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Abstract. A boundary value problem for the Laplace equation with Dirichlet and Neu-
mann boundary conditions on an equilateral triangle is transformed to a problem of the
same type on a rectangle. This enables us to use, e.g., the cyclic reduction method for com-
puting the numerical solution of the problem. By the same transformation, explicit formulae
for all eigenvalues and all eigenfunctions of the corresponding operator are obtained.
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0. Introduction

Fast solvers for simple boundary value problems on simple domains are very useful
tools for the solution of complex problems. In this paper we show that problems for

the Laplace operator on an equilateral triangle can be transformed into problems on
a rectangle. Fast solvers for the rectangle can be thus applied to problems on the

triangle. The Fourier analysis on a rectangle yields the eigenfunction expansion on
the triangle. The corresponding eigenvalues can be used e.g. for the preconditioning

of related problems. In the next paper we will describe the eigenproblem for the
discrete Laplace operator on a triangle mesh.

Let T be an equilateral triangle with vertices
(−1√
3
, 0

)
,
(
1√
3
, 0

)
, (0, 1). Its altitude

is equal to one and its side is equal to 2√
3
.

Let a function f(x, y) ∈ L2 be given on T . We decompose it into the symmet-

ric part fs(x, y) = 1
2

(
f(x, y) + f(−x, y)

)
and the skew symmetric part fa(x, y) =

1
2

(
f(x, y)− f(−x, y)

)
.
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Let R be the rectangle 〈0,
√
3〉 × 〈0, 1〉. We define the prolongation of a function

u ∈ L2(T1) from the triangle T1 = T ∩ R onto R so that we prolong it successively
by skew symmetry with respect to the dotted lines (see Fig. 1).
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Fig. 1

In order to describe such a prolongation, we first introduce transformations Ki of

the open triangle T1 onto open triangles Ti by the equations

(1)

x1 = ξ, x2 = 1
2

(
−ξ −

√
3η +

√
3
)
, x3 = 1

2

(
ξ −

√
3η +

√
3
)
,

y1 = η, y2 = 1
2

(
−
√
3ξ + η + 1), y3 = 1

2

(√
3ξ + η + 1),

x4 = 1
2

(
−ξ +

√
3η +

√
3
)
, x5 = 1

2

(
ξ +

√
3η +

√
3
)
, x6 =

√
3− ξ,

y4 = 1
2

(
−
√
3ξ − η + 1

)
, y5 = 1

2

(√
3ξ − η + 1), y6 = 1− η,

where Bi = (xi, yi) ∈ Ti for B = (ξ, η) ∈ T1. We thus have Bi = KiB.

The transformations Ki are successive reflections with respect to the dotted lines
in Fig. 1 and are therefore compositions of rotations, reflections and translations of

the triangle T1.

The prolongation Pu of a function u ∈ L2(T1) from T1 onto R is defined by

(2) Pu(Bi) = ciu(B) on Ti,

where ci = 1 for i = 1, 3, 4, 6 and ci = −1 for i = 2, 5.
Let further v ∈ L2(R). We define a transformation F , which we call a folding,

from R onto T1 as follows:

Fv(B) =
6∑

i=1

civ(Bi),

where B = K−1
i Bi.

Let us notice that for a function u ∈ H10 (T1) we can use the transformation (2) for
closed triangles and that we have Pu ∈ H10 (R), see e.g. [1]. Conversely, it is easily
seen that for a function u ∈ H10 (R), its transform Fu belongs to H10 (T1).
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1. The boundary value problem

We will show that a Dirichlet boundary value problem for the Laplace equation
on the triangle T1 can be transformed into the same problem on R if we take the

prolongation of the right-hand side given on T1 for the right-hand side. The basis
for it is the following

Theorem. Let f ∈ L2(T1) and let u ∈ H10 (T1) be the solution of the boundary
value problem

(3)
∫

T1

(gradu, gradϕ) dξ dη =
∫

T1

(f, ϕ) dξ dη for ∀ϕ ∈ H10 (T1).

Then Pu is the solution of the boundary value problem on R

(4)
∫

R

(gradPu, gradψ) dxdy =
∫

R

(Pf, ψ) dxdy for ∀ψ ∈ H10 (R).

�����. We start with the left-hand side of (4). With the use of the transfor-

mations K−1
i we have

∫

R

(gradPu, gradψ) dxdy =
6∑

i=1

∫

Ti

(gradPu, gradψ) dxi dyi =

6∑

i=1

∫

T1

ci(gradu, gradψ) dξ dη =
∫

T1

(gradu, gradFψ) dξ dη,

where the gradients in the last integral are taken with respect to ξ and η. This
is a consequence of the isometry of the transformations (1). The modulus of the

Jacobian equals to one for the same reason. Further we obtain from (3) and with
the transformations Ki that

∫

T1

(f,Fψ) dξ dη =
6∑

i=1

∫

Ti

(Pf, ψ) dxi dyi =
∫

R

(Pf, ψ) dxdy, q.e.d.

�

From this theorem and from the unicity of the solution it follows that the solution

on R with the prolonged right-hand side restricted onto T1 is the solution sought.
As a small example illustrating the situation, let us solve numerically the problem

∆u = 2
(
x+

√
3y

)
on T1

with homogeneous Dirichlet conditions. Its exact solution is xy
(√
3x+ y − 1

)
.
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The numerical solution was obtained by applying the method of cyclic reduction

and factorization to the “prolonged problem” on R.

n max.error×n2 time (sec)/n2 logn
4 .1205389 4.40276E-7
8 .1263714 7.33793E-8

16 .1275594 6.87931E-8
32 .1277278 8.31250E-8

64 .1277067 1.76760E-7
128 .1276699 2.00646E-7

256 .5252685 2.95553E-7

Table 1. Results of the numerical example

The computation was performed on a rectangular mesh with n panels in the y-

direction and with 3n panels in the x-direction on R. In Table 1 we briefly show the
characteristic behaviour of results for different values of n (in repeated computations,

values of the time elapsed were slightly varying). They are in full agreement with
what has been expected, i.e., the errors are of order n−2 and the time elapsed is

proportional to n2 logn.

2. Eigenproblem

Let us consider the Fourier expansion of Pfa on R. The Fourier coefficients are

Pfa
k,l =

∫

R

Pfa(x, y) sin
k�x√
3
sin l�y dxdy

=
∫

T1

fa(x, y)uk,l(x, y) dxdy, k, l = 1, 2, . . . ,

where

(5)

uk,l(x, y) = sin
k�x√
3
sin l�y − sin k�

2
√
3
(−x−

√
3y +

√
3) sin

l�

2

(
−
√
3x+ y + 1

)

+ sin
k�

2
√
3

(
x−

√
3y +

√
3
)
sin

l�

2

(√
3x+ y + 1

)

+ sin
k�

2
√
3

(
−x+

√
3y +

√
3
)
sin

l�

2

(
−
√
3x− y + 1

)

− sin k�

2
√
3

(
x+

√
3y +

√
3
)
sin

l�

2

(√
3x− y + 1

)
+ sin

k�
(√
3− x

)
√
3

sin l�(1− y).
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We will simplify this expression for uk,l(x, y). The manipulations are dependent

on the parity of the subscripts k and l. We show it in more detail only for the case
when both subscripts are even. We join together the first and last terms, the second
and fifth terms, the third and fourth terms in (5), and obtain

uk,l(x, y) = 2 sin
k�x√
3
sin l�y − 2(−1)(k+l)/2 sin k�

x+
√
3y

2
√
3
sin l�

√
3x− y

2

+ 2(−1)(k+l)/2 sink�
x−

√
3y

2
√
3
sin l�

√
3x+ y
2

,

and by further manipulation with the aid of the identity

(6) sin(a+b) sin(c−d)−sin(a−b) sin(c+d) = sin(a+c) sin(b−d)−sin(a−c) sin(b+d)

we have

uk,l(x, y) = 2 sin
k�x√
3
sin l�y − 2(−1)(k+l)/2 sin

�x

2
√
3
(k + 3l) sin

�y

2
(k − l)

+ 2(−1)(k+l)/2 sin
�x

2
√
3
(k − 3l) sin �y

2
(k + l).

For k = l or k = 3l the function uk,l is apparently equal to zero.

In an analogous manner we find out that for the subscripts of different parity, the

function uk,l equals zero, too. For both subscripts odd we use an identity derived
from (6) by differentiation with respect to a and c, and we have in the same way

uk,l(x, y) = 2 sin
k�x√
3
sin l�y − 2(−1)(k+l)/2 sin

�x

2
√
3
(k + 3l) sin

�y

2
(k − l)

− 2(−1)(k+l)/2 sin
�x

2
√
3
(k − 3l) sin �y

2
(k + l).

We can write both cases as

(7)

uk,l(x, y) = 2 sin
k�x√
3
sin l�y

− 2(−1)(k+l)/2 sin
�x

2
√
3
(k + 3l) sin

�y

2
(k − l)

+ 2(−1)(k−l)/2 sin
�x

2
√
3
(k − 3l) sin �y

2
(k + l).

We thus obtain nonzero functions uk,l only for subscripts of the same parity and

such that k �= l or k �= 3l. We decompose this set of subscripts into three disjoint
subsets defined by the inequalities 0 < k < l, l < k < 3l and 3l < k.
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For l′ < k′ < 3l′ we set

(8) k = 1
2 (3l

′ − k′), l = 1
2 (k

′ + l′).

Then 0 < k < l and the pair (k, l) belongs to the first subset of subscripts. We obtain

uk′,l′(x, y) = 2 sin
k′�x√
3
sin l′�y

− 2(−1)(k′+l′)/2 sin
�x

2
√
3
(k′ + 3l′) sin

�y

2
(k′ − l′)

+ 2(−1)(k′−l′)/2 sin
�x

2
√
3
(k′ − 3l′) sin �y

2
(k′ + l′)

= 2(−1)(k−l)/2

[
(−1)(k−l)/2 sin

�x

2
√
3
(3l− k) sin

�y

2
(k + l)

− (−1)(k+l)/2 sin
�x

2
√
3
(k + 3l) sin

�y

2
(l − k)

+ sin
−k�x√
3
sin l�y

]

= − (−1)(k−l)/2uk,l.

For 3l′′ < k′′ we also set

(9) k = 1
2 (k

′′ − 3l′′), l = 1
2 (k

′′ + l′′).

Then 0 < k < l and the pair (k, l) belongs to the first subset of subscripts and

uk′′,l′′(x, y) = (−1)(k+l)/2uk,l.

For the symmetric part fs of the function f we define the prolongation Pfs by
(2) only with ci = 1 for i = 1, 4, 5 and ci = −1 for i = 2, 3, 6, and the folding F in

an obvious way. For a function u vanishing on the horizontal sides of R, the folded
function Fu vanishes on ∂T1 except for the vertical side.

We construct its Fourier expansion, this time in cosines in x on R. The Fourier
coefficients are

Pfs
k,l =

∫

R

Pfs(x, y) cos
k�x√
3
sin l�y dxdy =

∫

T1

fs(x, y)vk,l(x, y) dxdy,

k = 0, 1, . . . , l = 1, 2, . . . ,

316



where

(10)

vk,l(x, y) = cos
k�x√
3
sin l�y

− cos k�

2
√
3

(
−x−

√
3y +

√
3
)
sin

l�

2

(
−
√
3x+ y + 1

)

− cos k�

2
√
3

(
x−

√
3y +

√
3
)
sin

l�

2

(√
3x+ y + 1

)

+ cos
k�

2
√
3

(
−x+

√
3y +

√
3
)
sin

l�

2

(
−
√
3x− y + 1

)

+ cos
k�

2
√
3

(
x+

√
3y +

√
3
)
sin

l�

2

(√
3x− y + 1

)

− cos k�
(√
3− x

)
√
3

sin l�(1 − y).

Similarly as in the skew symmetric case, the function vk,l is nonzero only for both

the subscripts k and l of the same parity and k �= l. The cases k = 0 and k = 3l are
now nonzero. The sets of subscripts are defined as follows: 0 � k < l, l < k � 3l,
3l < k. Proceeding in the same way as before, we find the expression

(11)

vk,l(x, y) = 2 cos
k�x√
3
sin l�y

+ 2(−1)(k+l)/2 cos
�x

2
√
3
(k + 3l) sin

�y

2
(k − l)

− 2(−1)(k−l)/2 cos
�x

2
√
3
(3l− k) sin

�y

2
(k + l).

We find out as before that for the subscript pairs (k′, l′) and (k′′, l′′) from the second
and third subset of subscripts, there exists, according to (7) and (8), subscript pair

(k, l) in the first subset of subscripts such that

vk′,l′(x, y) = −(−1)(k−l)/2vk,l and vk′′,l′′(x, y) = −(−1)(k+l)/2vk,l,

respectively.

We see immediately that the functions uk,l and vk,l are eigenfunctions of the
Laplace operator, the corresponding eigenvalue being �

2 (k
2

3 + l
2). It is clear that

these functions vanish for y = 0. Since uk,l and vk,l are results of the folding F of
the functions sin k�x√

3
sin l�y and cos k�x√

3
sin l�y they vanish on the side y = −

√
3x+1

of the triangle T and thus on the side y =
√
3x+ 1, too.

Theorem. The functions

uk,l, k, l = 1, 2, . . . , k ≡ l mod 2, 0 < k < l,
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and

vk,l, k = 0, 1, 2, . . . , l = 1, 2, . . . , k ≡ l mod 2, 0 � k < l,

form a complete orthogonal system on T .

�����. Indeed, let f be a function defined on T and let all its coefficients in
the expansion with respect to the functions uk,l and vk,l be zero. Then all Fourier

coefficients of the prolonged functions Pfa and Pfs vanish on the rectangle R. It
is, in fact, the assumption for the subscripts in the first subset of subscripts. The

functions with subscripts in the other two subsets are equal, apart from the sign, to
the corresponding functions of the first subset and the cases k ≡ l mod 2, k = l, k = 3l

are trivial. Both prolonged functions are thus zero and the function f is zero.

It is obvious that functions corresponding to different eigenvalues are orthogonal.
But it is possible that the same eigenvalue belongs to two different pairs (k1, l1) and

(k2, l2), e.g. for k1 = 8, l1 = 10 and k2 = 1, l2 = 11.

In order to prove the orthogonality also for such a case, we prove first that the
functions uk,l and vk,l are their own prolongations. Since the formulae (7) and (11)

make sense for arbitrary x and y it means that Puk,l = uk,l and Pvk,l = vk,l. It
is obvious that uk,l is skew symmetric with respect to both axes and that vk,l is

symmetric with respect to the axis x and skew symmetric with respect to the axis
y. In an elementary, even if a little cumbersome way it can be proved that both the
functions are skew symmetric with respect to the straight line −

√
3x−y+1 = 0. By

this skew symmetry the function is transformed from the rhombus
(
1/
√
3, 0

)
, (0, 1),(

−1/
√
3, 0

)
, (0,−1) onto the union of triangles T2, T3, T4, T5. Both functions are

skew symmetric also with respect to the line −
√
3x − y + 3 = 0 and from this we

obtain the skew symmetry of the triangle T6 to the triangle T5. Therefore, we have

(12)
∫

T1

uk,l(x, y)um,n(x, y) dxdy =
∫

R

uk,l(x, y) sin
m�x√
3
sinn�y dxdy.

This integral is, however, equal to zero for (k, l) �= (m,n). This is easily seen
from (7) and the fact that (m,n) is from the first subset of subscripts. The pairs

(k+3l)/2, (l−k)/2 and (3l−k)/2, (k+ l)/2 belong to the other subsets of subscripts.
�

From (12) it is easily seen that the norms of uk,l and vk,l for k = 1, 2, . . .; l = 1, 2, . . .
are equal to 3

1
4 and the norms of v0,l are equal to

√
2
√
3.

We make yet a useful observation. It is obvious that functions u+k,l and u
−
k,l ob-

tained from uk,l by rotation through 2�3 or − 2�3 about the center of gravity of the
triangle T are eigenfunctions as well.
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We find easily that the function uk,l on the union of the triangles T4 and T5 is the

function uk,l on T shifted and rotated through − 2�3 . We have, therefore,

u−k,l(x, y) = uk,l

(
x+

2√
3
, y

)

and similarly

u+k,l(x, y) = uk,l

(
x− 2√

3
, y

)
.

Each of the functions u+k,l(x, y) and u
−
k,l(x, y) is, however, linearly dependent on

uk,l(x, y) and vk,l(x, y). This is immediately seen for u
+
k,l(x, y). We have

u+k,l(x, y) = uk,l

(
x− 2√

3
, y

)
= 2 sin k�

(
x√
3
− 2
3

)
sin l�y

− 2(−1)(k+l)/2 sin �

(
x√
3
− 2
3

)
k + 3l
2
sin �y

k − l

2

+ 2(−1)(k−l)/2 sin �

(
x√
3
− 2
3

)
k − 3l
2
sin �y

k + l
2

.

If k is a multiple of 3, then u+k,l(x, y) = u−k,l(x, y) = uk,l(x, y). If this is not the case
we obtain, with the aid of elementary trigonometry,

u+k,l(x, y) = − 12uk,l + (−1)z
√
3
2 vk,l,

where k ≡ z mod 3, z = 1 or 2, and we then have uk,l + u
+
k,l + u

−
k,l = 0. Similar

formulae are valid for the rotated functions vk,l.

4. Neumann boundary condition

The above approach can be used also for the Laplace operator with the Neumann
boundary condition on all three sides of the triangle T . Boundary conditions of

different types on different sides of the triangle are not suitable for our approach.

We now show the formulae for eigenfunctions for the case of Neumann conditions.
The prolongation of the skew symmetric part of the function is now defined by (2)

with ci = 1 for i = 1, 2, 4 and ci = −1 for i = 3, 5, 6, and the prolongation of the
symmetric part by (2) with all ci = 1.
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We proceed as above and with the use of an identity derived from (6) by differen-

tiation with respect to d we finally have

(13)

uk,l(x, y) = 2 sin
k�x√
3
cos l�y

− 2(−1)(k+l)/2 sin
�x

2
√
3
(k + 3l) cos

�y

2
(k − l)

− 2(−1)(k−l)/2 sin
�x

2
√
3
(k − 3l) cos �y

2
(k + l),

k = 1, 2, . . . , l = 0, 1, 2, . . . , k ≡ l mod 2, 0 < k � l.

The identity (6) differentiated with respect to a and d yields

(14)

vk,l(x, y) = 2 cos
k�x√
3
cos l�y

+ 2(−1)(k+l)/2 cos
�x

2
√
3
(k + 3l) cos

�y

2
(k − l)

+ 2(−1)(k−l)/2 cos
�x

2
√
3
(k − 3l) cos �y

2
(k + l),

k, l = 0, 1, 2, . . . , k ≡ l mod 2, 0 � k � l.

The system of functions (13) and (14) is a complete orthogonal system of eigenfunc-
tions of the Laplace operator with Neumann boundary conditions. The eigenvalues

are, as before, �2 (k
2

3 + l
2). Since we have now a singular problem, we obtain for

k = l = 0 the zero eigenvalue. The proof is essentialy the same as for the case of

Dirichlet boundary conditions. The solution of the corresponding boundary-value
problem on T1 can be transformed into a problem on R similarly, too.
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