix by

Iθ = ∇t τ(θ) = ∇t∇d(θ).

By what has been said above, Iθ as the Hessian of ln c(θ) must be positive definite on
Θ, and its elements are obviously continuous on Θ. By applying the Taylor theorem

we get from the maximum likelihood equation

(9) θ̂n = θ0 +
ξ√
n
+ op

(
1√
n

)
for n→∞

where ξ is N(0,I −1
θ0
).

Throughout this paper we denote for any set S ⊂ Θ by S and S0 the relative
closure and interior of S in the subspace Θ of �m , by Sc the above introduced

relative complement and by
∂S = S − S0

the relative boundary.
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In the next lemma we consider the straight line L = L(θ1, θ2) passing through two

different points θ1, θ2 ∈ �m , i. e. we consider the linear subspace of �m defined by

L = {θ1(1− y) + θ2 y : y ∈ �}.

We say that a subset S ⊂ Θ separates θ1 and θ2 if θ1 ∈ S and θ2 ∈ Sc.

Lemma 1. The set L∩∂S is nonempty for every subset S ⊂ �
m which separates

θ1 ∈ Θ and θ2 ∈ Θ.

�����. If θ1 or θ2 belongs to ∂S then the statement holds. Otherwise one of
the points, say θ1, belongs to the relative interior S0 while θ2 belongs to the relative

complement (S)c of the relative closure S, i. e.

(10) L ∩ S0 �= ∅ and L ∩ S �= L ∩Θ.

Suppose now that L ∩ ∂S is empty, i. e. L ∩ (S − S0) = ∅ or, equivalently,

L ∩ S0 = L ∩ S.

Since L ∩ S0 is relatively open and A �
= L ∩ S is relatively closed in the subspace

L ∩ Θ of �m , the last assumption implies that A is simultaneously relatively open
and closed in L ∩Θ. Therefore

A = ∅ or A = L ∩Θ,

which contradicts (10). �

By the strong law of large numbers,

(11) lim
n
fn(θ) = f(θ) for all θ ∈ Θ,

where

f(θ) = d(θ) − (ET ) θt = d(θ)− τ(θ0) θt.

It follows from here for every nonvoid proper subset S ⊂ Θ that

lim sup
n

fn(S) � f(S) for f(S)
�
= inf

S
f(θ).

We can prove a stronger result.
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Lemma 2. For every S ⊂ Θ, S �= ∅, S �= Θ, and the above defined f(S),

lim
n
fn(S) = f(S).

�����. (I) It suffices to prove

lim inf
n

fn(S) � f(S)− ε

for all S under consideration and all ε > 0. To this end we need the fact that the

convergence in (11) is uniform on bounded sets, which follows from the relation

fn(θ)− f(θ) = θ(T̂n − ET ), θ ∈ Θ.

In fact, for bounded S the assertion of Lemma 2 follows directly from here.

(II) For unbounded S we assume for simplicity the existence of points

θ∗ = argmin
S

f(θ) and θ∗n = argmin
S

fn(θ).

Modification of the proof in the case that the infima of f(θ) and fn(θ) are not

attained on S will be obvious. Consider a sphere Sr = Sr(θ∗) ⊂ �
m of radius r > 0

centered at θ∗. Put
A = ∂Sr = {θ ∈ Θ: ‖θ‖ = r}.

Since Sr separates θ∗ and any θ ∈ Sc
r , Lemma 1 implies that for every θ ∈ Sc

r there
exists θ∗ ∈ A and y � 1 such that

θ = θ∗(1− y) + θ∗ y.

Moreover, the convexity of fn implies

fn(θ∗(1 − y) + θ∗ y) � fn(θ∗) (1 − y) + fn(θ∗) y.

Thus if fn(θ∗) < min
A
fn(θ) then

fn(θ) � fn(θ
∗) (1 − y) + fn(θ

∗) y = fn(θ
∗) for all θ ∈ Sc

r .

It follows from here that θ∗n ∈ Sc
r implies fn(θ∗) � min

A
fn(θ). Taking the limits on

both sides and using the uniform convergence in (11) established in part (I), we get

f(θ∗) � min
A

f(θ).
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But the last minimum strictly exceeds f(θ∗) due to the strict convexity of f at θ∗.

Therefore, all but finitely many θ∗n are a. s. in the sphere Sr. If however this happens
then

lim inf
n

fn(θ∗n) � limn inf
Sr∩Θ

fn(θ) = inf
Sr∩Θ

f(θ),

where the second relation follows from the above mentioned uniform convergence in

(11). The last infimum can be made greater than f(θ∗)− ε for any ε > 0 by taking
the diameter sufficiently small. �

In the rest of the paper we consider the I-divergence of distributions Pθ0 , Pθ

(information divergence, Kullback–Leibler number, see Kullback (1959) or Liese and
Vajda (1987))

I(θ0; θ) =
∫
pθ0(x) ln

pθ0(x)
pθ(x)

dλ(x).

It follows from (2) that for the exponential models under consideration

(12) I(θ0; θ) = f(θ)− f(θ0) = d(θ) − d(θ0)− τ(θ0) (θ − θ0)t.

By combining (12) with Lemma 2 and (4) we obtain the following result.

Lemma 3. For every parameter set S

Iθ0(S) = inf
θ∈Sc

I(θ0; θ)− inf
θ∈S

I(θ0; θ)

=

{
inf

θ∈Sc
I(θ0; θ) if θ0 ∈ S

− inf
θ∈S

I(θ0; θ) if θ0 ∈ Sc,

where I(θ0; θ) is given by (12) and inf ∅ =∞.

The next assertion can obviously be applied in Lemma 3.

Lemma 4. If ∅ �= S ⊂ Θ and θ0 ∈ Sc then the boundary ∂S is nonempty and

inf
θ∈S

I(θ0; θ) = inf
θ∈∂S

I(θ0; θ).

�����. Consider an arbitrary θ∗ ∈ S. It suffices to prove that there exists
θ∗ ∈ ∂S such that

I(θ0; θ∗) � I(θ0; θ∗).
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Since S separates θ0 and θ∗, Lemma 1 implies that the set L = L(θ0, θ∗) has a

nonvoid intersection with the relative boundary ∂S. Thus there exist θ∗ ∈ L ∩ ∂S
and η � 1 such that

θ∗ = θ0(1− η) + θ∗ η.

Further, since I(θ0; θ) is convex in the variable θ ∈ Θ,

ϕ(y) = I(θ0; θ0(1− y) + θ∗ y)

is convex in the domain y � 0 with ϕ(0) = 0. Therefore

I(θ0, θ∗) = ϕ(η) � ϕ(0) (η − 1) + ϕ(1) η � ϕ(1) = I(θ0, θ∗).

�

Now we can summarize the previous auxiliary results as follows.

Theorem 2. For every subset S ⊂ Θ different from ∅ and Θ, the global informa-
tion Iθ0(S) is equal to

± inf
θ∈∂S

I(θ0; θ) = ±
[
inf
∂S

f(θ)− f(θ0)
]

= ±
[
inf

θ∈∂S
(d(θ) − τ(θ0) θt)− (d(θ0)− τ(θ0) θ0

t)
]
,

where the sign+ takes place if θ0 ∈ S and− in the opposite case, and ∂S is nonempty.

�����. Clear from Lemmas 3 and 4. �

Note that the boundary ∂S coincides with the boundary ∂(Sc) of the complement.

Thus the global information Iθ0(S) is zero if and only if Iθ0(S
c) is zero and this

is equivalent to θ0 ∈ ∂S. If θ0 is in the interior S0 then the global information

is positive, and if θ0 is in the interior (Sc)0 of the complement then the global
information is negative.

������	
��	. The global information Iθ0(S) characterizes the likelihood as
to whether the unknown parameter θ0 is in the set S. Within its range [−∞,+∞],
this information respects the intuitively appealing monotonicity and skew-symmetry
rules of Theorem 1. It can be computed by means of Theorem 2.
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3. Explicit formulas

In this section we evaluate the I-divergence (12) for the common exponential
models. For univariate parameters these formulas enable us to evaluate explicitly

the global information by employing the following result.

Theorem 3. If Θ ⊂ � and

(13) θ1 = argmin
∂S

|θ0 − θ|

minimizes the distance between θ0 and the boundary ∂S then

(14) Iθ0(S) =

{
I(θ0; θ1) if θ0 ∈ S
−I(θ0; θ1) if θ0 ∈ Sc.

�����. If θ is real-valued then the convexity of ϕ(θ) = I(θ0; θ) implies that

ψ(θ) =
ϕ(θ)− ϕ(θ0)

θ − θ0
=

ϕ(θ)
θ − θ0

is increasing in the domain Θ−{θ0}. Thus ϕ(θ)/(θ− θ0) is increasing in the domain
θ > θ0 and ϕ(θ)/(θ0 − θ) decreasing in the domain θ < θ0. In other words, the
functions

ϕ(θ) = I(θ0; θ) and |θ − θ0|

are isotone on the whole domain Θ. Consequently, the minimization of Euclidean

distance means the minimization of the I-divergence and vice versa. This together
with Theorem 2 implies (14). �

Note that some formulas are listed below also for bivariate θ = (ϑ1, ϑ2). In
the multivariate case, I(θ0; θ) usually, but not always, increases with the Euclidean

distance ‖θ − θ0‖. Therefore in this case Theorem 3 with |θ0 − θ| in (13) replaced
by ‖θ0 − θ‖ need not be true, and the formulas given below have to be inserted into
Theorem 2. If the boundary ∂S is defined by means of a differentiable function, then
these formulas can be combined with the Lagrange multipliers method.

Binomial model with a natural parameter θ ∈ �. Here λ is supported by

X = {0, 1, . . . , n}. For every x ∈ X

λ(x) =

(
n

x

)

32



and

pθ(x) =
eθx

(1 + eθ)n
= px(1 − p)n−x for p =

eθ

1 + eθ
.

From (12) we obtain

I(θ0; θ) = n

[
(θ0 − θ) eθ0

1 + eθ0
+ ln

1 + eθ

1 + eθ0

]

and

I(p0; p) = n

[
p0 ln

p0
p
+ (1− p0) ln

1− p0
1− p

]
.

Poisson model with a natural parameter θ ∈ �. The support of λ is X =
{0, 1 . . .} and for every x ∈ X we have

λ(x) =
1
x!

and

pθ(x) =
eθx

eeθ
=
τx

eτ
for τ = eθ.

By (12) we infer

I(θ0; θ) = (θ0 − θ) eθ0 + eθ − eθ0

and

I(τ0; τ) = τ0

(
τ

τ0
− 1− ln τ

τ0

)
.

Geometric model with a natural parameter θ > 0. Here λ is counting with the
same support X as above. For every x ∈ X we have

pθ(x) = (1− e−θ) e−θx = (1− p) px for p = e−θ.

It follows from (12) that

I(θ0; θ) =
θ − θ0
eθ0 − 1 + ln

1− e−θ0

1− e−θ

and

I(p0; p) =

(
p0 ln

p0
p
+ (1 − p0) ln

1− p0
1− p

)/
(1 − p0).
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Negative binomial model with a natural parameter θ > 0. The space X is as

before and, for every x ∈ X ,

λ(x) =

(
r + x− 1

x

)
, pθ(x) = (1 − e−θ)r e−θx,

where r > 0 is given in advance and fixed. The common parameter p is the same as

in the previous example. We obtain from (12) that

I(θ0; θ) = r

(
θ − θ0
eθ0 − 1 + ln

1− e−θ0

1− e−θ

)

and

I(p0; p) = r

(
p0 ln

p0
p
+ (1− p0) ln

1− p0
1− p

)/
(1− p0).

Now we turn to continuous exponential models. The simplest of these models is
given for θ > 0 by the density

pθ(x) = θ e
−θx

with respect to the restriction λ of the Lebesgue measure on X = (0,∞). This is
the common exponential distribution. Here (12) implies

I(θ0; θ) =
θ

θ0
− 1− ln θ

θ0
.

Normal model with natural parameters (ϑ1, ϑ2) ∈ � × (0,∞). The dominating
measure λ is the Lebesgue one on X = � and, for every x ∈ �,

pθ1,θ2(x) =
eϑ1x−ϑ2x

2

√
�

ϑ2
e
1
4ϑ21/ϑ2

=
1√
2�σ
e−

(x−µ)2

2σ2 for µ =
ϑ1
2ϑ2

, σ =
1√
2ϑ2

.

By (12),

I((ϑ01;ϑ02); (ϑ1, ϑ2)) =
ϑ01(ϑ01 − ϑ1)
2ϑ02

+

[(
ϑ01
2ϑ02

)
− 1
2ϑ02

]
(ϑ02 − ϑ2)

+
1
2
ln
ϑ02
ϑ2
+

ϑ21
4ϑ2

− ϑ201
4ϑ02

so that

I((µ0, σ0); (µ, σ)) =
1
2

[
(µ− µ0)2

σ2
+
σ20
σ2

− 1− ln σ
2
0

σ2

]
.
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Here inf
σ>0

I((µ0, σ0); (µ, σ)) is attained at σ2 = (µ− µ0)2 + σ20 and

(15) inf
σ>0

I((µ0, σ0); (µ, σ)) =
1
2
ln

(
1 +
(µ− µ0)2

σ20

)
.

��
��� 1. It follows from the invariance of the I-divergence with respect to
sufficient transformations that the I-divergence in the model (Pθ T

−1 : θ ∈ Θ) for
the one-to-one mapping T (x), x ∈ X , coincides with that in the model (Pθ : θ ∈ Θ).
This is illustrated by the following model.

Lognormal model with natural parameters (ϑ1, ϑ2) ∈ � × (0,∞). The domi-
nating measure λ is concentrated on S = (0,∞) where it has the density 1/x with
respect to the Lebesgue measure. For every x ∈ S,

pϑ1,ϑ2(x) =
eϑ1 log x−ϑ2x

2

√
�

ϑ2
e
1
4ϑ21/ϑ2

=
1√
2�σ
e−

(log x−µ)2

2σ2 for µ =
ϑ1
2ϑ2

, σ =
1√
2ϑ2

.

Here I((ϑ01;ϑ02); (ϑ1, ϑ2)) and I((µ0, σ0); (µ, σ)) are the same as in the normal
model.

Gamma model with natural parameters (ϑ1, ϑ2) ∈ (−1,∞)× (0,∞). Here λ is
the Lebesgue measure restricted to the same X as above and, for every x ∈ S,

pϑ1,ϑ2(x) =
eϑ1 log x−ϑ2x

Γ(ϑ1 + 1)/ϑ
ϑ1+1
2

=
τr

Γ(n)
xn−1e−τx for n = ϑ1 + 1, τ = ϑ2.

It follows from (12) that

I((θ1, ϑ02); (ϑ1, ϑ2)) = (ϑ1 + 1)

(
ϑ2
ϑ02

− 1− ln ϑ2
ϑ02

)

and

I((n, τ0); (n, τ)) = n

(
τ

τ0
− 1− ln τ

τ0

)
.

Beta model with natural parameters ϑ1, ϑ2 > −1. Here λ is the restriction of
the Lebesgue measure on the interval X = (0, 1) and, for every x ∈ X ,

pϑ1,ϑ2(x) =
eϑ1 log x+ϑ2 log(1−x)

B(ϑ1 + 1, ϑ2 + 1)
=
xa−1(1− x)b−1

B(a, b)
for a = ϑ1 + 1, b = ϑ2 + 1.
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We obtain from (12)

I((a0, b0); (a, b)) = ln
B(a, b)
B(a0, b0)

+B′1(a0, b0) (a0 − a) +B′2(a0, b0) (b0 − b)

where B′1(x, y) = ∂B(x, y)/∂x and B′2(x, y) = ∂B(x, y)/∂y. Consider the so-called

digamma function defined by

ψ(x) =
d
dx
ln Γ(x), x > 0,

and satisfying the relation

ψ(x) − ψ(y) = (x− y)
∞∑

j=0

1
(j + x) (j + y)

, x, y > 0

(see Spanier and Oldham (1987)). By virtue of the formulaB(x, y) = Γ(x) Γ(y)/r(x+

y) and the function

ϕ(x, y) = y
∞∑

j=0

1
(j + x) (j + x+ y)

,

the I-divergence of two Beta distributions can be expressed as

ln
B(a, b)
B(a0, b0)

−B(a0, b0) [ϕ(a0, b0) (a0 − a) + ϕ(b0, a0) (b0 − b)] .

The I-divergences in the next three models can be obtained from the formula for

the Gamma model with n = 1
2 , 1 and

3
2 , by using Remark 1 for T (x) =

√
x.

Modular model with natural parameter θ > 0. The dominating measure is the
Lebesgue one on X = (0,∞) and

pθ(x) =
e−θ x2/2

√
�

2θ

and

I(θ0; θ) =
1
2

(
θ

θ0
− 1− ln θ

θ0

)
.

Rayleigh model with natural parameter θ > 0. Here the dominating λ has
density x with respect to the Lebesgue measure on the same X as above,

pθ(x) = θ e−θ x2/2
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and

I(θ0; θ) =
θ

θ0
− 1− ln θ

θ0
.

Maxwell model with natural parameter θ > 0. Here the density of the dominat-
ing measure is x2 on X = (0,∞),

pθ(x) =
e−θ x2/2

√
�

2θ3

and

I(θ0; θ) =
3
2

(
θ

θ0
− 1− ln θ

θ0

)
.

4. Testing of hypotheses

In this section we consider a hypothesis and an alternative

H : θ0 ∈ S and A : θ0 ∈ Sc

being tested on the basis of data Xn in the general exponential model (2). The set
S of parameters is supposed to be arbitrary, different from ∅ and Θ. By Lemma 4,
the boundary ∂S is then nonempty.
We investigate the global information test (GIT) based on the global information

statistic

Γn = Iθ̂n
(S) =




inf

θ∈∂S
I(θ̂n, θ) if θ̂n ∈ S

− inf
θ∈∂S

I(θ̂n, θ) otherwise,

where θ̂n = θ̂(Xn) is the MLE defined by (7), which is rejecting H if and only if

(16) Γn � εn.

Further, we consider the generalized likelihood ratio test (GLRT) based on the sta-

tistic

Λn =
sup

S
en(T̂n θ

t − d(θ))

sup
Θ
en(T̂n θ

t − d(θ))
=



sup

S
eT̂ θt−d(θ)

sup
Θ
eT̂nθt−d(θ)




n

,

where T̂n = T̂n(Xn) is the same as in (3), which is rejecting H if and only if

(17) Λn � λn.
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Unless otherwise stated, εn and λn are arbitrary real sequences.

Lemma 5. For every S under consideration,

Λn =

{
1 if θ̂n ∈ S
enΓn if θ̂n ∈ Sc.

�����. By definition, (7) and (11) we have

(Λn)1/n =
sup

S
eτ(θ̂n) θ

t−d(θ)

sup
Θ
eτ(θ̂n) θt−d(θ)

=
sup

S
eτ(θ̂n) θ

t−d(θ)

eτ(θ̂n) θ̂t
n−d(θ̂n)

= sup
S
ef(θ̂n)−f(θ) = sup

S
e−I(θ̂n;θ)

= e
− inf

S
I(θ̂n;θ)

.

The desired equality follows from the fact that I(θ̂n; θ̂n) = 0 minimizes I(θ̂n; θ) on
S and that, by Lemma 2,

− inf
S
I(θ̂n; θ) = Iθ̂n

(S) if θ̂n ∈ Sc.

�

��
��� 2. This lemma implies that the global information statistic Γn contains
in some sense more information about the unknown parameter θ0 than the GLR Λn.

Namely, Λn = Ψn(Γn) where

Ψn(y) = en y(−∞,0)(y) + [0,∞)(y), y ∈ �,

while Γn cannot be obtained from Λn when Λn = 1, i. e. the nonnegative values of
Γn cannot be reconstructed from the statistic Λn.

The next result implies that GIT can always be at least as good as the well known
GLRT. We see that εn given by (18) is from the subset [−∞, 0)∪{∞} of the extended
real line. In fact, the critical values εn ∈ [0,∞] are of a limited practical importance
since they lead to unpleasant behaviour of probabilities P(Γn � εn) for θ0 close to

the boundary of S. This is reflected in Theorem 5 below, where only negative εn are
allowed. Therefore the advantages of GIT over GLRT mentioned in Remark 2 and
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Theorem 4 are interesting rather from the theoretical than from the practical point

of view.

Theorem 4. (i) If

(18) εn = −∞(−∞,0](λn) + (0,1)(λn)
1
n
lnλn +∞[1,∞)(λn)

then GIT and GLRT coincide in the sense that the event (17) is equivalent to (16).

(ii) If εn ∈ [0,∞) then GLRT cannot coincide with GIT, i. e. (17) is for no −∞ �
λn � ∞ equivalent with (16).

�����. If λn ∈ (0, 1) then (18) implies

εn =
1
n
lnλn or λn = e

n εn

and it follows from Lemma 5 that (16) holds, if and only if (17) takes place, i. e. in

this case (i) holds, too. If εn ∈ [0,∞) then (17) is not equivalent (16) in the models
with P(Γn > 0) > 0, and such models obviously exist. Thus (ii) holds as well. �

The following fact is well known for many particular exponential models and com-

mon hypotheses S, like intervals or rectangles. GLRT’s of one-sided or two-sided
hypotheses about the mean of normal model, with known or unknown variances, are

perhaps the best known examples.

Corollary. The generalized likelihood ratio statistic is, for every S under consid-
eration and for the MLE θ̂n, given by the formula

Λn = exp
{
−n inf

θ∈∂S
I(θ̂n; θ)

}

= exp
{
−n
[
inf
∂S
(d(θ) − τ(θ̂n) θt)− (d(θ̂n)− τ(θ̂n) θ̂t

n)
]}

unless θ̂n ∈ S, in which case Λn = 1.

�����. Clear from Theorem 2 and Lemma 5. �

The next result is not principially new, either. It follows by the equivalence in part

(i) of Theorem 4 from the familiar consistency of GLRT (cf. e. g. Lehmann (1986)).
What might be of interest is the full generality of the model and hypothesis and a

relatively simple proof. Recall also that the consistency of tests is considered in this
paper in a slightly stronger form than in Lehmann (1986). By the consistency of

GIT we mean that the asymptotic power of the test (16) is 1, i. e.

(19) lim
n
πn = 1 if θ0 ∈ Sc
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for

πn = P(Γn � εn),

and the asymptotic size is zero, i. e.

(20) lim
n
πn = 0 if θ0 ∈ S.

In Lehmann (1986), the limit condition of (20) is replaced by lim sup
n

πn � α for a

given 0 < α < 1.

Theorem 5. If εn ↑ 0 and n εn → −∞ as n→∞, then the GIT is consistent for
all hypotheses H with S relatively closed in the subspace Θ ⊂ �

m . More precisely,

εn ↑ 0 implies (19) and n εn → −∞ implies (20).

�����. In the trivial cases S = ∅ or S = Θ the statement is obviously true.
Let us therefore suppose S �= ∅ and S �= Θ. (I) The strong law of large numbers
together with (7) and (8) implies the strong consistency of the MLE θ̂n. Further, by
Theorem 2 we have in the notation of Lemma 1

|Iθ̂n
(S)− Iθ0(S)| � |fn(∂S)− f(∂S)|+ |fn(θ̂n)− f(θ0)|.

Lemma 1 and the strong consistency of θ̂n now imply

(21) lim
n
Iθ̂n
(S) = Iθ0(S) a. s.

(II) Since Sc is relatively open, θ0 ∈ Sc implies Iθ0(S) < 0 so that (19) follows for

all εn = o(1) from (21).
(III) By the Bayes formula we obtain

πn = P
(
Iθ̂n
(S) � εn | θ̂n ∈ S

)
P(θ̂n ∈ S)

+ P
(
Iθ̂n
(S) � εn | θ̂n ∈ Sc

)
P(θ̂n ∈ Sc),

where Iθ̂n
(S) � 0 for θ̂n ∈ S so that the first probability is zero and

πn = P
(
Iθ̂n
(S) � εn | θ̂n ∈ Sc

)
P(θ̂n ∈ Sc).

(IV) Let us suppose θ0 ∈ S. If θ0 is in the interior S0 then the consistency of θ̂n

implies lim
n
P(θ̂n ∈ Sc) = 0 so that (20) holds. Let us therefore suppose θ0 ∈ ∂S. If

θ̂n ∈ S then Iθ̂n
(S) � 0 and

P
(
Iθ̂n
(S) � εn

)
= 0.
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If θ̂n ∈ Sc then Iθ̂n
(S) = − inf

θ∈∂S
I(θ̂n; θ) � −I(θ̂n; θ0) and

P
(
Iθ̂n
(S) � εn

)
� P
(
−I(θ̂n; θ0) � εn

)

= P
(
I(θ̂n; θ0) � −εn

)
.

By applying the Taylor theorem to (11) we get for all θ1, θ2 ∈ Θ

I(θ1; θ2) =
1
2
(θ1 − θ2)Iθ(θ1 − θ2)t,

where Iθ is the Fisher information introduced in Section 2 and θ is a point between

θ1 and θ2. By inserting (9) in the last formula we get for n→∞

I(θ̂n; θ0) =
1
2n

ξIθ0 ξ
t + op

(
1
n

)

=
1
2n

(
I

1
2

θ0
ξt
)t (

I
1
2

θ0
ξt
)
+ op

(
1
n

)

=
ηm

2n
+ op

(
1
n

)
,

where ηm is chi-square distributed with m degrees of freedom. We see that if n εn →
−∞ then

lim
n
P(I(θ̂n; θ0) < −εn) = 1.

�

It follows from the last proof that if

εn = −
χ2m(1− α)
2n

,

where χ2m(1−α) is the (1−α)-quantile of χ2m, then the GIT is asymptotically α-level
in the sense that θ0 ∈ S implies lim sup

n
πn � α. If the term op(1/n) is of stochastic

order 1/n uniformly for all θ0 ∈ S (in fact, for all θ0 ∈ ∂S only) then the GIT is

asymptotically uniformly α-level in the sense

lim sup
n

sup
θ0∈S

Pθ0

(
Iθ̂n

� εn

)
� α,

where Pθ0 denotes the dependence of P on the true parameter θ0 ∈ Θ. By Theorem 6,
this test is then also unbiased in the sense that θ0 ∈ Sc implies

lim inf
n

[
πn − sup

θ0∈S
πn

]
� 0.
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���
��� 1. Let us consider in the normal model with unknowns µ0 and σ0 the

hypothesis H : µ0 � c. Here the MLE θ̂n = (µ̂n, σ̂n) is given by the formulas

µ̂n =
1
n

n∑

i=1

Xi and σ̂2n =
1
n

n∑

i=1

(Xi − µ̂n)2

and ∂S is the halfline {µ, σ : µ = c and σ > 0}. By (15),

inf
(µ,σ)∈∂S

I((µ̂n, σ̂n); (µ, σ)) =
1
2
ln

(
1 +
(µ̂n − c)2

σ̂2n

)
.

Thus H is rejected by the GIT with a negative εn if and only if

µ̂n > c and
1
2
ln

(
1 +
(µ̂n − c)2

σ̂2n

)
� −εn (cf. (16)),

i. e.

µ̂n > c and

∣∣∣∣
√
n (µ̂n − c)
sn

∣∣∣∣ � Kn

where

sn =

√√√√ 1
n− 1

n∑

i=1

(Xi − µ̂n)2 and Kn =
√
(n− 1) (e−2εn − 1).

Since
√
n (µ̂n − c)/sn � Tn for every µ0 � c where Tn

�
=
√
n (µ̂n − µ0)/sn is t-

distributed with n− 1 degreees of freedom, the choice of the (1− α)-quantile

Kn = tn−1(1− α)

guarantees for every n the test size α, and the asymptotic power 1. The GIT rejection
rule becomes

√
n (µ̂n − c) � sn tn−1(1 − α) for all 0 < α < 1/2,

and the test is (nonasymptotically) uniformly α-level and unbiased.
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5. Selection of models

As is well known, all dominated statistical models with densities regular in the
Dynkin sense can be approximated by an exponential model of sufficiently high

dimension m. In this section we apply the results of Section 4 in order to obtain
statistical rules enabling us to reduce the dimension m of exponential models, or the

scope of the parameter space Θ, or simultaneously both. In order to avoid confusion
with terminology developed in other areas of statistics, we speak in this section about

decision rules instead of selection rules.

For j = 1, . . . ,M let us consider a sequence of hypotheses

Hj : θ0 ∈ Sj , where S1 ⊂ S2 ⊂ . . . ⊂ SM

are subsets of Θ relatively closed in Θ. Put S0 = ∅ and SM+1 = Θ . We are interested
in measurable decision rules Φ: X n → {1, . . . ,M +1} where Φ(Xn) = j decides on

the submodel (pθ : θ ∈ Sj). For every θ0 ∈ Θ the decision Φn = Φ(Xn) is errorless
if and only if

Φn = min {j : θ0 ∈ Sj} ≡
M∑

j=0

1Sc
j
(θ0).

Thus the probability of error is given by the formula

(22) P (Φn, θ0) = P
(
Φn �=

M∑

j=0

1Sc
j
(θ0)

)

for all rules Φ and true parameters θ0 ∈ Θ.
A decision rule Φ is said to be consistent if

lim
n
P (Φn, θ0) = 0 for all θ0 ∈ Θ.

Consistent decision rules for selection of reduced models have been studied under

special assumptions by several authors, cf. Bauer et al (1988), Nishii (1988) and
others cited in Section 1. In this section we show that the selection criteria based

on the GLRT’s applied subsequently to the hypotheses H1, . . . ,HM , with critical
values λn determined by the penalty terms, can in the case of exponential models

be interpreted, and also practically realized, as information criteria using the global
information statistics.

Let

Γn,j = Iθ̂n
(Sj), j = 0, . . . ,M
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be the global information statistics introduced in the previous section, satisfying the

obvious inequalities

−∞ ≡ Γn,0 < Γn,1 � . . . � Γn,M+1 ≡ ∞.

We will be interested in the global information rules (GIR’s), defined by means of
real valued sequences εn as follows:

(23) Φn = max{j : Γn,j � εn}+ 1 ≡ min{j : Γn,j > εn}.

This means that the GIR decides on the first of the hypotheses H0,H1, . . . ,HM+1

which is not rejected by the GIT rule (16). Since H0 is always and HM+1 never
rejected, the GIR is well defined by (23).

Theorem 6. If εn satisfies the assumptions of Theorem 5 then the GIR (23) is

consistent.

�����. Let θ0 ∈ Θ be arbitrary, define

k =
M∑

j=0

1Sc
j
(θ0)

and consider the events

An = {Γn,k−1 > εn},

Bn =

{
{Γn,k � εn}if k < M

∅if k =M + 1.

The order in the statistics Γn,j implies that the events An, Bn are disjoint and, for
θ0 and Φn under consideration,

(24) P (Φn, θ0) = P(An) + P(Bn).

If πn is defined as in Section 4 then there exists 1 � j < k such that 1 − P(An) is

the power πn of the GIT (16) for H =Hj , i. e.

P(An) = 1− πn for S = Sj, θ0 ∈ Sc
j ,

and P(Bn) is the size of the GIT (16) for H =Hk, i. e.

P(Bn) = πn for S = Sk, θ0 ∈ Sk.

By Theorem 5, it follows from here that the sum (24) tends to zero as n→∞. �
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���
��� 2. In the model of Example 1 let M = 1 and S1 = {µ, σ : µ � c}.
Let us first consider θ0 ∈ S1. Then P(An) = 0 and it follows from Example 1 that

P(Bn) � P
(∣∣∣∣
√
n(µ̂n − µ0)

sn

∣∣∣∣ �
√
(e−2εn − 1) (n− 1)

)
.

Since e−2εn − 1 = 2|εn| + o(εn), lim
n
n |εn| → ∞ assumed in Theorem 5 implies

that also the limit of (24) is zero. If θ0 ∈ Sc
1, i. e. µ0 > c, then P(Bn) = 0 and

P(An) � P(θ̂n ∈ S1) = P(µ̂n � c), where the last probability tends to zero by
the law of large numbers. Thus again the limit of (24) is zero. If the problem is

reformulated for S1 = {µ, σ : µ = 0, σ > 0} or S1 = {µ, σ : µ = σ, σ > 0} then
we have a problem of dimension reduction. Here again the decision rule (23) is

consistent.

Let us now consider M = m − 1 and let Sj be the subspace {θ = (ϑ1, . . . , ϑ2) ∈
Θ: ϑj+1 = . . . = ϑm = 0} so that the reduced model (pθ : θ ∈ Sj) is of dimension

j, 1 � j < m. If there exists 1 � j < m such that the true parameter values θ0
are restricted to the subspace Sj (i. e. if θ0 ∈ Sm−1), then the rule described by

Theorem 6 leads to the simplest possible reduced model with the asymptotically
negligible error.

But even if the hypothesis Hm−1 : θ0 ∈ Sm−1 is false, the viewpoint of model
simplicity leads to the need to consider the reduced models of dimensions 1 � j < m.

A submodel (Pθ : θ ∈ Sk) is acceptable if the true value θ0 is in a close neighborhood
of Sk (the hypothesis H ∗

k ) and if all similarly defined hypotheses H ∗
j , 1 � j < k,

are false.
We adopt this approach, with the global informations Iθ0(Sj) serving as measures

of proximity of θ0 and Sj . Therefore we consider for a small τ > 0 the hypotheses

Hj : Iθ0(Sj) � −τ for 1 � j � m− 1.

These hypotheses coincide with the above considered Hj for Sj replaced by

S∗j = {θ ∈ Θ: Iθ(Sj) � −τ}.

Further, (12) implies for every θ1, θ2 and θ

I(θ1; θ)− I(θ2; θ) = I(θ1; θ2) + (τ(θ2)− τ(θ1)) (θ − θ2)t

so that ‖θ1 − θ2‖ → 0 implies ‖argminS I(θ1; θ) − argminS I(θ2; θ)‖ → 0 for convex
sets S = Sj = ∂Sj . It follows from here that the sets S∗j are relatively closed in Θ.
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Thus Theorem 6 implies that the criterion of dimension reduction defined by (23)

with Γn,j replaced by
Γ∗n,j = Iθ̂n

(S∗j )

is asymptotically errorless provided that εn figuring in (23) satisfy the assumptions

of Theorem 5.
An open problem in the just formulated criterion is the numerical evaluation of

Iθ̂n
(S∗j ). Since the boundaries ∂S

∗
j are not as simple as ∂Sj,

inf
∂S∗j

I(θ̂n; θ) = ±Iθ̂n
(S∗j )

are less easily evaluated than

inf
∂Sj

I(θ̂n; θ) = −Iθ̂n
(Sj) a. s. for θ0 ∈ Sc

m−1.

Therefore we formulate an alternative criterion based just on the statistics Iθ̂n
(Sj).

In the rest of the paper we use the notation

(25) Ij = |Iθ0(Sj)|, ∆ Ij = Ij − Ij+1, ϕ(j) =
∆ Ij
Ij

and

(26) Γn,j = |Iθ̂n
(Sj)|, ∆Γn,j = Γn,j − Γn,j+1, ψ(j) =

∆Γn,j

Γn,j
.

Since we restrict ourselves to θ0 ∈ Sc
m−1, functions Ij and Γn,j are decreasing in the

domain 1 � j � m− 2.
Let us first consider for some δn > 0 the decision criterion

(27) Φn = min{j : Γn,j < τ + δn} (cf. (23)).

By (22), probability of error is defined by the formula

P (Φn, θ0) = P(Φn �= max{j : Ij � τ})

and Theorem 6 implies the following result.

Theorem 7. If the sequence εn = −δn satisfies the assumptions of Theorem 5
then

lim
n
P (Φn, θ0) = 0 for every θ0 ∈ Sc

m−1.
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The disadvantage of this information criterion is that the decisions Φn depend very

strongly on the parameter τ > 0, so that the models chosen for, say, τ = 10−1 and
τ = 10−2 are often different. Therefore we make precise a variant of this criterion
using local minima of the relative increments ψ(j).

Let ψ(j), 1 � j � m − 1 be the function defined by (26). If this function has
no local minimum in the subdomain 1 < j < m − 1 then we put Φn = m − 1.
Otherwise Φn equals the largest local minimum point 1 < j < m − 1. This is the
global information criterion (GIC) to which we refer in the sequel.

If 1 < k < m− 1 is a local minimum of ψ(j) then the values Γn,j decrease rapidly

(exponentially) in the domain j1 � j � k and slowly in the domain k < j � j2 where
1 � j1 < k and k < j2 � m − 1 are the closest local maxima of ψ(j). This means
that if k is the largest local minimum then Γn,k can be expected to be small. By
(21), for large n this means that with a high probability Ik will be small, i. e. that
the hypothesis H ∗

k with a small τ > 0 will be very likely.

The GIC obviously differs from the information criterion proposed by Akaike

(1973) (AIC, see also the references given in Section 1). It also differs from the
other familiar criteria mentioned in Section 1. In the rest of section we consider an
example serving for the demonstration of properties of the AIC throughout the book

of Sahamoto et al. (1986). We will see that in this example the decision of GIC
coincides with that of AIC.

���
��� 3. Let us consider the sample space X = (0, 1) × � and the expo-

nential density

pθ(x1, x2) =
1√
2�σ2

e−[x2−µ(x1,a)]
2/2σ2 , θ = (σ,a) ∈ (0,∞)× �

21 ,

on this space, where a = (a0, a1, . . . , a20) and

µ(x,a) = a0 +
10∑

r=1

[a2r−1 sin(2�rx) + a2r cos(2�rx)].

The vector θ from Θ = (0,∞) × �
21 ⊂ �

22 is assumed to be organized into 11
bivariate components ϑ1, . . . , ϑ11, where

ϑ1 = (σ, a0) ∈ (0,∞)× �

and

ϑr+1 = (a2r−1, a2r) ∈ �2 for 1 � r � 10.
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By the result of the fifth example of Section 3, we have for θ0 = (σ0,a0) and

θ = (σ,a) that

I(θ0; θ) =
1
2

∫ 1

0

[
(µ(x1,a0)− µ(x1,a))2

σ2
+
σ20
σ2

− 1− ln σ
2
0

σ2

]
dx1

=
1
2




10∑
r=0
(a0r − ar)2

σ2
+
σ20
σ2

− 1− ln σ
2
0

σ2


 .(28)

Consider now the reduced models with parameter subspaces

Sj = {θ ∈ Θ: ϑj+1 = . . . = ϑ11 = 0} ≡ {σ,a : a2j−1 = . . . = a20 = 0}

for 1 � j � 10 and S0 = ∅, S11 = Θ. These models are considered throughout
Chapter 4 in Sahamoto et al. (1986). For the same θ0 = (σ0,a0) ∈ Θ − S10 and its
ML-estimate θ̂ = (σ̂, â) based on n = 500 samples as considered on p. 60 ibid. (and

given in the bold letters in Tables 1 and 2 below), we have computed the vectors
θ̃j = (σ̃j , ãj) ∈ Sj which minimize the I-divergence I(θ̂; θ) on ∂Sj = Sj .

If we define for every 1 � j � 10

ãj = (â0, . . . , â2j−2, 0, . . . , 0) and σ̃2j =
20∑

i=2j−1
â2i + σ̂

2 �= ∆̂2j + σ̂
2

then θ̃ = (σ̃, ã) ∈ Sj , and, by (28),

inf
θ∈Sj

I(θ̂; θ) = inf
(σ,a)∈Sj

I((σ̂, â); (σ,a))

= inf
σ>0, (a0,...,a2j−2)∈�2j−1

1
2




2j−2∑
i=0
(âi − ai)2 +

20∑
i=2j−1

â2i + σ̂
2

σ2
− 1− ln σ̂

2

σ2




= inf
σ>0

1
2




20∑
i=2j−1

â2i + σ̂
2

σ2
− 1− ln σ̂

2

σ2


 (attained at a = ãj)

=
1
2
ln




σ̂2 +
20∑

i=2j−1
â2i

σ̂2


 = ln

√
σ̂2 + ∆̂2j
σ̂2

(attained at σ2 = σ̃2j )

= I((â, â); (σ̃j ãj)) = I(θ̂, θ̃j).
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j â2j−1 â2j σ̃2j = σ̂
2 + ∆̂2j Γn,j ∆Γn,j = ψ(j) × 100

(σ̃20 ≡ σ̂2) = |Iθ̂(Sj)| Γn,j − Γn,j+1 =
∆Γn,j

Γn,j
× 100

= ln
√

σ̂2j
σ̂2

0 — 8.011 0.901 ∞ — —
1 2.465 −3.847 28.20 1.722 0.675 39

2 2.249 −1.009 7.319 1.047 0.886 85
3 0.515 0.007 1.243 0.161 0.120 75

4 −0.139 −0.073 0.978 0.041 0.013 32
5 0.084 0.021 0.954 0.028 0.003 11

6 −0.060 0.044 0.946 0.025 0.003 12
7 −0.075 −0.011 0.940 0.022 0.004 18

8 0.142 −0.016 0.935 0.018 0.011 61
9 −0.035 0.039 0.914 0.007 0.001 14

10 0.040 −0.089 0.911 0.006 — —

Table 1: Values of θ̂n and quantities depending on θ̂n.

The values σ̃2j = σ̂2 + ∆̂2j and σ̂
2 are tabulated for 1 � j � 10 in Table 1 below,

together with the minimal I-divergences

Γn,1 = I(θ̂; θ̃1) > . . . > Γn,10 = I(θ̂; θ̃10)

and with quantities ∆Γn,j and ψ(j) defined by (26).

We see from Table 1 and from the full line graph in Figure 1 that the GIC reduces

the dimension to j = 5, i. e. that the best in the stated sense is the exponential
submodel with the parameter space S5. This submodel has also been calculated on

p. 75 in Sahamoto et al. (1986) as the best in the sense of Akaike’s AIC.

The values Ik, ∆ Ik and ϕ(k) defined by (25) and obtained by replacing in the

formulas above the maximum likely parameters θ̂ = (σ̂, â) by the true values θ0 =
(σ0,a0), are presented in Table 2 and Figure 1 (the interrupted line). We see two

local minima of ϕ(j) in the domain 1 < j < 9. One at j = 5 as in the case of ψ(k),
and the other at j = 7. The relative loss of information caused by dropping out the

coordinate pair θ7 = (a0,11, a0,12) = (−0.011, 0.042) is considerable, but the negative
information Iθ0(S6) = −I6 is still negligible, of order 10−3. Thus the submodel with
the parameter subspace S7 does not seem to have much advantage over that with
S6. Since the information distance I5 is of order 10−3 too, but I4 is already of order

10−2, the above considered GIC decision for S5 seems to be justified also by the direct
analysis of global information distance between θ0 and the subspaces Sj , 1 � j � 10.
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Figure 1. Graphs of the relative information distance increments ψ(j) and ϕ(j).

j a0,2j−1 a0,2j σ̃
2
j = σ

2
0 +∆

2
j Ij = |Iθ0(Sj)| ∆ Ij = Ij − Ij+1 ϕ(j)× 100

(σ̃20 ≡ σ20) = ln

√
σ2j
σ20

= ∆ Ij

Ij
× 100

0 — 8.000 1.000 ∞ — —

1 2.415 −3.806 27.13 1.650 0.691 42
2 2.119 −0.997 0.959 0.819 0.679 85

3 0.545 0.069 1.324 0.140 0.129 92
4 −0.094 −0.078 1.022 0.011 0.007 67

5 −0.021 −0.065 1.007 0.004 2.7× 10−3 64
6 −0.011 0.042 1.003 1.3× 10−3 9.2× 10−4 71

7 −0.011 0.010 1.000 3.8× 10−4 1.1× 10−4 29
8 0.020 −0.004 1.000 2.7× 10−4 2.1× 10−4 77

9 0.002 0.001 1.000 6.1× 10−5 3× 10−6 4
10 −0.006 −0.009 1.000 5.8× 10−5 — —

Table 2: Values of θ0 and quantities depending on θ0.

The question is to what extent the above achieved coincidence of decisions by the

criteria GIC and AIC depends on the set of data randomly generated for the example
in Sahamoto et al. (1986). To answer this question, Nikolov (1996) simulated new

data of the same sample size n = 500 with the aim to compare the decisions by
GIC and AIC. The performances of both criteria were found to be similar, slightly
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in favour of GIC. Namely, the average difference between decisions by AIC and

GIC observed in 2000 simulated samples was +0.485. Since it is known that AIC
overestimates the “quasitrue model” (see p. 402 in Nishii (1988)), this result favorizes
the GIC. Moreover, the observed dispersion of decisions by GIC was significantly

smaller.
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