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ON CAUSTICS ASSOCIATED WITH THE LINEARIZED

VORTICITY EQUATION
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Abstract. The linearized vorticity equation serves to model a number of wave phenomena
in geophysical fluid dynamics. One technique that has been applied to this equation is the
geometrical optics, or multi-dimensional WKB technique. Near caustics, this technique
does not apply. A related technique that does apply near caustics is the Lagrange Manifold
Formalism. Here we apply the Lagrange Manifold Formalism to determine an asymptotic
solution of the linearized vorticity equation and to study associated wave phenomena on
the caustic curve.
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1. Introduction

An important equation in the mathematical analysis of large-scale atmospheric
flow processes is the Rossby wave equation

(1)
∂

∂t
(∇2ψ) + β(y)∂ψ

∂x
= 0.

In this equation t is the time, x and y are spatial coordinates, ψ(x, y, t) is the stream-

line and β(y) is a vorticity parameter. While this family of equations is a useful
model for a variety of geophysical wave phenomena, it is a subset of a broader class

of equations known as the linearized vorticity equations

(2)
( ∂

∂t
+ U

∂

∂x
+ V

∂

∂y

)
(∇2ψ − Fψ) + (B1 + β1)

∂ψ

∂x
− (B2 + β2)

∂ψ

∂y
= 0.
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In atmospheric dynamics, U(y, t) and V (x, t) are, respectively, the eastward and

northward components of the basic flow. U is a function of the latitude and of time
and V is a function of the longitude and of time. F is the Froud number, a parameter
inversely proportional to the static instability of the atmosphere [1,p. 60], B1(y, t)

and B2(x, t) are parameters related to the stability of the basic flow and β1(x, y) and
β2(x, y) are vorticity parameters related to the topography [2]. Neither equation (1)

nor equation (2) can be solved exactly. Consequently, various techniques, each valid
under situation-specific assumptions, have been developed to obtain approximate

solutions and to study the phenomena the equations model. One such technique is the
multi-dimensional WKB, or geometrical optics, approach developed by Keller and his

students [3]. Karoly and Hoskins [4] and Yang [5], among others, have employed and
extended this approach to study Rossby-type equations, i.e., variations of equation

(1), and Yang has applied it to study the vorticity equation as well. Near turning or
caustic points, the classical WKB technique is not valid [6], e.g., physically, near the

“critical layers” where the phase velocity of the wave coincides with the velocity of
the large-scale current [7,8] or near sharp topographies [2]. A related approach that

is valid at caustics is the Lagrange Manifold formalism developed by Arnol’d [9] and
Maslov [10]. This approach has been applied to determine the asymptotic solution

of equation (1) and to study the associated wave phenomena along the caustic curve
[11]. Here we apply the Lagrange Manifold formalism to obtain asymptotic solutions

of the vorticity equation at caustic points. We also use this approach to study wave
phenomena associated with the vorticity equation at caustics in a manner analogous

to the use of the classical WKB technique in studying wave phenomena at off-caustic
points. For completeness, we include a summary of the basic algorithm.

2. Formalism

Since Yang’s treatment is noteworthy for its clarity, we parallel his development.
We first re-scale our independent variables to “slower” variables

εr̄ = ε(x, y)→ (x, y), εt→ t

where ε is a small parameter, physically the ratio of the characteristic horizontal

scale of the wave phenomena to the average radius of the earth. Then equation (2)
becomes

(3) ε3
( ∂
∂t
+ u

∂

∂x
+ v

∂

∂y

)(
∇2Ψ− 1

ε2
FΨ

)
+ ε(b1 + β̂1)

∂Ψ
∂x
+ ε(b2 + β̂2)

∂Ψ
∂y
= 0,
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where the lower case variables are the re-scaled upper case variables and β̂i(x, y) =

βi(εx, εy). Near caustics, we assume equation (3) has a solution of the form

(4) Ψ(x, y, t) =
∫
A(r̄, p, t, ε)e

iΦ
ε dp.

In equation (4), r̄ = (x, y) and p = (px, py) may be regarded as a wavevector. The
amplitude

A(r̄, p, t, ε) ∼
∑

k=0

Ak(r̄, p, t)(i/ε)
k

and its derivatives are assumed bounded and

Φ(r̄, t, p, ω) = r̄ · p− ωt− S(p, ω)

where S(p, ω) may be regarded as a phase. Then substituting equation (4) into
equation (3), introducing wavevector p and frequency ω

(5) p = ∇Φ, ω = −∂Φ
∂t

leads to
∫ {
[(b1 + β̂1)px − (b2 + β̂2)py + ((p · p) + F )(ω − upx − vpy)]A(6)

+ iε
[
u(F − 3p2x − p2y) + 2px(ω − 2vpy) + b1 + β̂1)

∂A

∂x

+ (v(F − 3p2y − p2x) + 2py(ω − 2upx)− b2 − β̂2)
∂A

∂y
+ (F − p · p)∂A

∂t

]

+ (iε)2
[
(3upx + vpy − ω)

∂2A

∂x2
+ (3vpy + upx − ω)

∂A

∂y2

+ 2(upy + vpx)
∂2A

∂x∂y
+ 2

(
px
∂2A

∂t∂x
+ py

∂2A

∂t∂x

)]

+ (iε)3
[
u
(∂3A
∂x3

+
∂3A

∂x∂y2

)
+ v

(∂3A
∂y3

+
∂3A

∂y∂x2

)

+
( ∂3A

∂t∂x2
+

∂3A

∂t∂y2

)]}
e

iΦ
ε dp ∼ 0.

The coefficient of the (iε)0 term is Maslov’s Hamiltonian

(7) H = (b1 + β̂1)px − (b2 + β̂2)py + ((p · p) + F )(ω − upx − vpy).

The field at any caustic point r̄ = (x, y) is determined by the stationary phase

(∇pΦ = 0) evaluation of the integral in equation (6), which turns Maslov’s Hamil-
tonian into an eikonal equation

(8) (b1 + β̂1)px − (b2 + β̂2)py + ((p · p) + F )(ω − upx − vpy) = 0
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and determines the Lagrange manifold

(9) r̄ = ∇pS(p, ω),

once S(p, ω) is known. To determine S(p, ω), we first apply Hamilton’s equations to
obtain the trajectories

r̄ = r̄(γ, σ) p = p(γ, σ)

t = t(γ, σ) ω = ω(γ, σ),

where γ is a raypath parameter and σ is a parametrized initial condition, e.g., direc-

tion cosines. Then inversion of the frequency, time and wave vector transformations,
followed by substitution into the coordinate space map, determines the Lagrange

manifold explicitly,

(10) r̄ = r̄(γ(p, ω), σ(p, ω)) = ∇pS(p, ω).

Integration along the trajectories determines

(11) S(p, ω) =
∫ p

p0

r̄ · dp

and hence the phase

(12) Φ(r̄, t, p, ω) = r̄ · p− ωt− S(p, ω).

To obtain a transport equation for the amplitudes we Taylor expand the Hamiltonian
near the Lagrange manifold

(b1 + β̂1)px − (b2 + β̂2)py + ((p · p) + F )(ω − upx − vpy)(13)

=
(
b1

( ∂S
∂py

, t
)
+ β̂1(∇pS)

)
px −

(
b2

( ∂S
∂px

, t
)
− β̂2(∇pS)

)

+ (p · p+ F )
(
ω − u

( ∂S
∂py

, t
)
px − v

( ∂S
∂px

, t
)
py

)
+D · (r̄ −∇pS)

= D · (r̄ −∇pS),

where

(14) D =
∫ 1

0
∇rH(ξ(r̄ −∇pS) +∇pS, p, ω, t) dξ,
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that is, the remainder of the Taylor series. Then substituting equation (13) into

equation (6) and performing a partial integration leads to

∫ {
iε

[
−D · ∇pA−A∇p ·D +

(
u(F − 3p2x − p2y)(15)

+ 2px(ω − 2vpy) + b1 + β̂1
)∂A
∂x

+
(
v(F − 3p2y − p2x) + 2py(ω − 2upx)− b2 − β̂2

)∂A
∂y
+ (F − p · p)∂A

∂t

]

+ (iε)2
[
(3upx + vpy − ω)

∂2A

∂x2
+ (3vpy + upx − ω)

∂2A

∂y2

+ 2(upy + vpx)
∂2A

∂x∂y
+ 2

(
px
∂2A

∂t∂x
+ py

∂2A

∂t∂x

)]

+ (iε)3
[
u
(∂3A
∂x3

+
∂3A

∂x∂y2

)
+ v

(∂3A
∂y3

+
∂3A

∂y∂x2

)

+
( ∂3A

∂t∂x2
+

∂3A

∂t∂y2

)]}
e

iΦ
ε dp ∼ 0.

Finally, introducing into this integral the non-Hamiltonian flow

¯̇r = (2ωpx − 3up2x − up2y − 2vpxpy + uF + b1 + β̂1,

2ωpy − 3vp2y − vp2x − 2upxpy + vF − b2 − β̂2)

ṗ = −D
ṫ = −(F + p · p)

where the differentiation is with respect to the raypath parameter, determines a
transport equation in a neighborhood of the Lagrange manifold

dAk

dt
− (∇p ·D)Ak − ω

(∂2Ak−1
∂x2

+
∂2Ak−1
∂y2

)
+ 2

(
px
∂2Ak−1
∂t∂x

+ py
∂2Ak−1
∂t∂y

)

+ upx

(∂2Ak−1
∂x2

+
∂2Ak−1
∂y2

)
+ 2u

(
px
∂2Ak−1
∂x2

+ py
∂2Ak−1
∂y2

)

+ vpy

(∂2Ak−1
∂x2

+
∂2Ak−1
∂y2

)
+ 2v

(
px
∂2Ak−1
∂y∂x

+ py
∂2Ak−1
∂y2

)

+
∂3Ak−2
∂t∂x2

+
∂3Ak−2
∂t∂y2

+ u
(∂3Ak−2

∂x3
+
∂3Ak−2
∂x∂y2

)
+ v

(∂3Ak−2
∂y3

+
∂3Ak−2
∂y∂x2

)
= 0.

An expanded treatment of this algorithm, along with an example, appears in [11].
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3. Analysis

Yang has successfully employed the WKB technique to study the physical phe-

nomenology associated with various equation of geophysical fluid dynamics away
from caustic points. In [11], the Lagrange Manifold Formalism enabled an analy-

sis of the corresponding phenomena at the caustics associated with equation (1).
The analysis led to equations for phenomena on the caustic identical to those de-

termined by Yang away from the caustic. (While the Lagrange Manifold is usu-
ally applied near the caustic curve, it applies away from the caustic curve as well.

Essentially, it may be regarded as an integral interpretation of the WKB tech-
nique.) Similarly, we may develop equations at the caustic associated with the

linearized vorticity equation identical to those determined by Yang away from the
caustic.

If the eikonal equation is solved for ω, we obtain the same dispersion equation on
the caustic that Yang determines away from the caustic

(17) ω = upx + vpy −
(b1 + β̂1)
K2

+
(b2 + β̂2)
K2

,

where K2 = p2x+p
2
y+F . From equation (17) we determine identical phase velocities

cpx =
ω

px
= u+

vpy

px
− (b1 + β̂1)

K2
+
(b2 + β̂2)py

K2px

(18)

cpy =
ω

py
=
upx

py
+ v − (b1 + β̂1)px

K2py
+
(b2 + β̂2)
K2

and group velocities

cgx =
∂ω

∂px
= u−K−4{(b1 + β̂1)K2 − 2px[(b1 + β̂1)px − (b2 + β̂2)py]}

(19)

cgy =
∂ω

∂py
= v +K−4{(b2 + β̂2)K2 + 2py[(b1 + β̂1)px − (b2 + β̂2)py]}

on the caustic as Yang obtains away from the caustic. We note that cgx and cgy also
may be determined from Hamilton’s equations if we replace the raypath parameter

260



γ with t. Then Hamilton’s equations become

(20)
dx

dt
=
∂H

∂px

/ (
−∂H
∂ω

)
= cgx

dy

dt
=
∂H

∂py

/ (
−∂H
∂ω

)
= cgy

dpx

dt
= −∂H

∂x

/ (
−∂H
∂ω

)
= −

{
py
∂v

∂x
− px

K2
∂β̂1
∂x
+

py

K2

(∂b2
∂x
+
∂β̂2
∂x

)}

dpy

dt
= −∂H

∂y

/ (
−∂H
∂ω

)
= −

{
px
∂u

∂y
− px

K2

(∂β̂1
∂y
+
∂b1
∂y

)
+

py

K2
∂β̂2
∂y

}

dω
dt
=
∂H

∂γ

/ (
−∂H
∂ω

)
= px

∂u

∂t
+ py

∂v

∂t
− px

K2
∂b1
∂t
+

py

K2
∂b2
∂t

dt
dt
= −∂H

∂ω

/ (
−∂H
∂ω

)
= 1.

Further, we note the equations that model the large-scale structural evolution of the

wave packet are also identical on and off the caustic, namely,

(21)
d
dt
(p2x + p

2
y) = − 2pxpy

(∂v
∂x
+
∂u

∂y

)

2
K2

[
p2x
∂β̂1
∂x

− p2y
∂β̂2
∂y
+ pxpy

(∂b1
∂y
+
∂β̂1
∂y
+
∂b2
∂x
+
∂β̂2
∂x

)]

d
dt

(py

px

)
=
∂u

∂y
−

(py

px

)2 ∂v
∂x

− 1
K2

[(∂b1
∂y
+
∂β̂1
∂y

)
−

(py

px

)(∂β̂1
∂x
+
∂β̂2
∂y

)
+

(py

px

)2(∂b2
∂x
+
∂β̂2
∂x

)]
.

The first of these equations describes the time evolution of the square of the wavevec-

tor (momentum). The second equation provides a measure of the time evolution of
the relative directionality.
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