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Abstract. The aim of this paper is to characterize the Multivariate Gauss-Markoff model
(MGM) as in (2.1) with singular covariance matrix and missing values. MGMDP2 model
and completed MGMDP2Q model are obtained by three transformations D, P and Q
(cf. (3.21)) ofMGM . The unified theory of estimation (Rao, 1973) which is of interest with
respect to MGM has been used.
The characterization is reached by estimation of parameters: scalar σ2 and linear com-

bination λ′B ( B = vecB) as in (4.8), (4.6), (4.7) as well as by the model of the form (5.1)
(cf. Th. 5.1). Moreover, testing linear hypothesis in the available model MGMDP2 by test
function F as in (6.3) and (6.4) is considered.
It is known (Oktaba 1992) that ten quantities in models MGMDP2 and MGMDP2Q

are identical (invariant). They permit to say that formulas for estimation and testing in
both models are identical (Oktaba et al., 1988, Baksalary and Kala, 1981, Drygas, 1983).
An algorithm and the UMGMBO program for calculations concerning estimation and

testing in MGM have been presented by Oktaba and Osypiuk (1993).

Keywords: multivariate Gauss-Markoff model, missing value, developed model, available
model, completed model, elementary transformation, BLUE, estimation, testing, consis-
tency, invariant

MSC 2000 : 62H05

1. Review of literature

The fundamental technique of estimation of a single missing value has been in-

troduced by Allan and Wishart [1]. The following methods of missing data played
general role: 1) Yates’ [18] iteration method, 2) Wilkinson’s one [17], 3) Biggers one

[4] for experimental designs, 4) covariance analysis of Bartlett [3], 5) Hartley’s and
Hocking’s [7] method of maximum likelihood and many others. Yates’s technique
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is connected with minimalizing the error sum of squares. In this way BLUE’s of

missing data are found.
R.A. Fisher [6] is the author of the rule that the residual sum of squares for the

model with missing data is equal to the corresponding sum of squares if the missing

values are replaced by the least square estimators.
The statistical literature concerning the topic of missing data is very large par-

ticularly after 1970. Special attention should be paid to the monograph by Little
and Rubin [8]. Oktaba and al. [13], [14] present sufficient conditions for a linear

transformation of a univariate Gauss-Markoff model ε(y) = Xβ, D(y) = σ2V pre-
serving information needed for the estimation of the expected value, the scalar σ2,

an estimable parametric function λ′β and the test function F for verifying the linear
hypothesis. Oktaba and al. [12], [13] discuss estimation and verification of hypothe-

ses in some Zyskind-Martin [19] models with missing values as well as estimation of
missing values in the general Gauss-Markoff model. Oktaba [10] presents the solution

of prediction of missing values in the case of the multivariate Gauss-Markoff model.
The problem considered in the present paper is given by the title.

2. A multivariate Gauss-Markoff model with missing data

Let us consider MGM model with missing values of the form

(2.1) (U, XB, σ2Σ⊗ V )

known matrices Σ > 0, V � 0, an unknown scalar σ2 > 0, and

E(U) = XB, Cov(U) = D(U) = σ2Σ⊗ V.

U is an n×p known matrix of observations, X - an n×d known matrix, B—an d×p

unknown matrix of parameters, ⊗—the Kronecker symbol of product of matrices.
Assume that m values are missing and np−m are available in the matrix U . For

each pair (j, j′), j, j′ = 1, 2, . . ., p of p columns of U there are at least four available
observations which guarantee the calculation of covariance between characters j and

j′, so n−mj � 2, where mj denotes the number of missing observations in the j th

column of U ; m =
p∑

j=1
mj .

Model (2.1) is consistent under the condition

(2.2) R(U) ⊂ R(T ),

where T = V +XMX ′ and M = M ′ is such a matrix that R(X) ⊂ R(T ) (Oktaba
and al., [14]).
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Let us note that R(X) ⊂ R(T )⇔ R(V ) ⊂ R(T ). Symbol R(A) is reserved for the

vector space spanned on the columns of the matrix A.
We shall use notation given in the following relation (C.R. Rao, [16]):

[
V X

X ′ 0

]−
=

[
C1 C2

C3 −C4

]
,

where

(2.3)





C1 = T− − T−X(X ′ T−X)−X ′T−,

C3 = C′
2 = (X

′T−X)−X ′T−,

C4 = (X ′T−X)− −M.

Symbol A− denotes an arbitrary g-inverse of the matrix A, i.e., any solution to
AA−A = A.

3. Transformations D, P and Q of the model MGM . Completed model
MGMDP2Q

We wish to obtain models MGMD, MGMDP , MGMDP1, MGMDP2 and
MGMDP2Q by applying three transformations D, P and Q with respect to the

multivariate model (2.1) with missing data.

3.1. Model MGMD

By developing the matrix U as in (2.1) we get the univariate model MGMD of
the form (Oktaba [10])

(3.1) (U, XB, σ2Σ⊗ V )⇔ (YD, XD βD, σ2VD)

where

YD = U, XD = I ⊗X, βD = B, VD = Σ⊗ V,

TD = VD +XDMDX ′
D = Σ⊗ T, MD =M ′

D = Σ⊗M,

YD ∈ R(TD), R(XD) ⊂ R(TD)⇔ R(X) ⊂ R(T ).

Here YD, XD and VD are known, βD and σ2 are unknown. Symbol A denotes the

development of the matrix A.

Lemma 3.1. We have (Oktaba [9], p. 161, corollary 3.1)

[
VD XD

X ′
D 0

]−
=

[
C1D C2D
C3D −C4D

]
,
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where

(3.2) C1D = Σ−1 ⊗ C1, C′
2D = C3D = Ip ⊗ C3, C4D = Σ⊗ C4

The condition of consistency of the model in the form

(3.3) YD ⊂ R(TD)

is equivalent to formula (2.2).

[The proof is given in Oktaba ([11], th.2.1, pp. 128–129)].

3.2. Model MGMGD

By applying the elementary transformation P (Rao, [16], p. 17) we collect m

missing values together to form subsequently a subvector YDP 1 with m missing
observations and a vector of (np−m) observed values YDP 2, i.e.

(3.4) YDP =

[
YDP1

YDP2

]
= PU = PYD.

Thus we get the model MGMDP of the form

(3.5) (YDP , XDP βDP , σ2VDP )

under the notation and some with relations among models MGM , MGMD and

MGMDP :

YDP = PYD = PU ⊂ R(TDP ), XDP = PXD = P (Ip ⊗X),

βDP = βD = B, VDP = PVDP ′ = P (Σ⊗ V )P ′,

MDP =MD = Σ⊗M, TDP = PTDP ′ = P (Σ⊗ T )P ′

and

(3.6)





P =

[
P1

P2

]
, P ′P = PP ′ = Inp, |P | = ±1, (PAP ′)− = PA−P ′,

P1P
′
1 = Im, P2P

′
2 = Inp−m, P1P

′
2 = 0, P2P

′
1 = 0

where P1 and P2 are m× np and (np−m)× np matrices, respectively.

Lemma 3.2. (Oktaba, [10], (3.2)). Consistency in any one of the three models
MGM , MGMD and MGMDP guarantees consistency in the other ones, i.e.

R(U) ⊂ R(T )⇔ U ∈ R(TD)⇔ YDP ⊂ R(TDP ).
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Lemma 3.3. We have (Oktaba, [10])

R(XDP ) ⊂ R(TDP )⇔ R(XD) ⊆ R(TD)⇔ R(X) ⊂ R(T ),

where

XDP =

[
XDP1

XDP2

]
= PXD = P (Ip ⊗X) =

[
P1(Ip ⊗X)

P2(Ip ⊗X)

]

is an np× pd known matrix with

(3.7) XDP1 = P1(Ip ⊗X), XDP2 = P2(Ip ⊗X).

TDP2 is determined by the relation

(3.8) TDP2 = PTDP ′ = P (Σ⊗ T )P ′

VDP +XDP MDP X ′
DP =

[
TDP1 TDP12

TDP21 TDP2

]

Lemma 3.4. We have (Oktaba [10])

C1DP = P (Σ−1 ⊗ C1)P
′,

C′
2DP = C3DP = (IP ⊗ C3)P ′

C4DP = Σ⊗ C4

and [
VDP XDP

X ′
DP 0

]−
=

[
C1DP C2DP

C3DP −C4DP

]
.

The available model MGMDP2 is of the form

(3.9) (YDP2, XDP2βDP2, σ
2VDP2).

It is consistent under the condition YDP2 ∈ R(TDP2), where

TDP2 = VDP2 +XDP2MDP2X
′
DP2 = P2TDP ′

2 = P2(Σ⊗ T )P ′
2

is a known matrix, since XDP2 is as in (3.7) and MDP = MD = Σ⊗M = MDP2 is
known.

We have

R(X) ⊂ R(T ), R(XD) ⊂ R(TD), R(XDP2) ⊂ R(TDP2)
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and

(3.10) VDP = PVDP ′ = P (Σ⊗ V )P ′ =

[
VDP1 VDP12

VDP21 VDP2

]

where VDP2 = P2(Σ⊗ V )P ′
2.

Moreover,

(3.11)

[
VDP2 XDP2

X ′
DP2 0

]−
=

[
C1DP2 C2DP2

C3DP2 −C4DP2

]
.

Hence we get

(3.12)





C1DP2 = T−
DP2 − T−

DP2XDP2C3DP2,

C3DP2 = C′
2DP2 = (X

′
DP2T

−
DP2XDP2)−X ′

DP2T
−
DP2,

C4DP2 = (X ′
DP2T

−
DP2XDP2)−MDP2.

3.3. Model MGMDP2Q
The following known theorem (Oktaba, [10]) presents a predictor Y1DP of missing

values.

Theorem 3.5. In the modelMGMDP as in (3.5) a predictor of the vector YDP1

of m missing values is

(3.13) ŶDP1 = −(K1 +K ′
1)
−(K2 +K ′

3)YDP2 = ZYDP2

under the following two conditions:

(3.14) ŶDP =

[
ŶDP1

YDP2

]
∈ R(TDP ) = R[P (Σ⊗ T )P ′],

(3.15) (K2 +K ′
3)YDP2 ∈ R(K1 +K ′

1)

where K1, K2, K3 and K4 are submatrices of the matrix

C1DP = PC1DP ′ = P (Σ−1 ⊗ C1)P ′ =

[
K1 K2
K3 K4

]

and the m× (np−m) matrix Z is of the form

(3.16) Z = −(K1 +K ′
1)
−(K2 +K ′

3)

where C1D is as in (3.2).
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Let us note thatK1 = P1C1DP ′
1,K2 = P1C1DP ′

2,K3 = P2C1DP ′
1,K4 = P2C1DP ′

2.

The predictor ŶDP1 as in (3.14) is unbiased iff

(3.17) XDP1 = ZXDP2,

where XDP = [X ′
DP1

...X ′
DP2]

′, XDP2 = P2(Ip ⊗X).

Premultiplying the vector YDP2 as in (3.9) by

Q =

[
Z

Inp−m

]

we get the vector

YDP2Q = QYDP2 =

[
Z

I

]
YDP2 =

[
ŶDP1

YDP2

]
=

[
ZYDP2

YDP2

]

and the completed model MGMDP2Q of the form

(3.18) (YDP2Q, XDP2QβDP2Q, σ2VDP2Q).

We have

XDP2Q =

[
ZXDP2

XDP2

]
= QXDP2 =

[
XDP2Q1

XDP2Q2

]

βDP2Q = βDP2 = βDP1 = βDP = B,

VDP2Q = QVDP2Q
′(3.19)

XDP2Q1 = ZXDP2, XDP2Q2 = XDP2

The interpretation of the transformation Q is as follows. By MGMDP2Q we define

the model in which the missing values are completed by their predictors.
The model MGMDP1 of missing observations is

(3.20) (YDP1, XDP1βDP1, σ
2VDP1).

We have two conditions for the model MGMDP2Q:

1. consistency of the form YDP2Q ∈ R(TDP2Q)
2. solution of the equations with respect to the predictor of missing values as in
(3.15) where TDP is as in (3.8).

By applying three transformations D, P and Q we get six models given in the
following scheme:

(3.21) MGM
D→ MGMD

P→ MGMDP →
[

MGMDP1

MGMDP2 → MGMDP2Q

]

They are as in (2.1), (3.1), (3.5), (3.20), (3.9) and (3.18), respectively.
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4. BLUE’s of the estimable parametric function λ′β in the models

MGMDP1 of missing values and MGMDP2 of available values.
Estimator of the scalar σ2

Theorem 4.1. In the models MGMDP1 and MGMDP2 as in (3.20) and (3.9),

respectively, we have

(4.1)





C1DPi = PiC1DP ′
i ,

C3DPi = C′
2DPi = (I ⊗ C3)P ′

i

C4DPi = Σ⊗ C4, i = 1, 2,

where

(4.2)

[
VDPi XDPi

X ′
DPi 0

]−
=

[
C1DPi C2DPi

C3DPi −C4DPi

]
, i = 1, 2,

C1, C3 = C′
2, C4 are as in (2.3) and P1 and P2 are as in (3.6), TD = Σ ⊗ T ,

C1D = Σ−1 ⊗ C1 (cf. Oktaba, [9], (3.2) and (3.4)).

�����. From the definition we have

(4.3) C1DPi = T−
DPi − T−

DPiXDPi(X ′
DPiT

−
DPiXDPi)−X ′

DPiT
−
DPi, i = 1, 2.

In virtue of (3.6) and

(4.4)

{
XDPi = Pi(Ip ⊗X)

TDPi = PiTDP ′
i = Pi(Σ⊗ T )P ′

i , i = 1, 2

we obtain

X ′
DiPiT

−
DPi = (Ip ⊗X ′)P−

i [Pi(Σ⊗ T )P ′
i ]
− = (Ip ⊗X ′)P ′

i Pi(Σ−1 ⊗ T−)P ′
i

= (Ip ⊗X ′)(Σ−1 ⊗ T−)P ′
i = (Σ

−1 ⊗X ′T−)P ′
i ,

T−
DPiXDPi = Pi(Σ−1 ⊗ T−X)

and

(4.5)
(X ′

DiPiT
−
DPiXDPi)− = [(Σ−1 ⊗X ′T−)P ′

iPi(Ip ⊗X)]−

= [(Σ−1 ⊗X ′T−)(Ip ⊗X)]− = (Σ−1 ⊗X ′T−X)−.

Thus in virtue of (4.3) and (4.4)

C1DPi = Pi(Σ
−1 ⊗ T−)P ′

i − Pi(Σ
−1 ⊗ T−X)(Σ−1 ⊗X ′T−X)−(Σ−1 ⊗X ′T−)P ′

i

= Pi{(Σ−1 ⊗ T−)− (Σ−1 ⊗ T−X)[Σ⊗ (X ′
T−X)−](Σ−1 ⊗X

′
T−)}P ′

i

= Pi{(Σ−1 ⊗ T−)− [Σ−1 ⊗ T−X(X
′
T−X)−X

′
T−]}P ′

i = Pi[Σ−1 ⊗ C1]P ′
i

= PiC1DP ′
i

where TD = Σ⊗ T , C1D = Σ−1 ⊗ C1 i = 1, 2.
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Now we calculate C4DPi when MDPi = MDP = MD = Σ⊗M , i = 1, 2. Since (4.5)

holds, we get

C4DP = (X
′
DPiT

−
DPiXDPi)

− −MDPi = (Σ
−1 ⊗X ′T−X)− − Σ⊗M

= Σ⊗ (X ′T−X)− − Σ⊗M = Σ⊗ [(X ′T−X)− −M ] = Σ⊗ C4.

We prove that C3DPi = (I ⊗ C3)P ′
i , i = 1, 2. In fact, for i = 1, 2 we have

C3DPi = (X
′
DPiT

−
DPiXDPi)

−X ′
DPiT

−
DPi.

Let us note that

X ′
DPiT

−
DPi = (Ip ⊗X ′)P ′

i [Pi(Σ⊗ T )P ′
i ]
− = (Ip ⊗X ′)P ′

iPi(Σ⊗ T )−P ′
i

= (I ⊗X ′)(Σ−1 ⊗ T−)P ′
i = (Σ

−1 ⊗X ′T−)P ′
i

and

(X ′
DPiT

−
DPiXDPi)

− = [(Σ−1 ⊗X ′T−)P ′
iPi(Ip ⊗X)]

= [(Σ−1 ⊗X ′T−)(Ip ⊗X)]− = (Σ−1 ⊗X ′T−X)−

= Σ⊗ (X ′T−X)−.

Then

C3DPi = [Σ⊗ (X ′T−X)−](Σ−1 ⊗X ′T−)P ′
i

= (I ⊗ (X ′T−X)−X ′T−)P ′
i = (I ⊗ C3)P ′

i

�

Theorem 4.2. BLUE’s of the estimable parametric function λ′β in model

MGMDPi (i = 1, 2) are of the form (cf. (3.19))

(4.6) λ′β̂DPi = λ′B̂

where

(4.7) β̂DPi = C3DPiYDPi = (I ⊗ C3)P ′
i YDPi.

�����. The formulae as in (4.6) and (4.7) are obtained directly from (4.1) for

C3DP1 and C3DP2 if we use the result for β̂ from the theory of unified estimation
(Rao, [16], p. 298; (4i, 3.2)). �
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������ 4.1. Let us note that the dispersion matrices of λ′β̂DP1 and λ′β̂DP2

(Rao, loc.cit.) are the same:

V (λ′β̂DP1) = V (λ′β̂DP2) = σ2λ′C4DP1λ = σ2λ′C4DP2λ = σ2λ′(Σ⊗ C4)λ.

Theorem 4.3. The unbiased estimator of σ2 in the available model MGMDP2
is of the form

(4.8) σ̂2eDP2 =
Y ′

DP2C1DP2YDP2

tr(C1DP2VDP2)
,

where tr(C1DP2VDP2) = r(VDP2
...XDP2) − r(XDP2) denotes the number of degrees

of freedom. C1DP2 is as in (4.1), VDP2 = P2(Σ⊗ V )P ′
2; YDP2 is as in (3.4).

�����. To prove it, it is sufficient to use (4.1) and apply in MGMDP2 the

formula for the estimator σ̂2 given by Rao ([16], p. 298, 4i, 3.4). �

5. The completed matrix model MGMDP2QP ′D−1

of the form [Û , E(Û),D(Û)]

Applying two transformations P ′ = P−1 and D−1 with respect to the complete

vector model MGMDP2Q (Oktaba, [11], 140–156) we obtain the completed matrix
model MGMDP2QP ′D−1 of the form

(5.1) [Û , E(Û),D(Û)].

Û is the n× p matrix obtained from the matrix U with missing values by replacing

the vector YDP1 of missing values by the predictor ŶDP1 as in (3.13).

The transformations of the modelMGMDP2Q intoMGMDP2QP ′D−1 are pre-
sented in the following scheme:

(5.2) MGMDP2Q
P ′
−→ MGMDP2QP ′ D−1

−→ MGMDP2QP ′D−1 ⇔ (5.1).

The symbol D−1 denotes the transformation of a column vector into a matrix; this
is the inverse transformation with respect to D (development of matrix).
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Theorem 5.1. In the multivariate Gauss-Markoff model (2.1) with missing values
under the condition

(5.3) XDP1 = ZXDP2

with Z as in (3.16), XDP1 and XDP2 as in (3.7), we have for (5.1):

(5.4) E(Û) = XB,

(5.5) D(Û) = σ2(P ′
1Z + P ′

2)VDP2(P ′
1Z + P ′

2)
′

where P1 and P2 are as in (3.6), and VDP2 is as in (3.10).

�����. a) Let us note that the predictor

(5.6) ŶDP1 = ZYDP2

is unbiased under condition (5.3).
In fact, in virtue of (3.9), (5.6) and βDP1 = βDP2 we have EYDP1 = XDP1βDP1

and E(ŶDP1) = ZEYDP2 = ZXDP2βDP2 = ZXDP2βDP1 = XDP1βDP1.
b) We shall show that (5.3) is a consequence of ŶDP1 = ZYDP2. In fact, we assume

that EŶDP1 = E(YDP1). It means that ZE(YDP2) = XDP1βDP1 and in virtue of
(3.9) ZXDP2βDP2 = XDP1βDP1 = XDP1βDP2 for each vector βDP2, so we get (5.3).

c) We prove that Û is unbiased under (5.4). Now as a result of unbiasedness of
predictor ŶDP1 under condition (5.3) we obtain

E(ŶDP1) = XDP1βDP1.

Since E(YDP2) = XDP2βDP2 we get

E(Û) = P ′
1E(ŶDP1) + P ′

2E(YDP2) = P ′
1XDP1βDP1 + P ′

2XDP2βDP2

= (P ′
1

...P ′
2)

[
XDP1

XDP2

]
βDP1 = P ′XDP B = P ′P (Ip ⊗X)B = XB.

Thus E(Ŷ ) = XB.
d) Since D(ŶDP2Q) = σ2QVDP2Q

′ we have D(Û ) = D(Û) = D(P ′ŶDP2Q) =

P ′D(ŶDP2Q)P ′ = σ2P ′QVDP2Q
′P = σ2(P ′

1

...P ′
2)

[
Z

I

]
VDP2(Z ′...I)

[
P1

P2

]
= σ2(P ′

1Z +

P ′
2)VDP2(Z ′P1 + P2). �
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6. Estimation and testing in the available model MGMDP2

In the paper of Oktaba ([11], pp. 135–6, Th. 2.6) ten quantities in the available

MGMDP2 and completedMGMDP2Q models are presented. These quantities are
invariants with respect to the predictor of the vector of missing values and g-inverses.

So we get the following results:

1. BLUE for a parametric function λ′B

2. sufficient and necessary conditions for estimability of this function

3. variance and covariance of BLUE’s
4. unbiased estimators σ̂2eDP2 and σ̂2eDP2Q of the scalar σ2 > 0 (cf. (4.11)),

5. sufficient and necessary conditions of the consistency of the linear hypothesis

(6.1) H0 : NβDP2 = ϕ0

6. test functions FDP2 and FDP20 for H0.

Theorem 6.1. In the MGMDP2 model under the assumption of normality
YDP2 ∼ N(XβDP2, σ

2VDP2) we have

1◦ BLUE of λ′βDP2 is equal to(6.2)

(6.2) λ′β̂DP2 = λ′C3DP2YDP2,

where β̂DP2 and C3DP2 are as in (4.7) and (4.1), respectively, in MGMDP2.
2◦ The formula for the unbiased estimator σ̂2eDP2 is given as in (4.8).

3◦ The test function F for the hypothesis (6.1) is of the form

(6.3) FDP2 =
u′[D(u)]−u

r[D(u)] · σ̂2eDP2

with

(6.4) νDP2 = r[D(u)] and νeDP2 = tr(C1DP2VDP2)

degrees of freedom where σ̂2eDP2 is as in (4.8). The covariance matrix of the vector

u = Nβ̂DP2 − ϕ

is

Cov(u) = D(u) = NC4DP2N
′,

where C4DP2 is as in (4.1), β̂DP2 is as in (4.7).

�����. To prove the theorem it is enough to apply the unified theory of esti-

mation (Rao, [16]) to the available model MGMDP2. �
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